1. Trang chủ
  2. » Giáo án - Bài giảng

The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15) K and P = 0.087 MPa

12 41 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,82 MB

Nội dung

Based on density measurements, partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with three isomers of xylene have been measured. The whole range of composition and temperatures from T = (298.15 to 318.15) K at ambient pressure 0.087 MPa, has been considered. The excess molar volumes were negative and decreased by increasing temperature for all mixtures which are explained based on intermolecular interactions. Excess molar volumes for solutions including nitrobenzene were absolutely larger than benzaldehyde binary mixtures. The partial and excess molar volumes for each component have been appraised and reported. The excess molar volumes have been successfully fitted to Redlich–Kister equation.

Journal of Advanced Research (2016) 7, 769–780 Cairo University Journal of Advanced Research ORIGINAL ARTICLE The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15) K and P = 0.087 MPa Hamid R Rafiee *, Farshid Frouzesh Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149, Iran A R T I C L E I N F O Article history: Received 14 August 2015 Received in revised form November 2015 Accepted 16 November 2015 Available online 28 November 2015 Keywords: Density Redlich–Kister Volumetric Excess molar volume Xylenes A B S T R A C T Based on density measurements, partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with three isomers of xylene have been measured The whole range of composition and temperatures from T = (298.15 to 318.15) K at ambient pressure 0.087 MPa, has been considered The excess molar volumes were negative and decreased by increasing temperature for all mixtures which are explained based on intermolecular interactions Excess molar volumes for solutions including nitrobenzene were absolutely larger than benzaldehyde binary mixtures The partial and excess molar volumes for each component have been appraised and reported The excess molar volumes have been successfully fitted to Redlich–Kister equation Ó 2015 Production and hosting by Elsevier B.V on behalf of Cairo University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/) Introduction Liquid mixtures are important from both theoretical and practical points of view From theoretical viewpoint, developing the knowledge of molecular interactions could help to predict thermodynamics and transport properties of components In * Corresponding author Tel./fax: +98 833 4274559 E-mail address: rafieehr@yahoo.com (H.R Rafiee) Peer review under responsibility of Cairo University Production and hosting by Elsevier the other hand, mixtures are encountered more in practice, in laboratory and in processes thereby attracting more attention Volumetric properties of binary mixtures are complicated properties since they depend not only on solvent–solvent, solute–solute and solute–solvent interactions, but also on the structural effects arising from differences in molar volume and free volume between solution components Benzaldehyde is used chiefly as a precursor to other organic compounds, ranging from pharmaceuticals to plastic additives while the most application of nitrobenzene is in the production of aniline which is a precursor to rubber chemicals, pesticide, dyes (particularly azo-dyes), explosives, and pharmaceuticals Xylenes are important in organic synthesis and their volumetric behavior in their mixtures with nitrobenzene and benzaldehyde may http://dx.doi.org/10.1016/j.jare.2015.11.003 2090-1232 Ó 2015 Production and hosting by Elsevier B.V on behalf of Cairo University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 770 H.R Rafiee and F Frouzesh be useful in process design, modeling and synthesis reactions which involve these binary systems There are several reports about the experimental data of volumetric and viscometric behaviors for binary and ternary liquid mixtures including benzene and its derivatives [1–5] There are also some semiempirical relations that have been proposed to evaluate excess properties from experimental data for binary [6–11] and ternary mixtures [12–19] In our previous work [20] we reported volumetric properties of binary and ternary mixtures of 1,4-dioxane, cyclohexanone and isooctane In this work we focused on volumetric properties of six binary mixtures of nitrobenzene and benzaldehyde with three isomers of xylene for whole range of composition at ambient pressure and temperatures from T = 298.15 to 318.15 K By measuring densities we evaluated both excess molar and partial molar volumes of components Moreover their behaviors are discussed in detail based on intermolecular interactions Experimental Results and discussion Table includes measured and reported values for density of pure components Fig demonstrates a deviation plot to compare reported and measured densities at different temperatures Deviations have been calculated as follows: Dev % ẳ ẵqexp qreport ị=qexp  100 ð1Þ where qexp and qreport stand for measured and reported densities, respectively As can be seen the agreement between our data with literature reports is good Using the measured densities q, excess molar volumes are calculated by the following equation: X1  À VEm ¼ xi Mi ð2Þ q qi i in which q is density of mixture and qi, xi and Mi are density, mole fraction and molar mass of pure component i, respec- Material Benzaldehyde and m-xylene with minimum mass fraction purity >0.99, were obtained from the Merck Nitrobenzene, o-xylene and p-xylene with minimum mass fraction purity >0.99, were obtained from the BDH All materials were used without further purification Properties of used materials are tabulated in Table Table Measured and reported density values for pure components.a Components Table q (g cmÀ3) q (g cmÀ3) This work Literature Nitrobenzene 298.15 303.15 308.15 313.15 1.1977 1.1927 1.1877 1.1827 1.19818 [3] 1.193481 [21] 1.188222 [21] 1.183263 [21] o-Xylene 298.15 303.15 308.15 313.15 0.8752 0.8710 0.8668 0.8625 0.87573 [3] 0.8711 [22] 0.867540 [21] 0.8626 [22] m-Xylene 298.15 303.15 308.15 313.15 0.8599 0.8556 0.8513 0.8469 0.859901 [21] 0.85576 [3] 0.851577 [21] 0.846724 [21] p-Xylene 298.15 303.15 308.15 313.15 0.8567 0.8524 0.8480 0.8436 0.856697 0.852261 0.847877 0.843640 Benzaldehyde 298.15 303.15 308.15 313.15 318.15 1.0414 1.0369 1.0324 1.0279 1.0234 1.04138 1.03653 1.03201 1.02749 1.02297 Apparatus and procedure All solutions were prepared afresh by mass using an analytical balance (Sartorius, CP224S, Germany) with precision (10À4 g) The average uncertainty in the mole fraction of the mixtures was estimated to be less than ±0.0002 Caution was taken to prevent evaporation of the samples and measurements were performed immediately after preparation of solutions The densities of solutions were measured by means of an Anton Parr DMA 4100 U-tube densimeter The apparatus was calibrated with double distilled deionized, and degassed water, and dry air at atmospheric pressure All injections to densimeter were done by using micro liter syringe for afresh prepared solutions Temperature was automatically kept constant within ±0.05 K by instrument Before injection, all samples were degassed by using ultrasound instrument (Hielscher UP100H, Germany) All measurements were performed at least three times, and the reported values are the relevant averages The experimental uncertainty of density measurements was ±5  10À4 g cmÀ3 The pressure in our laboratory was constant at 0.087 MPa with standard uncertainty of kPa T (K) a [21] [21] [21] [21] [23] [24] [24] [24] [24] Uncertainty for measured densities q = ±5  10À4 g cmÀ3 Provenance and mass fraction purity of the compounds studied Compound CAS number Supplier Mass fraction purity Molar mass (g molÀ1) Benzaldehyde m-Xylene o-Xylene p-Xylene Nitrobenzene 100-52-7 108-38-3 95-47-6 106-42-3 98-95-3 Merck (GC) Merck (GC) BDH (GLC) BDH (GLC) BDH (GLC) >0.99 >0.99 >0.99 >0.99 >0.99 106.13 106.17 106.17 106.17 123.11 Volumetric properties of some binary mixtures 771 0.06 0.04 Deviations % 0.02 -0.02 -0.04 -0.06 -0.08 -0.1 295 300 305 T/K 310 315 320 Fig Deviation plot for pure component’s densities at studied temperatures e, Nitrobenzene, , o-xylene, , m-xylene, , p-xylene, , benzaldehyde tively The partial molar volumes Vm,i are appraised based on following equations [25,26]: Vm;1 ẳ V1 ỵ xị2 j X Ai 2xịi iẳ0 2x1 xị2 j X Ai i1 2xịi1 3ị iẳ1 Vm;2 ẳ V2 ỵ x2 j j X X Ai 2xịi ỵ 2x2 xị Ai i1 2xịi1 iẳ0 iẳ1 4ị where x stands for mole fraction, Ai is the coefficient which comes from fitting by Redlich–Kister equation [27] and Vi* is molar volume of pure component i Excess partial molar volumes VEm,1 and VEm,2 are then calculated as (Vm,1 À V*1) and (Vm,2 À V*2) The Redlich–Kister equation is as follows: VEm ¼ x1 x2 j X Ai ð1 À 2xịi 5ị iẳ0 Tables 38 present the densities, excess volumes, partial molar and excess partial molar volumes for six binary studied systems Also the excess molar volumes are fitted to Redlich–Kister equation using least square method (minimizing the sum of squared of difference between the experimental data and the calculated values from Eq (5)) This is done by using the MathCAD 11(2001i) software using conjugate gradient algorithm This is the preferred algorithm by the MathCAD 11 (2001i) software for the minimizing Standard deviations are calculated using the following equation: 112 0PN  E E i¼1 Vexp À Vcalc A r¼@ ð6Þ NÀP where P is the number of parameters and N is the number of experimental data The Ai coefficients for the binary mixtures, at different temperatures along with their relevant standard deviations r, are given in Table The values of standard deviations show that the fitting is very good As can be seen from Tables 3–8 all six mixtures show negative excess volumes over entire range of composition which are reduced by growing temperature There are two important factors that affect the excess volume behavior in binary mixtures:(a) the intermolecular interactions (including dipole– dipole interactions, cohesive and dispersive forces and hydrogen-bonding)and (b) the size, shape and packing ability of component’s molecules (geometrical factors) in solution The negative excess volume comes from stronger intermolecular interactions in mixture compared to pure components That is, contraction takes place in volume by mixing However, inverse trend would be expected when expansion in volume occurs on mixing which implies that structural (repulsive) effects are govern and prevailing to attractive interactions in solution Tables 3–8 show that the values of excess molar volumes are absolutely larger, in nitrobenzene mixtures, compared to benzaldehyde ones These larger values can be attributed to more polarity of nitrobenzene which leads to stronger attractive forces Further considering the tables also reveals that in both nitrobenzene and benzaldehyde solutions, for meta and para-xylene mixtures, excess volumes are relatively higher than those for ortho-xylene mixtures This behavior can be explained by noting to configurations of these molecules In ortho-xylene two vicinal methyl groups extend the steric restrain of molecule which in turn leads to weaker interactions with nitrobenzene or benzaldehyde The effect is less in meta or para isomer which shows relatively larger negative values of excess volumes Figs 2–4 illustrate the plot of excess volumes for binary mixtures of nitrobenzene against mole fraction of xylene For comparison, the reported results of Wang et al [3] are also shown Figures illustrate that by noting to the negative values of excess volumes, there is agreement in the trend of data The figures show that by increasing temperature excess volumes reduce and tend to more negative values Valtz and his coworkers haveobserved similar behavior for some (triethylene glycol + alcohol) binary systems They explained this observation by the packing effects which become more dominant by increasing temperature [28] The same behavior is also observed for poly (ethylene glycol) + methoxybenzene or ethoxybenzene binary solutions [29]; pyridine + polyols binary solutions [30] and methoxybenzene + xylenes binary mixtures [31] This behavior may be justified based on growing packing ability of components by raising their kinetic energy By referring to Figs 2–7 it can be seen that the effect of temperature is to decrease the excess volume values in all binary studied systems This means that by increasing-xylene (m-C8H10) + À x benzaldehyde (C7H6O) at T = (298.15 to 318.15) K and ambient pressure.a q (g cmÀ3) VEm (cmÀ3 molÀ1) Vm,1 (cmÀ3 molÀ1) Vm,2 (cmÀ3 molÀ1) Vm,1E (cmÀ3 molÀ1) Vm,2E (cmÀ3 molÀ1) T = 298.15 K 0.0000 1.0414 0.1029 1.0206 0.1992 1.0011 0.3034 0.9807 0.3989 0.9627 0.5007 0.9441 0.6003 0.9264 0.6977 0.9094 0.7978 0.8925 0.8998 0.8759 1.0000 0.8599 0.0000 À0.1362 À0.1833 À0.2203 À0.2513 À0.2695 À0.2638 À0.2177 À0.1608 À0.0998 0.0000 122.6518 122.7133 122.8341 123.0261 123.2185 123.3437 123.4191 123.4722 123.4890 101.9060 101.8440 101.7589 101.7049 101.6602 101.5975 101.5121 101.3894 101.0192 À0.8160 À0.7545 À0.6337 À0.4417 À0.2493 À0.1241 À0.0487 0.0044 0.0212 À0.0049 À0.0669 À0.1520 À0.2060 À0.2507 À0.3134 À0.3988 À0.5215 À0.8917 T = 303.15 K 0.0000 1.0369 0.1029 1.0162 0.1992 0.9967 0.3034 0.9762 0.3989 0.9583 0.5007 0.9397 0.6003 0.9220 0.6977 0.9050 0.7978 0.8882 0.8998 0.8716 1.0000 0.8556 0.0000 À0.1554 À0.2010 À0.2246 À0.2644 À0.2794 À0.2701 À0.2198 À0.1714 À0.1055 0.0000 123.2505 123.3118 123.4218 123.6226 123.8277 123.9590 124.0384 124.0980 124.1165 102.3629 102.2949 102.1997 102.1436 102.1008 102.0371 101.9482 101.8182 101.3762 À0.8379 À0.7766 À0.6666 À0.4658 À0.2607 À0.1294 À0.0500 0.0096 0.0281 À0.0001 À0.0681 À0.1633 À0.2194 À0.2622 À0.3259 À0.4148 À0.5448 À0.9868 T = 308.15 K 0.0000 1.0324 0.1029 1.0117 0.1992 0.9922 0.3034 0.9718 0.3989 0.9538 0.5007 0.9352 0.6003 0.9175 0.6977 0.9006 0.7978 0.8838 0.8998 0.8672 1.0000 0.8513 0.0000 À0.1572 À0.2031 À0.2378 À0.2659 À0.2799 À0.2689 À0.2291 À0.1783 À0.1094 0.0000 123.8504 123.9705 124.1078 124.2897 124.4626 124.5730 124.6449 124.7070 124.7406 102.8078 102.7518 102.6689 102.6074 102.5405 102.4405 102.3034 102.1151 101.6741 À0.8794 À0.7593 À0.6220 À0.4401 À0.2672 À0.1568 À0.0849 À0.0228 0.0108 À0.0015 À0.0575 À0.1404 À0.2019 À0.2688 À0.3688 À0.5059 À0.6942 À1.1352 T = 313.15 K 0.0000 1.0279 0.1029 1.0072 0.1992 0.9877 0.3034 0.9673 0.3989 0.9494 0.5007 0.9308 0.6003 0.9131 0.6977 0.8963 0.7978 0.8795 0.8998 0.8629 1.0000 0.8469 0.0000 À0.1589 À0.2053 À0.2399 À0.2792 À0.2926 À0.2803 À0.2518 À0.1991 À0.1276 0.0000 124.4048 124.5953 124.7533 124.9401 125.1155 125.2285 125.3031 125.3659 125.3949 103.2639 103.2121 103.1286 103.0644 102.9954 102.8972 102.7699 102.6012 102.1713 À0.9731 À0.7826 À0.6246 À0.4378 À0.2624 À0.1494 À0.0748 À0.0120 0.0170 0.0045 À0.0473 À0.1308 À0.1950 À0.2640 À0.3622 À0.4895 À0.6582 À1.0881 T = 318.15 0.0000 1.0234 0.1029 1.0027 0.1992 0.9832 0.3034 0.9628 0.3989 0.9449 0.5007 0.9263 0.6003 0.9086 0.6977 0.8918 0.7978 0.8751 0.8998 0.8585 1.0000 0.8426 0.0000 À0.1608 À0.2076 À0.2420 À0.2810 À0.2932 À0.2791 À0.2484 À0.2065 À0.1317 0.0000 125.0541 125.2746 125.4243 125.5967 125.7627 125.8751 125.9545 126.0226 126.0522 103.7227 103.6749 103.5896 103.5192 103.4419 103.3381 103.2125 103.0544 102.6363 À0.9787 À0.7582 À0.6085 À0.4361 À0.2701 À0.1577 À0.0783 À0.0102 0.0194 0.0092 À0.0386 À0.1239 À0.1943 À0.2716 À0.3754 À0.5010 À0.6591 À1.0772 x a Uncertainties for x = 0.0002 q = ±5  10À4 (g cmÀ3) and for VEm, Vm,i and Vm,iE = ±0.0005 (cmÀ3 molÀ1) 774 H.R Rafiee and F Frouzesh Table Densities q, excess molar volumes VEm, partial molar volumes Vm,i and excess partial molar volumes Vm,i of x p-xylene (p-C8H10) + À x benzaldehyde (C7H6O) at T = (298.15 to 318.15) K and ambient pressure.a x q (g cmÀ3) VEm (cmÀ3 molÀ1) Vm,1 (cmÀ3 molÀ1) Vm,2 (cmÀ3 molÀ1) Vm,1E (cmÀ3 molÀ1) Vm,2E (cmÀ3 molÀ1) T = 298.15 K 0.0000 0.0701 0.1032 0.2007 0.3038 0.4025 0.5013 0.5944 0.6974 0.7999 0.8992 1.0000 1.0414 1.0270 1.0204 1.0002 0.9796 0.9605 0.9419 0.9250 0.9069 0.8894 0.8730 0.8567 0.0000 À0.1119 À0.1707 À0.2128 À0.2475 À0.2614 À0.2499 À0.2377 À0.2112 À0.1596 À0.0998 0.0000 123.0228 123.1243 123.3062 123.4404 123.5485 123.6300 123.6883 123.7531 123.8311 123.9014 101.9113 101.9077 101.8759 101.8150 101.7323 101.6090 101.4386 101.1836 100.8627 100.4335 À0.9062 À0.8047 À0.6228 À0.4886 À0.3805 À0.2990 À0.2407 À0.1759 À0.0979 À0.0276 0.0004 À0.0032 À0.0350 À0.0959 À0.1786 À0.3019 À0.4723 À0.7273 À1.0482 À1.4774 T = 303.15 K 0.0000 0.0701 0.1032 0.2007 0.3038 0.4025 0.5013 0.5944 0.6974 0.7999 0.8992 1.0000 1.0369 1.0224 1.0160 0.9958 0.9752 0.9561 0.9375 0.9206 0.9025 0.8851 0.8687 0.8524 0.0000 À0.1112 À0.1903 À0.2308 À0.2633 À0.2746 À0.2599 À0.2442 À0.2133 À0.1702 À0.1056 0.0000 123.5968 123.7209 123.9424 124.0754 124.1624 124.2250 124.2766 124.3463 124.4359 124.5189 102.3646 102.3627 102.3364 102.2747 102.1786 102.0307 101.8306 101.5384 101.1794 100.7297 À0.9574 À0.8333 À0.6118 À0.4788 À0.3918 À0.3292 À0.2776 À0.2079 À0.1183 À0.0353 0.0016 À0.0003 À0.0266 À0.0883 À0.1844 À0.3323 À0.5324 À0.8246 À1.1836 À1.6333 T = 308.15 K 0.0000 0.0701 0.1032 0.2007 0.3038 0.4025 0.5013 0.5944 0.6974 0.7999 0.8992 1.0000 1.0324 1.0179 1.0115 0.9913 0.9707 0.9516 0.9331 0.9162 0.8981 0.8807 0.8643 0.8480 0.0000 À0.1125 À0.1924 À0.2334 À0.2657 À0.2764 À0.2724 À0.2556 À0.2227 À0.1772 À0.1095 0.0000 124.2055 124.3254 124.5438 124.6923 124.8005 124.8781 124.9345 125.0021 125.0877 125.1674 102.8102 102.8072 102.7768 102.7141 102.5795 102.5055 102.3882 102.1694 101.8029 101.3463 À0.9950 À0.8751 À0.6567 À0.5082 À0.4000 À0.3224 À0.2660 À0.1984 À0.1128 À0.0331 0.0009 À0.0021 À0.0325 À0.0952 À0.1863 À0.3255 À0.5181 À0.8052 À1.1646 À1.6313 T = 313.15 K 0.0000 0.0701 0.1032 0.2007 0.3038 0.4025 0.5013 0.5944 0.6974 0.7999 0.8992 1.0000 1.0279 1.0135 1.0070 0.9868 0.9662 0.9471 0.9286 0.9117 0.8936 0.8763 0.8599 0.8436 0.0000 À0.1253 À0.1961 À0.2389 À0.2728 À0.2842 À0.2805 À0.2633 À0.2295 À0.1963 À0.1270 0.0000 124.7505 124.9433 125.2237 125.3602 125.4589 125.5381 125.6021 125.6814 125.7757 125.8494 103.2679 103.2691 103.2412 103.1694 103.0693 102.9260 102.7374 102.4727 102.1561 101.6908 À1.1179 À0.9251 À0.6447 À0.5082 À0.4095 À0.3303 À0.2663 À0.1870 À0.0927 À0.0190 0.0085 0.0097 À0.0182 À0.0900 À0.1901 À0.3334 À0.5220 À0.7867 À1.1033 À1.5686 T = 318.15 0.0000 0.0701 0.1032 0.2007 0.3038 0.4025 0.5013 0.5944 0.6974 0.7999 0.8992 1.0000 1.0234 1.0089 1.0025 0.9823 0.9617 0.9427 0.9242 0.9073 0.8892 0.8718 0.8555 0.8393 0.0000 À0.1174 À0.1999 À0.2446 À0.2799 À0.3041 À0.3011 À0.2841 À0.2499 À0.2019 À0.1448 0.0000 125.3371 125.5682 125.8599 125.9797 126.0870 126.1927 126.2844 126.3868 126.4872 126.5449 103.7265 103.7294 103.6956 103.6080 103.4982 103.3593 103.1933 102.9826 102.7491 102.3343 À1.2064 À0.9753 À0.6836 À0.5638 À0.4565 À0.3508 À0.2591 À0.1567 À0.0563 0.0014 0.0130 0.0159 À0.0179 À0.1055 À0.2153 À0.3542 À0.5202 À0.7309 À0.9644 À1.3792 a Uncertainties for x = 0.0002 q = ±5  10À4 (g cmÀ3) and for VEm, Vm,i and Vm,iE = ±0.0005 (cmÀ3 molÀ1) Volumetric properties of some binary mixtures 775 Table Densities q, excess molar volumes VEm, partial molar volumes Vm,i and excess partial molar volumes Vm,i of x o-xylene (o-C8H10) + À x nitro benzene (C6H5NO2) at T = (298.15 to 318.15) K and ambient pressure.a q (g cmÀ3) VEm (cmÀ3 molÀ1) Vm,1 (cmÀ3 molÀ1) Vm,2 (cmÀ3 molÀ1) Vm,1E (cmÀ3 molÀ1) Vm,2E (cmÀ3 molÀ1) T = 298.15 K 0.0000 1.1977 0.1147 1.1557 0.2268 1.1162 0.3336 1.0797 0.4384 1.0450 0.5378 1.0130 0.6345 0.9827 0.7297 0.9537 0.8206 0.9268 0.9103 0.9008 1.0000 0.8752 0.0000 À0.0702 À0.1360 À0.1805 À0.2080 À0.2130 À0.1990 À0.1778 À0.1508 À0.0984 0.0000 120.6187 120.8705 120.9669 121.0504 121.1397 121.2269 121.2967 121.3314 121.3272 102.7466 102.7027 102.6692 102.6171 102.5312 102.4058 102.2448 102.0816 101.9907 À0.6907 À0.4389 À0.3425 À0.2590 À0.1697 À0.0825 À0.0127 0.0220 0.0178 À0.0421 À0.0860 À0.1195 À0.1716 À0.2575 À0.3829 À0.5439 À0.7071 À0.7980 T = 303.15 K 0.0000 1.1927 0.1147 1.1509 0.2268 1.1114 0.3336 1.0750 0.4384 1.0405 0.5378 1.0087 0.6345 0.9785 0.7297 0.9495 0.8206 0.9225 0.9103 0.8965 1.0000 0.8710 0.0000 À0.0815 À0.1404 À0.1872 À0.2277 À0.2470 À0.2368 À0.2074 À0.1588 À0.0961 0.0000 120.4764 120.6837 120.8740 121.0537 121.1842 121.2654 121.3105 121.3288 121.3235 103.1970 103.1620 103.0930 102.9817 102.8579 102.7420 102.6271 102.4886 102.3131 À0.8330 À0.6257 À0.4354 À0.2557 À0.1252 À0.0440 0.0011 0.0194 0.0141 À0.0226 À0.0576 À0.1266 À0.2379 À0.3617 À0.4776 À0.5925 À0.7310 À0.9065 T = 308.15 K 0.0000 1.1877 0.1147 1.146 0.2268 1.1067 0.3336 1.0704 0.4384 1.0359 0.5378 1.0041 0.6345 0.9740 0.7297 0.9451 0.8206 0.9182 0.9103 0.8923 1.0000 0.8668 0.0000 À0.0838 À0.1546 À0.2042 À0.2369 À0.2477 À0.2399 À0.2128 À0.1670 À0.1073 0.0000 121.6439 121.9162 122.0783 122.2102 122.3170 122.4008 122.4605 122.4916 122.4946 103.6203 103.5700 103.5102 103.4280 103.3261 103.2065 103.0689 102.9237 102.8009 À0.8411 À0.5688 À0.4067 À0.2748 À0.1680 À0.0842 À0.0245 0.0066 0.0096 À0.0338 À0.0841 À0.1439 À0.2261 À0.3280 À0.4476 À0.5852 À0.7304 À0.8532 T = 313.15 K 0.0000 1.1828 0.1147 1.1412 0.3336 1.0657 0.4384 1.0313 0.5378 0.9996 0.6345 0.9695 0.7297 0.9406 0.8206 0.9138 0.9103 0.8880 1.0000 0.8625 0.0000 À0.0893 À0.2101 À0.2477 À0.2635 À0.2488 À0.2139 À0.1725 À0.1173 0.0000 122.2597 122.4822 122.6189 122.7810 122.9287 123.0430 123.1199 123.1510 104.0390 104.0092 103.9653 103.8654 103.7243 103.5592 103.3613 103.1214 À0.8359 À0.6134 À0.4767 À0.3146 À0.1669 À0.0526 0.0243 0.0554 À0.0445 À0.0743 À0.1182 À0.2181 À0.3592 À0.5243 À0.7222 À0.9621 T = 318.15 0.0000 1.1778 0.1147 1.1363 0.2268 1.0972 0.3336 1.0611 0.4384 1.0267 0.5378 0.9951 0.6345 0.9650 0.7297 0.9361 0.8206 0.9093 0.9103 0.8836 1.0000 0.8583 0.0000 À0.0917 À0.1702 À0.2277 À0.2574 À0.2760 À0.2521 À0.2068 À0.1612 À0.1013 0.0000 122.8829 123.0464 123.1792 123.3432 123.4961 123.6173 123.6993 123.7347 123.7238 104.4963 104.4732 104.4275 104.3254 104.1792 104.0054 103.8071 103.5944 103.4160 À0.8151 À0.6516 À0.5188 À0.3548 À0.2019 À0.0807 0.0013 0.0367 0.0258 À0.0291 À0.0522 À0.0979 À0.2000 À0.3462 À0.5200 À0.7183 À0.9310 À1.1094 x a Uncertainties for x = 0.0002 q = ±5  10–4 (g cmÀ3) and for VEm, Vm,i and Vm,iE = ±0.0005 (cmÀ3 molÀ1) 776 H.R Rafiee and F Frouzesh Table Densities q, excess molar volumes VEm, partial molar volumes Vm,i and excess partial molar volumes Vm,i of x m-xylene (m-C8H10) + À x nitro benzene (C6H5NO2) at T = (298.15 to 318.15) K and ambient pressure.a q (g cmÀ3) VEm (cmÀ3 molÀ1) Vm,1 (cmÀ3 molÀ1) Vm,2 (cmÀ3 molÀ1) Vm,1E (cmÀ3 molÀ1) Vm,2E (cmÀ3 molÀ1) T = 298.15 K 0.0000 1.1977 0.1139 1.1538 0.2240 1.1129 0.3337 1.0737 0.4342 1.0389 0.5383 1.0039 0.6334 0.9727 0.7297 0.9421 0.8197 0.9139 0.9125 0.8858 1.0000 0.8599 0.0000 À0.1172 À0.2105 À0.2951 À0.3483 À0.3723 À0.3537 À0.3217 À0.2236 À0.1273 0.0000 122.2076 122.5038 122.8159 123.0663 123.2582 123.3698 123.4328 123.4604 123.4688 102.7731 102.7138 102.5942 102.4389 102.2585 102.1015 101.9628 101.8479 101.7327 À1.2602 À0.9640 À0.6519 À0.4015 À0.2096 À0.0980 À0.0350 À0.0074 0.0010 À0.0156 À0.0749 À0.1945 À0.3498 À0.5302 À0.6872 À0.8259 À0.9408 À1.0560 T = 303.15 K 0.0000 1.1927 0.1139 1.1490 0.2240 1.1082 0.3337 1.0690 0.4342 1.0342 0.5383 0.9993 0.6334 0.9683 0.7297 0.9377 0.8197 0.9095 0.9125 0.8815 1.0000 0.8556 0.0000 À0.1309 À0.2292 À0.3083 À0.3552 À0.3826 À0.3797 À0.3394 À0.2317 À0.1371 0.0000 122.7338 123.0790 123.4382 123.6988 123.8767 123.9687 124.0183 124.0479 124.0743 103.2074 103.1353 102.9961 102.8346 102.6681 102.5396 102.4350 102.3343 102.1620 À1.3545 À1.0093 À0.6501 À0.3895 À0.2116 À0.1196 À0.0700 À0.0404 À0.0140 À0.0122 À0.0843 À0.2235 À0.3850 À0.5515 À0.6800 À0.7846 À0.8853 À1.0576 T = 308.15 K 0.0000 1.1877 0.1139 1.1441 0.2240 1.1034 0.3337 1.0643 0.4342 1.0296 0.5383 0.9947 0.6334 0.9637 0.7297 0.9332 0.8197 0.9052 0.9125 0.8772 1.0000 0.8513 0.0000 À0.1357 À0.2384 À0.3218 À0.3732 À0.3931 À0.3821 À0.3446 À0.2534 À0.1484 0.0000 123.3467 123.7364 124.0596 124.2942 124.4712 124.5804 124.6513 124.6911 124.7111 103.6247 103.5473 103.4239 103.2786 103.1121 102.9582 102.8030 102.6501 102.4723 À1.3684 À0.9787 À0.6555 À0.4209 À0.2439 À0.1347 À0.0638 À0.0240 À0.0040 À0.0294 À0.1068 À0.2302 À0.3755 À0.5420 À0.6959 À0.8511 À1.0040 À1.1818 T = 313.15 K 0.0000 1.1828 0.1139 1.1392 0.2240 1.0986 0.3337 1.0596 0.4342 1.0250 0.5383 0.9902 0.6334 0.9592 0.7297 0.9288 0.8197 0.9008 0.9125 0.8728 1.0000 0.8469 0.0000 À0.1344 À0.2443 À0.3346 À0.3929 À0.4194 À0.4028 À0.3713 À0.2725 À0.1586 0.0000 123.8955 124.3272 124.6795 124.9306 125.1189 125.2340 125.3063 125.3435 125.3601 104.0516 103.9649 103.8297 103.6740 103.4968 103.3348 103.1797 103.0455 102.9183 À1.4676 À1.0359 À0.6836 À0.4325 À0.2442 À0.1291 À0.0568 À0.0196 À0.0030 À0.0319 À0.1186 À0.2538 À0.4095 À0.5867 À0.7487 À0.9038 À1.0380 À1.1652 T = 318.15 0.0000 1.1778 0.1139 1.1344 0.2240 1.0939 0.3337 1.0550 0.4342 1.0204 0.5383 0.9856 0.6334 0.9547 0.7297 0.9243 0.8197 0.8965 0.9125 0.8684 1.0000 0.8426 0.0000 À0.1487 À0.2639 À0.3592 À0.4116 À0.4305 À0.4178 À0.3770 À0.2950 À0.1561 0.0000 124.4740 124.9617 125.3280 125.5566 125.7198 125.8243 125.8976 125.9452 125.9830 104.4945 104.3910 104.2470 104.1045 103.9509 103.8048 103.6610 103.5464 103.4432 À1.5288 À1.0411 À0.6748 À0.4462 À0.2830 À0.1785 À0.1052 À0.0576 À0.0198 À0.0309 À0.1344 À0.2784 À0.4209 À0.5745 À0.7206 À0.8644 À0.9790 À1.0822 x a Uncertainties for x = 0.0002 q = ±5  10À4 (g cmÀ3) and for VEm, Vm,i and Vm,iE = ±0.0005 (cmÀ3 molÀ1) Volumetric properties of some binary mixtures 777 Table Densities q, excess molar volumes VEm, partial molar volumes Vm,i and excess partial molar volumes Vm,i of x p-xylene (p-C8H10) + À x nitro benzene (C6H5NO2) at T = (298.15 to 318.15) K and ambient pressure.a q (g cmÀ3) VEm (cmÀ3 molÀ1) Vm,1 (cmÀ3 molÀ1) Vm,2 (cmÀ3 molÀ1) Vm,1E (cmÀ3 molÀ1) Vm,2E (cmÀ3 molÀ1) T = 298.15 K 0.0000 1.1977 0.1172 1.1514 0.2275 1.1103 0.3291 1.0737 0.4365 1.0360 0.5366 1.0020 0.6355 0.9693 0.7317 0.9385 0.8233 0.9099 0.9114 0.8831 1.0000 0.8567 0.0000 À0.0690 À0.1889 À0.2783 À0.3225 À0.3397 À0.3221 À0.2853 À0.2191 À0.1315 0.0000 122.8231 123.1981 123.3906 123.5384 123.6803 123.8173 123.9119 123.9456 123.9387 102.7503 102.6675 102.5891 102.4955 102.3597 102.1671 101.9844 101.9509 102.2205 À1.1059 À0.7309 À0.5384 À0.3906 À0.2487 À0.1117 À0.0171 0.0166 0.0097 À0.0384 À0.1212 À0.1996 À0.2932 À0.4290 À0.6216 À0.8043 À0.8378 À0.5682 T = 303.15 K 0.0000 1.1927 0.1172 1.1466 0.2275 1.1056 0.3291 1.0691 0.4365 1.0314 0.5366 0.9974 0.6355 0.9648 0.7317 0.9340 0.8233 0.9054 0.9114 0.8787 1.0000 0.8524 0.0000 À0.0823 À0.2074 À0.3022 À0.3401 À0.3501 À0.3358 À0.2900 À0.2137 À0.1289 0.0000 123.4320 123.7824 123.9749 124.1249 124.2701 124.4119 124.5125 124.5539 124.5568 103.1884 103.1085 103.0288 102.9333 102.7944 102.5953 102.4038 102.3606 102.6110 À1.1222 À0.7718 À0.5793 À0.4293 À0.2841 À0.1423 À0.0417 À0.0003 0.0026 À0.0312 À0.1111 À0.1908 À0.2863 À0.4252 À0.6243 À0.8158 À0.8590 À0.6086 T = 308.15 K 0.0000 1.1877 0.1172 1.1419 0.2275 1.1008 0.3291 1.0644 0.4365 1.0268 0.5366 0.9929 0.6355 0.9603 0.7317 0.9296 0.8233 0.9010 0.9114 0.8743 1.0000 0.8480 0.0000 À0.1069 À0.2197 À0.3209 À0.3644 À0.3801 À0.3593 À0.3184 À0.2337 À0.1398 0.0000 123.9712 124.3234 124.5507 124.7507 124.9226 125.0688 125.1667 125.2078 125.2087 103.6201 103.5454 103.4562 103.3312 103.1677 102.9615 102.7593 102.6501 102.7357 À1.2293 À0.8771 À0.6498 À0.4498 À0.2779 À0.1317 À0.0338 0.0073 0.0082 À0.0340 À0.1087 À0.1979 À0.3229 À0.4864 À0.6926 À0.8948 À1.0040 À0.9184 T = 313.15 K 0.0000 1.1827 0.1172 1.1370 0.2275 1.0961 0.3291 1.0597 0.4365 1.0221 0.5366 0.9883 0.6355 0.9558 0.7317 0.9251 0.8233 0.8965 0.9114 0.8699 1.0000 0.8436 0.0000 À0.1131 À0.2423 À0.3401 À0.3782 À0.3991 À0.3832 À0.3344 À0.2406 À0.1508 0.0000 124.7117 124.7831 125.0241 125.2928 125.4892 125.6216 125.7089 125.7738 125.8266 104.0583 103.9731 103.8755 103.7511 103.5928 103.3900 103.1907 103.0907 103.1875 À1.1418 À1.0704 À0.8294 À0.5607 À0.3643 À0.2319 À0.1446 À0.0797 À0.0269 À0.0340 À0.1192 À0.2168 À0.3412 À0.4995 À0.7023 À0.9016 À1.0016 À0.9048 T = 318.15 K 0.0000 1.1778 0.1172 1.1320 0.2275 1.0913 0.3291 1.0550 0.4365 1.0175 0.5366 0.9838 0.6355 0.9513 0.7317 0.9206 0.8233 0.8921 0.9114 0.8655 1.0000 0.8393 0.0000 À0.1004 À0.2450 À0.3487 À0.3918 À0.4180 À0.3948 À0.3374 À0.2474 À0.1476 0.0000 125.1753 125.5531 125.7956 126.0004 126.1832 126.3461 126.4557 126.4999 126.5023 104.4948 104.4097 104.3113 104.1820 104.0078 103.7791 103.5653 103.5005 103.7208 À1.3230 À0.9452 À0.7027 À0.4979 À0.3151 À0.1522 À0.0426 0.0016 0.0040 À0.0306 À0.1157 À0.2141 À0.3434 À0.5176 À0.7463 À0.9601 À1.0249 À0.8046 x a Uncertainties for x = 0.0002 q = ±5  10À4 (g cmÀ3) and for VEm, Vm,i and Vm,iE = ±0.0005 (cmÀ3 molÀ1) 778 H.R Rafiee and F Frouzesh Table Coefficients of the Redlich–Kister equation, Eq (5) for excess molar volume of binary mixtures along with standard deviations, r, at various temperatures T (K) A0 A1 A2 A3 r A4 Nitrobenzene + p-Xylene 298.15 À1.3472 303.15 À1.4103 308.15 À1.5192 313.15 À1.5925 318.15 À1.6552 À0.1404 À0.0562 À0.1632 À0.1500 À0.1301 0.0902 0.0613 0.1836 0.0553 0.1704 À0.7743 À0.7304 À0.4681 À0.4817 À0.6363 0.4917 0.6048 0.1854 0.3704 0.5254 0.002 0.005 0.005 0.007 0.006 Nitrobenzene + m-Xylene 298.15 À1.4699 303.15 À1.5177 308.15 À1.5628 313.15 À1.6521 318.15 À1.7067 À0.3841 À0.4519 À0.3570 À0.4307 À0.3618 0.2775 0.0692 0.0521 0.0644 À0.2225 0.2036 0.4036 0.0985 0.0617 0.0102 À0.1462 0.0115 À0.1128 À0.0507 0.3316 0.007 0.008 0.004 0.006 0.004 Nitrobenzene + o-Xylene 298.15 À0.8489 303.15 À0.9670 308.15 À0.9859 313.15 À1.0437 318.15 À1.0874 À0.0309 À0.2905 À0.1606 À0.1626 À0.0567 0.0626 0.2901 0.0667 0.4233 0.4373 À0.4420 0.1332 À0.1786 À0.2077 À0.1789 À0.3103 À0.5108 À0.2644 À0.9062 À0.6260 0.001 0.001 0.002 0.002 0.004 Benzaldehyde + p-Xylene 298.15 À1.0159 303.15 À1.0486 308.15 À1.0859 313.15 À1.1179 318.15 À1.2064 0.1836 0.2711 0.2070 0.2069 0.2021 À0.3174 À0.4877 À0.4241 À0.4010 À0.1847 0.3209 0.2287 0.3167 0.1897 0.0407 À0.4596 À0.3538 À0.4386 À0.7732 À1.0641 0.007 0.011 0.011 0.009 0.012 Benzaldehyde + m-Xylene 298.15 À1.0862 303.15 À1.1223 308.15 À1.1217 313.15 À1.1724 318.15 À1.1707 À0.0846 À0.0747 À0.0488 À0.1188 À0.0866 0.5082 0.5668 0.2852 0.2576 0.2116 0.5373 0.6453 0.5561 0.4741 0.3728 À1.3113 À1.6937 À1.2928 À1.3928 À1.4258 0.003 0.004 0.001 0.003 0.004 Benzaldehyde + o-Xylene 298.15 À0.8209 303.15 À0.8709 308.15 À0.9185 313.15 À0.9744 318.15 À1.0217 À0.1126 À0.0016 0.0151 À0.0298 À0.1871 0.2511 0.3883 0.3549 0.1651 0.3445 0.6288 0.4354 0.0969 0.0343 0.1947 À0.3389 À0.6666 À0.8819 À0.6893 À1.2657 0.003 0.004 0.002 0.003 0.003 0.00 VmE / (cm3.mol-1) VmE / (cm3.mol-1) -0.10 -0.1 -0.2 -0.20 -0.30 -0.40 -0.3 0.00 0.20 0.40 x 0.60 0.80 1.00 Fig Excess molar volume for binary mixtures of o-(CH3)2 C6H4 + C6H5NO2 at T = 303.15 K and T = 313.15 K versus o-xylene mole fraction T = 303.15 K: , this work, , Wang et al [3], T = 313.15: , this work, , Wang et al [3]; solid lines are drawn based on Redlich–Kister equation -0.50 0.00 0.20 0.40 0.60 0.80 1.00 x Fig Excess molar volume for binary mixtures of m-(CH3)2 C6H4 + C6H5NO2 at T = 303.15 K and T = 313.15 K versus m-xylene mole fraction T = 303.15 K: , this work, , Wang et al [3], T = 313.15: , this work, , Wang et al [3]; solid lines are drawn based on Redlich–Kister equation Volumetric properties of some binary mixtures 779 0.00 0.00 -0.10 VmE / (cm3.mol-1) VmE / (cm3mol-1) -0.10 -0.20 -0.30 -0.30 -0.40 -0.50 0.00 -0.20 0.20 0.40 x 0.60 0.80 -0.40 0.00 1.00 Fig Excess molar volume for binary mixtures of p-(CH3)2 C6H4 + C6H5NO2 at T = 303.15 K and T = 313.15 K versus p-xylene mole fraction T = 303.15 K: , this work, , Wang et al [3], T = 313.15: , this work, , Wang et al [3]; solid lines are drawn based on Redlich–Kister equation 0.20 0.40 x 0.60 0.80 1.00 Fig Excess molar volume of x m-(CH3)2C6H4 + (1 À x) C7H6O at ambient pressure plotted against mole fraction At ; T = 308.15 K, ; T = 298.15 K, e; T = 303.15 K, T = 313.15 K, ; T = 318.15 K, ; solid lines are drawn based on Redlich–Kister equation 0.00 0.00 VmE / (cm3.mol-1) VmE / (cm3.mol-1) -0.10 -0.10 -0.20 -0.30 0.00 -0.20 -0.30 0.20 0.40 x 0.60 0.80 1.00 Fig Excess molar volume of x o-(CH3)2C6H4 + (1 À x) C7H6O at ambient pressure plotted against mole fraction At ; T = 308.15 K, ; T = 298.15 K, e; T = 303.15 K, T = 313.15 K, ; T = 318.15 K, ; solid lines are drawn based on Redlich–Kister equation a result, better accommodation of solution components between each other takes place at higher temperatures Conclusions -0.40 0.00 0.20 0.40 0.60 0.80 1.00 x Fig Excess molar volume of x p-(CH3)2C6H4 + (1 À x) C7H6O at ambient pressure plotted against mole fraction At ; T = 308.15 K, ; T = 298.15 K, e; T = 303.15 K, T = 313.15 K, ; T = 318.15 K, ; solid lines are drawn based on Redlich–Kister equation observed behaviors of systems have been explained based on variation of packing ability of components with structural factors and also formation of interaction complex between components Conflict of interest We studied volumetric properties of six binary mixtures including three isomers of xylene with nitrobenzene and benzaldehyde from T = 298.15 to 318.15 K at ambient pressure over the entire range of composition The excess volumes for all binary mixtures were negative and decreased by increasing temperature The excess molar volumes were fitted to Redlich– Kister equation and the partial molar and excess partial molar volumes are calculated and reported for components The The authors have declared no conflict of interest Compliance with Ethics Requirements This article does not contain any studies with human or animal subjects 780 Acknowledgment We are grateful to Razi University Research Council for the financial support of this research References [1] Hasan M, Sawant AB, Sawant RB, Hasan M, Loke PG Densities, viscosities, speed of sound, and IR spectroscopic studies of binary mixtures of tert-butyl acetate with benzene, methylbenzene, and ethylbenzene at T = (298.15 and 308.15) K J Chem Thermodyn 2011;43:1389–94 [2] Ranjbar S, Momenian SH Densities and viscosities of binary and ternary mixtures of (nitrobenzene + 1-bromobutane), (1-bromobutane + methylcyclohexane), (nitrobenzene + methylcyclohexane), and (methylcyclohexane + nitrobenzene + 1-bromobutane) from (293.15 to 308.15) K J Chem Eng Data 2011;56:3949–54 [3] Wang H, Wu Y, Dong W A study of densities and volumetric properties of binary mixtures containing nitrobenzene at T = (293.15 to 353.15) K J Chem Thermodyn 2005;37:866–86 [4] Wang HJ, Liu W Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K J Chem Thermodyn 2004;36:743–52 [5] Wang HJ, Wu X, Yu QS Effect of temperature on the volumetric properties of (cyclohexanone + an aromatic hydrocarbon) J Chem Thermodyn 2004;36:1079–87 [6] Grunberg L, Nissan AH Mixture law for viscosity Nature 1949;164:799–800 [7] McAllister L The viscosity of liquid mixtures AIChE J 1960;6:427–31 [8] Eyring H Viscosity, plasticity, and diffusion as examples of absolute reaction rates J Chem Phys 1936;4:283–91 [9] Acree WE Thermodynamic properties of nonelectrolyte solutions New York: Academic Press; 1984 [chapter 56] [10] Teja AS, Rice P Generalized corresponding states method for the viscosities of liquid mixtures Ind Eng Chem Fundam 1981;20:77–81 [11] Teja AS, Rice P The measurement and prediction of the viscosities of some binary liquid mixtures containing n-hexane Chem Eng Sci 1981;36:7–10 [12] Kohler F Zur Berechnung der thermodynamischen Daten eines ternaăren Systems aus den zugehoărigen binaăren Systemen Monatsh Chem 1960;91:73840 [13] Cibulka I Estimation of excess volume and density of ternary liquid mixtures of non-electrolytes from binary data Collect Czech Chem Commun 1982;47:1414–9 [14] Collinet C Facule´ des Sciences PhD thesis France: Universite´ de Grenoble; 1967 [15] Jacob KT, Fitzner K The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path Thermochim Acta 1977;18:197–206 [16] Tsao CC, Smith JM Heat of mixing of liquids Chem Eng Prog Symp 1953;49:107–17 [17] Scatchard G, Ticknor LB, Goates JR, McCartney ER Heats of mixing in some non-electrolyte solutions J Am Chem Soc 1952;74:3721–4 [18] Hillert M Empirical methods of predicting and representing thermodynamic properties of ternary solution phases CALPHAD: Comput Coupling Phase Diagrams Thermochem 1980;4:1–12 H.R Rafiee and F Frouzesh [19] Souza MJ, Jimenez EJ, Legido L, Fernandez JEM, Perez Martell, Paz Andrade I Excess molar volumes at the temperature 298.15 K of {x1C2H5CO2(CH2)2CH3 + x2Cl(CH2)5CH3 + (1 À x1 À x2) c-C6H12}, {x1C2H5CO2(CH2)2CH3 + x2Cl(CH2)5CH3 + (1 À x1 À x2)CH3(CH2)4CH3}, and {x1C2H5CO2(CH2)2CH3 + x2c-C6H12 + (1 À x1 À x2)CH3(CH2)4CH3} J Chem Thermodyn 1992;24:119–28 [20] Rafiee HR, Ranjbar S, Poursalman F Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K J Chem Thermodyn 2012;54:266–71 [21] Sastry NV, Thakor RR, Patel MC Excess molar volumes, viscosity deviations, excess isentropic compressibilities and deviations in relative permittivities of (alkyl acetates (methyl, ethyl, butyl and isoamyl) + n-hexane, + benzene, + toluene, + (o-, m-, p-) xylenes, + (chloro-, bromo-, nitro-) benzene at temperatures from 298.15 to 313.15 K J Mol Liq 2009;144: 13–22 [22] Dikio E, Vilakazi DG, Ngoy P Density, dynamic viscosity and derived properties of binary mixtures of m-xylene, o-xylene, and p-xylene, with pyridine at T = 293.15, 303.15, 313.15 and 323.15 K J Mol Liq 2013;177:190–7 [23] Roy MN, Das RK, Bhattacharjee A Density and viscosity of acrylonitrile + cinnamaldehyde, + anisaldehyde, and + benzaldehyde at (298.15, 308.15, and 318.15) K J Chem Eng Data 2008;53:1431–5 [24] Malek NI, Ijardar SP, Oswal SB Volumetric and acoustic properties of binary mixtures of cyclohexane + benzene and + benzaldehyde at (293.15–323.15) K Thermochim Acta 2012;539:71–83 [25] Gu Y, Wu J Volumetric properties of binary mixtures of (N,Ndiethylformamide + xylenes) at temperatures between T = 293.15 K and T = 353.15 K at p = 0.1 MPa J Mol Liq 2008;137:165–73 [26] Davis MI Thermodynamic and related studies of amphiphile + water systems Chem Soc Rev 1993;22:127–34 [27] Redlich O, Kister AT Algebraic representation of thermodynamic properties and the classification of solutions Ind Eng Chem 1948;40:345–8 [28] Valtz A, Teodorescu M, Wichterle Richon ID Liquid densities and excess molar volumes for water + diethylene glycolamine, and water, methanol, ethanol, 1-propanol + triethylene glycol binary systems at atmospheric pressure and temperatures in the range of 283.15–363.15 K Fluid Phase Equilib 2004;215:129–42 [29] Zafarani-Moattar MT, Dehghanian S Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: volumetric and viscometric studies J Chem Thermodyn 2014;71:221–30 [30] Kijevcanin ML, Zivkovic EM, Djordjevic BD, Radovic I, Jovanovic RJS, Serbanovic P Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, +1,2-propanediol, +1,3-propanediol, and +glycerol) New UNIFAC-VISCO parameters determination J Chem Thermodyn 2013;56:49–56 [31] Al-Kandary JA, Al-Jimaz A, Abdul-Latif AM Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K J Chem Thermodyn 2006;38:1351–61 [32] Kalra KCV, Sharma K, Katoch A Molar excess volumes and molar excess enthalpies of binary mixtures containing nitrobenzene Indian J Chem Sec A 1997;36A:46–52 ... Redlich– Kister equation and the partial molar and excess partial molar volumes are calculated and reported for components The The authors have declared no conflict of interest Compliance with Ethics... fraction of the mixtures was estimated to be less than ±0.0002 Caution was taken to prevent evaporation of the samples and measurements were performed immediately after preparation of solutions The. .. is the number of experimental data The Ai coefficients for the binary mixtures, at different temperatures along with their relevant standard deviations r, are given in Table The values of standard

Ngày đăng: 13/01/2020, 04:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN