1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học kì 2 môn Toán 11 năm 2018-2019 có đáp án - Trường THPT Nguyễn Thị Minh Khai

3 106 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 285,44 KB

Nội dung

Đề thi học kì 2 môn Toán 11 năm 2018-2019 có đáp án - Trường THPT Nguyễn Thị Minh Khai giúp các bạn học sinh có thêm tài liệu ôn tập, luyện tập giải đề nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập một cách thuận lợi. Chúc các bạn thi tốt!

SỞ GIÁO DỤC VÀ ĐÀO TẠO TP HCM ĐỀ KIỂM TRA HỌC KÌ II TRƯỜNG THPT NGUYỄN THỊ MINH KHAI Năm học: 2018 – 2019 −−−−−−−−−−−− Mơn TỐN – Khối: 11 Thời gian: 90 phút (Không kể thời gian phát đề) Họ tên học sinh: ……………………………………………………Số báo danh:………………………… Bài 1: Tính x + x − 5x − x →−2 x + 5x + a) A = lim b) B = lim x→+∞ ( (1 điểm) ) 25 x + 10 x − x (1 điểm) x2 − x → ( −2 ) x + x c) C = lim − (1 điểm) Bài 2: Xét tính liên tục hàm số sau xo =  x2 − −1  y = f x =  x − 3x −  ( ) ( x > 3) ( x ≤ 3) (1 điểm) Bài 3: Cho hàm số y = − x Chứng minh rằng: y y '+ x = ; ∀x ∈ ( −1 ; 1) Bài 4: Tìm phương trình tiếp tuyến (D) đồ thị ( C ) : y = (1 điểm) x − 3x + biết (D) vng góc x +2 với đường thẳng ( d ) : y = −3x + (1 điểm) Bài 5: Cho hình chóp S.ABCD có đáy hình vng tâm O, cạnh AB = a; SO ⊥ mp(ABCD); SO = a Gọi I trung điểm cạnh CD; H hình chiếu O lên đường thẳng SI a) Chứng minh rằng: BD ⊥ mp(SAC) (1 điểm) b) Chứng minh rằng: mp(HOD) ⊥ mp(SCD) (1 điểm) c) Tính góc đường thẳng OD mặt phẳng (SCD) (1 điểm) d) Trên cạnh SD, lấy điểm L cho LD = 2LS Gọi M giao điểm SO BL; G trọng tâm ∆MSI Tính khoảng cách từ điểm G đến mặt phẳng (SBC) HẾT (1 điểm) ĐÁP ÁN & BIỂU ĐIỂM (Đề 2) Bài 1: 3đ x + x − 5x − x + 5x + Câu a: A = lim x →−2 1đ ( x + ) ( x − x − 3) = lim x →−2 ( x + )( x + 1) Câu b: B = lim x →+∞ 25 x + 10 x − x 1đ 10 = 10 25 + + x = lim x →+∞ 0.25x4 x2 − x2 + x x →−2 x → ( −2 ) + 10 x ) − 25 x 25 x + 10 x + x Câu c: C = lim − − 2 x →+∞ = lim 0.25x4 ) ( ( 25x = lim x2 − x − = −1 x →−2 x + = lim 1đ − x −2 − x 2− x = lim − = +∞ (Hs tách thành − x ( −2 − x ) x →( −2) − x −2 − x  x2 − −1  Bài 2: Xét tính liên tục y = f ( x ) =  x − 3 x −  x + x − : không chấm) 0.25x4 ( x > 3) xo = ( x ≤ 3) 1đ 0.25 • f(3) = • lim− f ( x ) = lim− ( x − ) = x→3 0.25 x →3 • lim+ f ( x ) = lim+ x2 − − = lim+ x →3 x −3 x+3 = 0.25 • lim+ f ( x ) = lim− f ( x ) = f ( ) nên f liên tục xo = 0.25 x→3 x→3 x →3 x2 − + x →3 Bài 3: y = − x Chứng minh y y '+ x = 0; ∀x ∈ ( −1 ; 1) • (1 − x ) ' = y' = − x2 −x − x2    = − x ⇒ y y '+ x =  1− x  ⇒ y y ' = − x  −x 1đ 0.25x4 Bài 4: Pttt ( D ) (C): y = f(x) = x − 3x + x+2 , biết ( D ) ⊥ (d): y = −3x + 1đ • y' = x + 8x − ( x + 2) 0.25 • Gọi xo hồnh độ tiếp điểm Từ gt: f ’(xo) = • xo = 1: PTTT y = • xo = −5 : PTTT y = ⇔  xo =  x = −5  o 0.25 x −1 x − 61 0.25x2 Bài 5: Câu a: BD⊥(SAC) • ABCD hình vng nên BD ⊥ AC 4đ 1đ 0.25x2 • SO ⊥ ( ABCD ) nên BD ⊥ SO 0.25 • Vậy BD ⊥ ( SAC ) 0.25 Câu b: H hình chiếu vng góc O lên SI Chứng minh: ( HOD ) ⊥ ( SCD ) ( gt ) • CD ⊥ ( SOI ) ⇒ OH ⊥ CD • Vậy OH ⊥ ( SCD ) Suy ( HOD ) ⊥ ( SCD ) 0.25 • OH ⊥ SI 0.25 0.25x2 Câu c: ϕ =  OD ;  SCD     1đ  • OH ⊥ ( SCD ) nên ϕ = ODH • ∆OHD : sinϕ = OH OD = 1đ 0.25x2 ⇒ ϕ = arcsin 0.25x2 Câu d: 1đ • Từ gt suy M trung điểm SO Gọi N trung điểm SI • Vì MN // (SBC) nên d(G; (SBC)) = d(M; (SBC)) = d ( O; ( SBC ) ) 0.25x2 • Gọi J trung điểm BC Kẻ OK ⊥ SJ ⇒ d ( O; ( SBC ) ) = OK • ∆SOJ : OK = • d(G; (SBC)) = OS 3.a + OJ = 16 3a 0.25x2 HẾT ... lim x →+∞ 0 .25 x4 x2 − x2 + x x → 2 x → ( 2 ) + 10 x ) − 25 x 25 x + 10 x + x Câu c: C = lim − − 2 x →+∞ = lim 0 .25 x4 ) ( ( 25 x = lim x2 − x − = −1 x → 2 x + = lim 1đ − x 2 − x 2 x = lim −...ĐÁP ÁN & BIỂU ĐIỂM (Đề 2) Bài 1: 3đ x + x − 5x − x + 5x + Câu a: A = lim x → 2 1đ ( x + ) ( x − x − 3) = lim x → 2 ( x + )( x + 1) Câu b: B = lim x →+∞ 25 x + 10 x − x 1đ 10 = 10 25 + +... 0 .25 x −1 x − 61 0 .25 x2 Bài 5: Câu a: BD⊥(SAC) • ABCD hình vng nên BD ⊥ AC 4đ 1đ 0 .25 x2 • SO ⊥ ( ABCD ) nên BD ⊥ SO 0 .25 • Vậy BD ⊥ ( SAC ) 0 .25 Câu b: H hình chiếu vng góc O lên SI Chứng minh:

Ngày đăng: 08/01/2020, 18:09

TỪ KHÓA LIÊN QUAN

w