1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nghiên cứu tổng hợp vật liệu từ tính trên nền graphit việt nam ứng dụng trong xử lý môi trường ô nhiễm màu hữu cơ (congo red)

177 85 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 177
Dung lượng 9,45 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - PHẠM VĂN THỊNH NGHIÊN CỨU TỔNG HỢP VẬT LIỆU TỪ TÍNH TRÊN NỀN GRAPHIT VIỆT NAM ỨNG DỤNG TRONG XỬ LÝ MÔI TRƯỜNG Ô NHIỄM MÀU HỮU CƠ (CONGO RED) LUẬN ÁN TIẾN SĨ VẬT LIỆU CAO PHÂN TỬ VÀ TỔ HỢP HÀ NỘI – 2019 i VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ …… ….***………… PHẠM VĂN THỊNH NGHIÊN CỨU TỔNG HỢP VẬT LIỆU TỪ TÍNH TRÊN NỀN GRAPHIT VIỆT NAM ỨNG DỤNG TRONG XỬ LÝ MÔI TRƯỜNG Ô NHIỄM MÀU HỮU CƠ (CONGO RED) LUẬN ÁN TIẾN SĨ VẬT LIỆU CAO PHÂN TỬ VÀ TỔ HỢP Chuyên ngành: Vật Liệu Cao Phân Tử Và Tổ Hợp Mã số: 9440125 Người hướng dẫn khoa học: PGS.TS Bạch Long Giang PGS.TS Lê Thị Hồng Nhan Hà Nội – 2019 ii LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu riêng tơi khơng trùng lặp với cơng trình khoa học khác công bố Kết đề tài phần dự án số: 10/HĐ-ĐT.10.13/ CNMT Trường Đại Học Nguyễn Tất Thành Tôi xin cam đoan giúp đỡ cho việc thực luận án cảm ơn, thơng tin trích dẫn luận án có nguồn gốc rõ ràng TP.Hồ Chí Minh, ngày 10 tháng 12 năm 2019 Tác giả luận án PHẠM VĂN THỊNH iii LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc đầy kính trọng đến thầy PGS.TS.Bạch Long Giang cô PGS.TS Lê Thị Hồng Nhan dẫn dắt từ ngày đầu nghiên cứu đầy bỡ ngỡ nhiều thiếu sót, thầy hướng dẫn tận tâm cho suốt chặng đường dài nghiên cứu luận án Thầy cô tạo hội điều kiện tốt để tơi thực hồn thành thí nghiệm điều kiện thiết bị máy móc Việt Nam nhiều khó khăn Tơi xin trân trọng cảm ơn Ban lãnh đạo sở đào tạo, Viện Khoa học Vật liệu ứng dụng, Học viện Khoa học Công nghệ - Viện Hàn lâm Khoa học Công nghệ Việt Nam tạo điều kiện tốt cho tơi hồn thành bảo vệ luận án Tôi xin thành thật biết ơn tới lãnh đạo Trường Đại học Nguyễn Tất Thành, Viện Kỹ Thuật Cơng Nghệ Cao NTT, Phòng Khoa học Công nghệ nhà trường quan tâm giúp đỡ hỗ trợ tối đa để tơi hồn thành khóa học Cuối cùng, tơi bày tỏ lòng biết ơn sâu sắc tới đồng nghiệp, bạn bè gia đình, người chia sẻ, gánh vác công việc giúp động viên vượt qua thử thách, tiếp thêm sức mạnh, nghị lực để hoàn thành luận án iv AA DANH MỤC CÁC CHỮ VIẾT TẮT Axit ascorbic AAS Atomic Absorption Spectrophotometric: Phổ hấp thụ nguyên tử AC Axit citric CR Congo red EG Exfoliated Graphite: Graphit tróc nở USGS United States Geological Survey - Cục Khảo sát Địa chất Hoa Kỳ MG Malachinte Green MB Methylene Blue EDS Energy-dispersive X-ray spectroscopy: Quang phổ X-quang tán xạ lượng EIS Electrochemical Impedance Spectroscopy: Phổ tổng trở điện hóa MO Methyl Orange MG Methyl Green TEG Thermally Exfoliated Graphite - Graphit tróc nở nhiệt Rh B Rhodamine B GIC Graphit Intercalation Compounds – Hợp chất xen chèn graphit THF Tetrhydrofuran EV Exfoliated Volume - Thể tích tróc nở NFG Natural flakes graphite - Graphit vảy tự nhiên FO Fuel Oil: Dầu mazut DO Diesel Oil: Dầu diesel CO Crude Oil: Dầu thơ SEM Scanning Electron Microscope: Kính hiển vi điện tử quét TEM Transmission Electron Microscopy: Kính hiển vi điện tử truyền qua TGA Thermogravimetric analysis: Phân tích nhiệt XRD X-ray Diffraction: Nhiễu xạ tia X XPS X - ray Photoelectron Spectroscopy: Phổ quang điện tử tia X BOD Biochemical oxygen Demand - Nhu cầu oxy sinh hóa v COD TOC Chemical Oxygen Demand - Nhu cầu oxy hóa học Total organic carbon: Tổng cacbon hữu PAC Poly Alumino Clorua RSM Response Surface Method: Phương pháp bề mặt đáp ứng MEG Magnetic Exfoliated Graphit: Graphit tróc nở mang từ tính CAS Chemical Abstracts Service: Tóm tắt dịch vụ hóa chất BET Brunauer – Emmett – Teller VSM Vibrating Sample Magnetometer - Từ kế mẫu rung SCS Solution Combustion Synthesis - Tổng hợp đốt cháy dung dịch CCD Central Composite Design - Thiết kế phức hợp trung tâm FTIR Fourier Transform Infrared spectroscopy - Phổ hồng ngoại khai triển Fourier PZC Point of Zero Charge - Điểm điện tích khơng vi MỤC LỤC VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM ii LỜI CẢM ƠN .iv DANH MỤC CÁC CHỮ VIẾT TẮT v MỤC LỤC vii DANH MỤC CÁC BẢNG xiv ĐẶT VẤN ĐỀ CHƯƠNG TỔNG QUAN 1.1 Hiện trạng ô nhiễm chất màu 1.2 Vật liệu hấp phụ 1.2.1 Các phương pháp hấp phụ thuốc nhuộm .6 1.2.2 Các kết nghiên cứu Việt Nam hấp phụ thuốc nhuộm .8 1.2.3 Nguồn nguyên vật liệu Graphit 10 1.2.4 Tổng quan phương pháp chế tạo vật liệu graphit tróc nở (EG) 13 1.3 Vật liệu từ tính 18 1.3.1 Tổng hợp vật liệu EG@MFe2O4 18 1.3.1.1.Phương pháp vật lý 20 1.3.1.2.Phương pháp hóa học 20 1.3.1.3.Lựa chọn điều kiện tổng hợp MFe2O4 theo phương pháp tự bốc cháy solgel 25 1.3.1.4 Một số nghiên cứu tổng hợp vật liệu MEG phương pháp sol-gel giới 30 1.3.2 Một số kết ứng dụng vật liệu EG@MFe2O4 xử lý ô nhiễm 32 CHƯƠNG PHƯƠNG PHÁP NGHIÊN CỨU .35 2.1 Nguyên vật liệu, hóa chất, thiết bị thí nghiệm phân tích 35 2.2 Tổng hợp vật liệu EG EG@MFe2O4 37 vii 2.2.1 Tổng hợp vật liệu EG 37 2.2.2 Tổng hợp vật liệu EG@MFe2O4 38 2.3 Đánh giá tính chất đặc trưng vật liệu EG EG@MFe2O4 40 2.3.1 Phương pháp đo thể tích riêng vật liệu EG 41 2.3.2 Xác định tính chất đặc trưng vật liệu EG vàEG@MFe2O4 41 2.4 Khảo sát khả hấp phụ màu Congo Red vật liệu EG@MFe 2O4 43 2.4.1 Khảo sát yếu tố ảnh hưởng đến khả hấp phụ màu CR vật liệu EG@MFe2O4 44 2.4.1.1.Khảo sát ảnh hưởng thời gian 44 2.4.1.2.Khảo sát ảnh hưởng nồng độ 44 2.4.1.3.Khảo sát ảnh hưởng pH dung dịch .45 2.4.1.4.Khảo sát ảnh hưởng khối lượng vật liệu 45 2.4.2 Tối ưu hóa khả hấp phụ màu congo red vật liệu EG EG@MFe2O4 phương pháp đáp ứng bề mặt (RSM) 45 2.4.3.Động học, nhiệt học, đẳng nhiệt hấp phụ .48 2.4.3.1.Động học hấp phụ 49 2.4.3.2 Nhiệt động học hấp phụ 50 2.4.3.3 Đẳng nhiệt hấp phụ 50 2.4.4 Tái sử dụng vật liệu 52 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 53 3.1 Kết tổng hợp vật liệu EG hỗ trợ vi sóng 53 3.2 Kết phân tích tính chất đặc trưng vật liệu EG vật liệu EG@MFe2O4 (M=Co, Mn, Ni) .58 3.2.1 Kết phân tích SEM 58 3.2.1.2 Phân tích cấu trúc bề mặt SEM vật liệu EG@MFe2O4 .59 3.2.2 Kết phân tích diện tích bề mặt riêng BET 62 viii 3.2.2.1 Phân tích diện tích bề mặt riêng BET vật liệu EG 62 3.2.2.2 Phân tích bề mặt riêng BET EG@MFe2O4 63 3.2.3 Kết phân tích FT-IR 64 3.2.3.1 Phân tích FT-IR vật liệu EG 64 3.2.3.2 Phân tích FT-IR vật liệu EG@MFe2O4 65 3.2.4 Kết phân tích XRD .66 3.2.4.1 Kết phân tích XRD vật liệu EG 67 3.2.4.2 Kết phân tích XRD vật liệu EGMFe2O4 67 3.2.5 Kết phân tích phổ tán sắc lượng tia X (EDX) 68 3.2.6 Kết phân tích phổ tán xạ lượng (XPS) .70 3.2.7 Kết phân tích từ kế mẫu rung (Vibrating Specimen Magne- tometer – VSM) 73 3.2.8 Kết chuẩn độ theo phương pháp Boehm 74 3.3 Kết khảo sát yếu tố ảnh hưởng đến khả hấp phụ màu CR EG@MFe2O4 75 3.3.1 Ảnh hưởng thời gian nồng độ 75 3.3.2 Ảnh hưởng pH dung dịch 77 3.3.3 Ảnh hưởng khối lượng vật liệu .83 3.3.4 Kết phân tích FT-IR vật liệu EG@MFe 2O4 sau hấp phụ CR 84 3.4 Kết tối ưu hóa khả hấp phụ thuốc nhuộm congo red vật liệu EG EG@MFe2O4 phương pháp đáp ứng bề mặt 91 3.4.1 Kết tối ưu hóa khả hấp phụ màu congo red vật liệu EG 91 3.4.2 Kết tối ưu hóa khả hấp phụ màu congo red vật liệu vật liệu EG@MFe2O4 96 3.4.2.1 Kết tối ưu hóa vật liệu EG@CoFe2O4 96 3.4.2.2 Kết khảo sát vật liệu EG@NiFe2O4 104 ix Kết mô hình tối ưu hóa 104 3.4.2.3 Khảo sát vật liệu EG@MnFe2O4 111 Mơ hình tối ưu hóa 111 3.5.1 Kết khảo sát vật liệu EG@CoFe2O4 120 3.5.1.1 Kết động học hấp phụ 120 3.5.1.2 Kết nhiệt động học hấp phụ .123 3.5.1.3 Kết đẳng nhiệt hấp phụ 124 3.5.2 Kết khảo sát vật liệu EG@NiFe2O4 125 3.5.2.1 Kết động học hấp phụ 125 3.5.2.2 Kết nhiệt động học hấp phụ .128 3.5.2.3 Kết đẳng nhiệt hấp phụ 129 3.5.3 Kết khảo sát vật liệu EG@MnFe2O4 130 3.5.3.1 Kết động học hấp phụ 130 3.5.3.2 Kết nhiệt động học hấp phụ .133 3.5.3.3 Kết đẳng nhiệt hấp phụ 133 3.6 Khả tái sử dụng 134 CHƯƠNG KẾT LUẬN VÀ KIẾN NGHỊ 136 4.1 Kết luận 136 4.2 Kiến nghị 137 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 138 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ 139 TÀI LIỆU THAM KHẢO 141 x waste water by ceramic membrane in crossflow microfiltration,” Desalination, vol 149, no 1–3, pp 199–203, 2002 [46] J C Diogo, A Morão, and A Lopes, “Persistent aromatic pollutants removal using a combined process of electrochemical treatment and reverse osmosis/nanofiltration,” Environ Prog Sustain Energy, vol 30, no 3, pp 399–408, 2011 [47] X Chen, Z Shen, X Zhu, Y Fan, and W Wang, “Advanced treatment of textile wastewater for reuse using electrochemical oxidation and membrane filtration,” Water SA, vol 31, no 1, pp 127–132, Jul 2005 [48] S Kertèsz, J Cakl, and H Jiránková, “Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment,” Desalination, vol 343, pp 106–112, 2014 [49] C.-H Shin, J.-S Bae, and V Rudolph, “Co-treatment systems combined with unit processes for dye wastewater recycling,” J Ind Eng Chem., vol 20, no 2, pp 710–716, Mar 2014 [50] T V Tuyên, “Nghiên cứu xử lý nước thải dệt nhuộm phương pháp lọc sinh học sử dụng than cacbon hoá,” Viện hàn lâm khoa học công nghệ Việt Nam, 2012 [Online] Available: http://www.vast.ac.vn/tin-tucsu-kien/tin-khoa-hoc/trong-nuoc/699-nghien-cuu-xu-ly-nuoc-thai-detnhuom-bang-phuong-phap-loc-sinh-hoc-su-dung-than-cacbon-hoa, truy cập ngày 03/02/2018 [51] B T T H Đào Minh Trung, Nguyễn Võ Châu Ngân, Ngô Kim Định, Nguyễn Thị Thảo Trân, “HIỆU QUẢ XỬ LÝ NƢỚC THẢI DỆT NHUỘM CỦA CHẤT TRỢ KEO TỤ HÓA HỌC VÀ SINH HỌC,” Tạp chí Đại học Thủ Dầu Một, vol 6, no 25, pp 3–11, 2015 [52] H T H Nguyễn Thị Hà and Khoa, “Nghiên cứu hấp phụ màu / xử lý COD nước thải nhuộm cacbon hoạt hóa chế tạo từ bụi bơng,” Tạp chí Khoa học ĐHQGHN, Khoa học Tự nhiên Công nghệ, vol 24, no 2008, pp 16–22, 2010 [53] N T H Nhung, B T P Quynh, P T T Thao, H N Bich, and B L Giang, “Pretreated Fruit Peels as Adsorbents for Removal of Dyes from Water,” in IOP Conference Series: Earth and Environmental Science, 2018, vol 159, no 1, p 012015 [54] N T T Loan and N T T Hằng, “TỔNG HỢP, NGHIÊN CỨU ĐẶC TRƯNG CẤU TRÚC VÀ HOẠT TÍNH XÚC TÁC CỦA OXIT NANO MnFe2O4,” tạp chí phân tích hóa, lý sinh học, vol 22, pp 88–93, 2017 [55] “Than chì,” Bách khoa tồn thư mở Wikipedia [Online] Available: https://vi.wikipedia.org/wiki/Than_chì, xem 09/01/2017 [56] R K T J Brown, T Bide, A S Walters, N E Idoine, R A Shaw, S D Hannis, 145 P A J Lusty, “World mineral production 2005–09.” BRITISH GEOLOGICAL SURVEY, pp 1–118, 2011 [57] A Naz, A Kausar, and M Siddiq, “Influence of Graphite Filler on Physicochemical Characteristics of Polymer/Graphite Composites: A Review,” Polymer - Plastics Technology and Engineering, vol 55, no pp 604–625, 12-Apr-2016 [58] H C Schniepp et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” J Phys Chem B, vol 110, no 17, pp 8535– 8539, 2006 [59] M Cai, D Thorpe, D H Adamson, and H C Schniepp, “Methods of graphite exfoliation,” Journal of Materials Chemistry, vol 22, no 48 pp 24992–25002, 2012 [60] Y P Zheng, H N Wang, F Y Kang, L N Wang, and M Inagaki, “Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles,” Carbon, vol 42, no 12–13 pp 2603–2607, 2004 [61] Tong Wei, Zhuangjun Fan, Guilian Luo, Chao Zheng, and Dashou Xie, “A rapid and efficient method to prepare exfoliated graphite by microwave irradiation,” Carbon, vol 47 pp 313–347, 2008 [62] A Bayat, S Aghamiri, and A Moheb, “Oil sorption by synthesized exfoliated graphite (EG),” Iran J Chem Eng., vol 5, no 1, pp 51–64, 2008 [63] M Inagaki, K Muramatsu, Y Maeda, and K Maekawa, “Production of exfoliated graphite from potassium-graphite-tetrahydrofuran ternary compounds and its applications,” Synthetic Metals, vol 8, no 3–4 pp 335–342, 1983 [64] S A Alfer, A S Skoropanov, A A Vecher, L S Malei, and M D Malei, “High-temperature investigation of raw material for thermally exfoliated graphite (TEG) production and study of the thermophysical properties of TEG products,” Thermochimica Acta, vol 88, no pp 489– 492, 1985 [65] H C and K T Y Kuga, S Endoh, “Production of fine flaky ground particles of potassium graphite.” Powder Technology, pp 85–88, 1991 [66] A Y and Y HISHIYAMA, “EXFOLIATED GRAPHITE FROM VARIOUS INTERCALATION COMPOUNDS.” pp 1227–1231, 1991 [67] F Kang, Y Leng, and T Y Zhang, “Influences of H2O2 on synthesis of H2SO4-GICs,” Journal of Physics and Chemistry of Solids, vol 57, no 6– pp 889–892, 1996 [68] B Tryba, J Przepiórski, and A W Morawski, “Influence of chemically prepared H2SO4-graphite intercalation compound (GIC) precursor on 146 parameters of exfoliated graphite (EG) for oil sorption from water [2],” Carbon, vol 41, no 10 pp 2013–2016, 2003 [69] X H Wei, L Liu, J X Zhang, J L Shi, and Q G Guo, “HClO4-graphite intercalation compound and its thermally exfoliated graphite,” Materials Letters, vol 63, no 18–19 pp 1618–1620, 2009 [70] M Inagaki and M Nakashima, “Graphite exfoliated at room temperature and its structural annealing,” Carbon, vol 32, no pp 1253–1257, 1994 [71] F Kang, Y P Zheng, H N Wang, Y Nishi, and M Inagaki, “Effect of preparation conditions on the characteristics of exfoliated graphite,” Carbon, vol 40, no pp 1575–1581, 2002 [72] C Xu, H Wang, W Yang, L Ma, and A Lin, “Expanded Graphite Modified by CTAB-KBr/H3PO4 for Highly Efficient Adsorption of Dyes,” J Polym Environ., vol 26, no 3, pp 1206–1217, Mar 2018 [73] I V Stankevich, M V Nikerov, and D A Bochvar, “The Structural Chemistry of Crystalline Carbon: Geometry, Stability, and Electronic Spectrum,” Russ Chem Rev., vol 53, no 7, pp 640–655, Jul 1984 [74] K Byrappa and T Adschiri, “Hydrothermal technology for nanotechnology,” Prog Cryst Growth Charact Mater., vol 53, no 2, pp 117–166, Jun 2007 [75] C Feldmann, “Polyol-Mediated Synthesis of Nanoscale Functional Materials,” Adv Funct Mater., vol 13, no 2, pp 101–107, Feb 2003 [76] B Henderson and G F Imbusch, “Optical processes in tunable transitionmetal-ion lasers,” Contemp Phys., vol 29, no 3, pp 235–272, May 1988 [77] A López-Ortega, E Lottini, C de J Fernández, and C Sangregorio, “Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet,” Chem Mater., vol 27, no 11, pp 4048–4056, Jun 2015 [78] P H Linh et al., “Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency,” J Mater Sci., vol 53, no 12, pp 8887– 8900, Jun 2018 [79] J Kang, X Y Zhang, L D Sun, and X X Zhang, “Bioconjugation of functionalized fluorescent YVO 4 :Eu nanocrystals with BSA for immunoassay,” Talanta, vol 71, no pp 1186–1191, 2007 [80] L Ma, W X Chen, Y F Zheng, and Z De Xu, “Hydrothermal growth and morphology evolution of CePO4 aggregates by a complexing method,” Materials Research Bulletin, vol 43, no 11 pp 2840–2849, 2008 [81] Y Zhang and H Guan, “Hydrothermal synthesis and characterization of 147 hexagonal and monoclinic CePO4 single-crystal nanowires,” Journal of Crystal Growth, vol 256, no 1–2 pp 156–161, 2003 [82] X M Zhang, “Hydro(solvo)thermal in situ ligand syntheses,” Coordination Chemistry Reviews, vol 249, no 11–12 pp 1201–1219, 2005 [83] M Airimioaei et al., “Synthesis and functional properties of the Ni1-xMn xFe2O4 ferrites,” Journal of Alloys and Compounds, vol 509, no 31 pp 8065–8072, 2011 [84] R Bazzi et al., “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” Journal of Luminescence, vol 102– 103, no SPEC pp 445–450, 2003 [85] R N Bhargava, “Doped nanocrystalline materials — Physics and applications,” Journal of Luminescence, vol 70, no 1–6 pp 85–94, 1996 [86] A A Ansari, P R Solanki, and B D Malhotra, “Sol-gel derived nanostructured cerium oxide film for glucose sensor,” Appl Phys Lett., vol 92, no 26, p 263901, Jun 2008 [87] D Giaume et al., “Emission properties and applications of nanostructured luminescent oxide nanoparticles,” Prog Solid State Chem., vol 33, no 2-4 SPEC ISS., pp 99–106, Jan 2005 [88] M Zawadzki et al., “Photoluminescence and cathodoluminescence of Tbdoped Al O -ZrO nanostructures obtained by sol-gel method,” Chemical Physics, vol 291, no pp 275–285, 2003 [89] H Weingärtner and E U Franck, “Supercritical water as a solvent,” Angewandte Chemie - International Edition, vol 44, no 18 pp 2672– 2692, 2005 [90] A S Teja and P Y Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles,” Progress in Crystal Growth and Characterization of Materials, vol 55, no 1–2 pp 22–45, 2009 [91] G Wakefield, H A Keron, P J Dobson, and J L Hutchison, “Structural and optical properties of terbium oxide nanoparticles,” J Phys Chem Solids, vol 60, no 4, pp 503–508, Apr 1999 [92] S T Aruna and A S Mukasyan, “Combustion synthesis and nanomaterials,” Current Opinion in Solid State and Materials Science, vol 12, no 3–4 pp 44–50, 2008 [93] C C Hwang, J S Tsai, and T H Huang, “Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates - Investigations of precursor homogeneity, product reproducibility, and reaction mechanism,” Materials Chemistry and Physics, vol 93, no 2–3 pp 330–336, 2005 [94] P Hu et al., “Fuel additives and heat treatment effects on nanocrystalline 148 zinc ferrite phase composition,” Journal of Magnetism and Magnetic Materials, vol 323, no pp 569–573, 2011 [95] A C F M Costa, V J Silva, C C Xin, D A Vieira, D R Cornejo, and R H G A Kiminami, “Effect of urea and glycine fuels on the combustion reaction synthesis of Mn-Zn ferrites: Evaluation of morphology and magnetic properties,” J Alloys Compd., vol 495, no 2, pp 503–505, Apr 2010 [96] S Verma, J Karande, A Patidar, and P A Joy, “Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine,” Materials Letters, vol 59, no 21 pp 2630–2633, 2005 [97] R K Selvan, C O Augustin, L J Berchmans, and R Saraswathi, “Combustion synthesis of CuFe2O4,” Materials Research Bulletin, vol 38, no pp 41–54, 2003 [98] K M J Jadhavar, J.B MoteL.B.V.V Dhole P.P Khiraded, “Synthesis and Characterizations of Zirconium (Zr 4+ ) Substituted Cobalt Ferrite (CoFe2O4) Nanoparticles Synthesized Via Sol-Gel Auto Combustion Technique.” pp 46–52, 2014 [99] H B Sharma, N G B Singh, S B Singh, and T H D Devi, “Synthesis and Characterization of Cobalt Ferrite ( Cofe2O4 ) Nanoparticles by SolGel Autocombustion Method,” Indian Journal of Chemistry, no pp 78– 84, 2014 [100] Z Wang et al., “Structure and magnetic properties of CoFe 2o ferrites synthesized by sol-gel and microwave calcination,” Journal of Sol-Gel Science and Technology, vol 61, no pp 289–295, 2012 [101] K H Wu, T H Ting, M C Li, and W D Ho, “Sol-gel auto-combustion synthesis of SiO -doped NiZn ferrite by using various fuels,” Journal of Magnetism and Magnetic Materials, vol 298, no pp 25–32, 2006 [102] C Cannas, A Falqui, A Musinu, D Peddis, and G Piccaluga, “CoFe2O4nanocrystalline powders prepared by citrate-gel methods: Synthesis, structure and magnetic properties,” Journal of Nanoparticle Research, vol 8, no pp 255–267, 2006 [103] C Cannas, A Musinu, D Peddis, and G Piccaluga, “Synthesis and Characterization of CoFe O Nanoparticles Dispersed in a Silica Matrix by a Sol−Gel Autocombustion Method,” Chem Mater., vol 18, no 16, pp 3835–3842, Aug 2006 [104] J Adams et al., “Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids,” Bioorganic Med Chem Lett., vol 8, no 4, pp 333–338, Feb 1998 149 [105] C C Hwang, T Y Wu, J Wan, and J S Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol 111, no pp 49–56, 2004 [106] Z Yue, W Guo, J Zhou, Z Gui, and L Li, “Synthesis of nanocrystilline ferrites by sol-gel combustion process: The influence of pH value of solution,” Journal of Magnetism and Magnetic Materials, vol 270, no 1– pp 216–223, 2004 [107] H Waqas and A H Qureshi, “Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process,” Journal of Thermal Analysis and Calorimetry, vol 98, no pp 355–360, 2009 [108] A Raghavender, “Synthesis and Characterization of Cobalt Ferrite Nanoparticles,” Sci Technol Arts Res J., vol 2, no 4, p 01, 2014 [109] S Prasad, A Vijayalakshmi, and N S Gajbhiye, “Synthesis of ultrafine cobalt ferrite by thermal decomposition of citrate precursor,” Journal of Thermal Analysis and Calorimetry, vol 52, no pp 595–607, 1998 [110] Y.-Q ZHANG, “Influence Factors of Magnetic Exfoliated Graphite Prepared by Citrate Sol-Gel Process,” Journal of Inorganic Materials, vol 23, no pp 794–798, 2008 [111] J A Pavlova et al., “Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface,” J Phys Chem Solids, vol 116, pp 299–305, May 2018 [112] A V Ivanov, J A Pavlova, N V Maksimova, K V Pokholok, A P Malakho, and V V Avdeev, “Preparation of Exfoliated Graphite Modified with Magnesium Ferrite,” Inorg Mater., vol 54, no 7, pp 632–638, Jul 2018 [113] F A Al-Sagheer and M I Zaki, “Surface properties of sol-gel synthesized δ-MnO2as assessed by N2sorptometry, electron microscopy, and X-ray photoelectron spectroscopy,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 173, no 1–3 pp 193–204, 2000 [114] L Jin, C Chen, V M B Crisostomo, L Xu, Y.-C Son, and S L Suib, “γ-MnO2 octahedral molecular sieve: Preparation, characterization, and catalytic activity in the atmospheric oxidation of toluene,” Appl Catal A Gen., vol 355, no 1–2, pp 169–175, Feb 2009 [115] Z Li, Y Ding, Y Xiong, and Y Xie, “Rational Growth of Various αMnO Hierarchical Structures and β-MnO Nanorods via a Homogeneous Catalytic Route,” Cryst Growth Des., vol 5, no 5, pp 1953–1958, Sep 2005 150 [116] L Dong, Z Zhu, H Ma, Y Qiu, and J Zhao, “Simultaneous adsorption of lead and cadmium on MnO2-loaded resin,” Journal of Environmental Sciences, vol 22, no pp 225–229, 2010 [117] D Zhao, X Yang, H Zhang, C Chen, and X Wang, “Effect of environmental conditions on Pb(II) adsorption on β-MnO2,” Chem Eng J., vol 164, no 1, pp 49–55, Oct 2010 [118] W Tang, Q Li, S Gao, and J K Shang, “Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method,” Journal of Hazardous Materials, vol 192, no pp 131–138, 2011 [119] A Afkhami and R Moosavi, “Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles,” J Hazard Mater., vol 174, no 1–3, pp 398–403, Feb 2010 [120] X Zheng, X Xiong, J Yang, D Chen, R Jian, and L Lin, “A strong and compressible three dimensional graphene/polyurushiol composite for efficient water cleanup,” Chem Eng J., vol 333, pp 153–161, Feb 2018 [121] B L G Nguyễn Mạnh Hùng, Trần Tuấn Lợi, Lê Xuân Tiến, Nguyễn Thị Nhật Linh, Dương Văn Nam, “Nghiên cứu tổng hợp vật liệu graphit tróc nở từ nguồn graphit dạng vảy Việt Nam, ứng dụng để xử lý nước bị nhiễm dầu,” Tạp chí Khoa học Cơng nghệ, vol 52, no 4A, pp 69–75, 2014 [122] B Tryba, A W Morawski, and M Inagaki, “Preparation of exfoliated graphite by microwave irradiation,” Carbon, vol 43, no 11 pp 2417– 2419, 2005 [123] H Guedidi, L Reinert, J M Lévêque, Y Soneda, N Bellakhal, and L Duclaux, “The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen,” Carbon, vol 54 pp 432–443, 2013 [124] S Goertzen, K Thériault, A Oickle, A Tarasuk, and H Andreas, “Standardization of the Boehm titration Part I CO2 expulsion and endpoint determination,” Carbon, vol 48, no pp 1252–1261, 2010 [125] T Van Tran et al., “Facile synthesis of manganese oxide-embedded mesoporous carbons and their adsorbability towards methylene blue,” Chemosphere, vol 227, pp 455–461, Jul 2019 [126] T Van Tran, Q T P Bui, T D Nguyen, N T H Le, and L G Bach, “A comparative study on the removal efficiency of metal ions (Cu 2+ , Ni 2+ , and Pb 2+ ) using sugarcane bagasse-derived ZnCl -activated carbon by the response surface methodology,” Adsorpt Sci Technol., vol 35, no 1– 2, pp 72–85, Mar 2017 151 [127] T V Tran et al., “A five coordination Cu(II) cluster-based MOF and its application in the synthesis of pharmaceuticals: Via sp3 C-H/N-H oxidative coupling,” Catal Sci Technol., vol 7, no 16, pp 3453–3458, 2017 [128] L A Bezerra, M A., Santelli, R E., Oliveira, E P., Villar, L S and Escaleira, “Response Surface Methodology (RSM) as a Tool for Optimization in,” Analytical Chemistry Talanta., vol 76, no pp 965977., 2008 [129] T Van Tran et al., “MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions,” Journal of Environmental Chemical Engineering, p 102902, Jan-2019 [130] N Sykam and K K Kar, “Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies,” Materials Letters, vol 117 pp 150–152, 2014 [131] O Isakin et al., “Ultrasound-assisted one-pot syntheses of ZnO nanoparticles that are homogeneously adsorbed on exfoliated graphite and a simplified method to determine the graphite layer thickness in such composites,” J Mater Sci., vol 53, no 9, pp 6586–6601, May 2018 [132] S Wu, L Xiao, Z Du, H Wang, Q Yuan, and H Ji, “KOH assisted activation of microwave exfoliated graphite oxide for selective voltammetric determination of dopamine and uric acid in the presence of ascorbic acid,” J Electroanal Chem., vol 804, pp 72–77, Nov 2017 [133] Y Zhao, Y Li, C Ma, and Z Shao, “Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries,” Electrochim Acta, vol 213, pp 98–106, Sep 2016 [134] G M Nagamani D, Ramesh Y, Saravanankumar K, Gnanaprakash K1, “Formulation and evaluation of chlorpheniramine maleate extended release tablets by using direct compression technique.” International Journal of Biopharmaceutics, pp 81–92, 2015 [135] R Bodỵrlǎu and C A Teacǎ, “Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides,” Rom Reports Phys., vol 54, no 1–2, pp 93–104, 2009 [136] M Doltabadi, H Alidadi, and M Davoudi, “Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust-based adsorbent,” Environ Prog Sustain Energy, vol 35, no 4, pp 1078–1090, Jul 2016 [137] N A Travlou, G Z Kyzas, N K Lazaridis, and E A Deliyanni, “Graphite oxide/chitosan composite for reactive dye removal,” Chemical 152 Engineering Journal, vol 217 pp 256–265, 2013 [138] R F Gomes, A C N de Azevedo, A G B Pereira, E C Muniz, A R Fajardo, and F H A Rodrigues, “Fast dye removal from water by starchbased nanocomposites,” Journal of Colloid and Interface Science, vol 454 pp 200–209, 2015 [139] K Singh and M Gautam, “Development of inexpensive biosorbents from de-oiled mustard cake for effective removal of As(V) and Pb(II) ions from their aqueous solutions,” J Environ Chem Eng., vol 5, no 5, pp 4728– 4741, Oct 2017 [140] P Luận, phương pháp phân tích phổ phân tử Hà Nội: NXB Bách Khoa Hà Nội, 2014 [141] X B Wang, W F Zhu, X Wei, Y X Zhang, and H H Chen, “Preparation and millimeter wave attenuation properties of NiFe 2O4/expanded graphite composites by low-temperature combustion synthesis,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol 185, no pp 1–6, 2014 [142] M Inagaki, H Konno, M Toyoda, K Moriya, and T Kihara, “Sorption and recovery of heavy oils by using exfoliated graphite Part II: Recovery of heavy oil and recycling of exfoliated graphite,” Desalination, vol 128, no pp 213–218, 2000 [143] J Zai et al., “CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries,” Nano-Micro Letters, vol 6, no pp 307–315, 2014 [144] Y L Liu, X C Duan, Y M Li, and Y Y Liu, “Preparation and Photocatalytic Properties on ZnO/TiO2 Nanotubes,” Key Eng Mater., vol 562–565, pp 775–780, Jul 2013 [145] K Maaz, A Mumtaz, S K Hasanain, and A Ceylan, “Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route,” J Magn Magn Mater., vol 308, no 2, pp 289–295, Jan 2007 [146] P Sivakumar, R Ramesh, A Ramanand, S Ponnusamy, and C Muthamizhchelvan, “Preparation and properties of nickel ferrite (NiFe2O 4) nanoparticles via sol-gel auto-combustion method,” Materials Research Bulletin, vol 46, no 12 pp 2204–2207, 2011 [147] Rahmayeni, Zulhadjri, N Jamarun, Emriadi, and S Arief, “Synthesis of ZnO-NiFe2O4 magnetic nanocomposites by simple solvothermal method for photocatalytic dye degradation under solar light,” Oriental Journal of Chemistry, vol 32, no pp 1411–1419, 2016 153 [148] N Kasapoǧlu, A Baykal, M S Toprak, Y Köseoǧlu, and H Bayrakdar, “Synthesis and characterization of NiFe2O4 nano-octahedrons by EDTAassisted hydrothermal method,” Turkish Journal of Chemistry, vol 31, no pp 659–666, 2007 [149] S Ameer and I H Gul, “Influence of reduced graphene oxide on effective absorption bandwidth shift of hybrid absorbers,” PLoS ONE, vol 11, no 2016 [150] M Nadafan, M Parishani, Z Dehghani, J Z Anvari, and R Malekfar, “Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique,” Optik (Stuttg)., vol 144, pp 672–678, Sep 2017 [151] L Shao, Z Ren, G Zhang, and L Chen, “Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal,” Mater Chem Phys., vol 135, no 1, pp 16–24, Jul 2012 [152] Z Zhang, Y Wang, Q Tan, Z Zhong, and F Su, “Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries,” J Colloid Interface Sci., vol 398, pp 185–192, May 2013 [153] A HAN, J LIAO, M YE, Y LI, and X PENG, “Preparation of NanoMnFe2O4 and Its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate,” Chinese J Chem Eng., vol 19, no 6, pp 1047– 1051, Dec 2011 [154] T Şimşek, S Akansel, Ş Özcan, and A Ceylan, “Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions,” Ceram Int., vol 40, no 6, pp 7953–7956, Jul 2014 [155] B Aslibeiki et al., “Solvothermal synthesis of MnFe2O4 nanoparticles: The role of polymer coating on morphology and magnetic properties,” J Magn Magn Mater., vol 399, pp 236–244, Feb 2016 [156] D Chen, Y Zhang, and Z Kang, “A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling,” Chemical Engineering Journal, vol 215–216 pp 235–239, 2013 [157] T Van Tran et al., “Tunable Synthesis of Mesoporous Carbons from Fe3O(BDC)3 for Chloramphenicol Antibiotic Remediation,” Nanomaterials, vol 9, no 2, p 237, Feb 2019 [158] H Wang et al., “A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic waveabsorbing wood,” Sci Rep., vol 6, no 1, p 35549, Dec 2016 [159] M C Pham et al., “Anodic oxidation of 5-amino-1,4-naphthoquinone (ANQ) and synthesis of a conducting polymer (PANQ),” Synth Met., vol 154 92, no 3, pp 197–205, 2002 [160] S Stankovich, RD Piner, X Chen, N.Wu, ST Nguyen, and RS Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly ( sodium,” Mater Chem, vol 16, no 2, pp 155–158, 2006 2+ 3+ [161] T Yamashita and P Hayes, “Analysis of XPS spectra of Fe and Fe ions in oxide materials,” Applied Surface Science, vol 254, no pp 2441–2449, 2008 [162] H Wang et al., “A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic waveabsorbing wood,” Sci Rep., vol 6, no 1, p 35549, Dec 2016 [163] H J Zhang, L Z Liu, X R Zhang, S Zhang, and F N Meng, “Microwaveassisted solvothermal synthesis of shape-controlled CoFe O nanoparticles for acetone sensor,” J Alloys Compd., vol 788, pp 1103– 1112, Jun 2019 [164] Y Wang et al., “Stability and deactivation of spinel-type cobalt chromite catalysts for ortho-selective alkylation of phenol with methanol,” Catal Commun., vol 9, no 10, pp 2044–2047, Jun 2008 [165] X Xu, Y Li, G Zhang, F Yang, and P He, “NiO-NiFe2O4-rGO Magnetic Nanomaterials for Activated Peroxymonosulfate Degradation of Rhodamine B,” Water, vol 11, no 2, p 384, 2019 [166] M Zong, Y Huang, X Ding, N Zhang, C Qu, and Y Wang, “One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite,” Ceram Int., vol 40, no 5, pp 6821–6828, Jun 2014 [167] K Chand Verma, V Pratap Singh, M Ram, J Shah, and R K Kotnala, “Structural, microstructural and magnetic properties of NiFe 2O4, CoFe2O4 and MnFe 2O4 nanoferrite thin films,” Journal of Magnetism and Magnetic Materials, vol 323, no 24 pp 3271–3275, 2011 [168] V Vadivelan and K Vasanth Kumar, “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk,” Journal of Colloid and Interface Science, vol 286, no pp 90–100, 2005 [169] D H Nguyen, H N Tran, H.-P Chao, and C.-C Lin, “Effect of nitric acid oxidation on the surface of hydrochars to sorb methylene blue: An adsorption mechanism comparison,” Adsorpt Sci Technol., pp 1–16, Aug 2019 [170] M Gharib, V Safarifard, and A Morsali, “Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitroaromatic 155 sensing,” Ultrason Sonochem., vol 42, pp 112–118, Apr 2018 [171] L G B V.T Tran, D.T Nguyen, V.T.T Ho2, P Q H Hoang, P.Q Bui, “Efficient removal of Ni2+ ions from aqueous solution using activated carbons fabricated from rice straw and tea waste,” J Mater Environ Sci., vol 8, no 2, pp 426–437, 2017 [172] H T N Le, T V Tran, N T S Phan, and T Truong, “Efficient and recyclable Cu2(BDC)2(BPY)-catalyzed oxidative amidation of terminal alkynes: Role of bipyridine ligand,” Catal Sci Technol., vol 5, no 2, pp 851–859, 2015 [173] X J Jia, J Wang, J Wu, Y Du, B Zhao, and D Den Engelsen, “Bouquetlike calcium sulfate dihydrate: A highly efficient adsorbent for Congo red dye,” RSC Advances, vol 5, no 88 pp 72321–72330, 2015 [174] H Tang et al., “Theoretical insight into the adsorption of aromatic compounds on graphene oxide,” Environ Sci Nano, vol 5, no 10, pp 2357–2367, 2018 [175] G Sheng et al., “Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation,” Environ Pollut., vol 233, pp 125–131, Feb 2018 [176] S E Gilliland, J M M Tengco, Y Yang, J R Regalbuto, C E Castano, and B F Gupton, “Electrostatic adsorption-microwave synthesis of palladium nanoparticles on graphene for improved cross-coupling activity,” Appl Catal A Gen., vol 550, pp 168–175, Jan 2018 [177] X Liu et al., “Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI),” Chemical Engineering Journal, vol 343 pp 217–224, 2018 [178] Y Qian et al., “Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites,” Journal of Materials Chemistry A, vol 6, no 48 pp 24676–24685, 2018 [179] P T Lan Huong et al., “Functional manganese ferrite/graphene oxide nanocomposites: Effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution,” RSC Adv., vol 8, no 22, pp 12376–12389, 2018 [180] A Molla, Y Li, B Mandal, S G Kang, S H Hur, and J S Chung, “Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis,” Appl Surf Sci., vol 464, pp 170–177, Jan 2019 [181] Y Qiu, S Moore, R Hurt, and I Külaots, “Influence of external heating rate on the structure and porosity of thermally exfoliated graphite oxide,” Carbon N Y., vol 111, pp 651–657, Jan 2017 [182] J Qin, A Moustafa, H Harms, M G El-Din, and L Y Wick, “The power 156 of power: Electrokinetic control of PAH interactions with exfoliated graphite,” J Hazard Mater., vol 288, pp 25–33, May 2015 [183] R Laboratories and S Gopal, “FTIR SPECTROSCOPIC STUDIES ON CLEOME GYNANDRA – COMPARATIVE,” Rom J Biophys., vol 22, no June 2014, pp 137–143, 2013 [184] H T N Le, T V Tran, N T S Phan, and T Truong, “Efficient and recyclable Cu2(BDC)2(BPY)-catalyzed oxidative amidation of terminal alkynes: Role of bipyridine ligand,” Catal Sci Technol., vol 5, no 2, pp 851–859, 2015 [185] I Ahmed and S H Jhung, “Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions,” Chemical Engineering Journal, vol 310 pp 197–215, Feb-2017 [186] J Y Song, B N Bhadra, and S H Jhung, “Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon,” Microporous Mesoporous Mater., vol 243, pp 221–228, May 2017 [187] T Ölmez, “The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology,” Journal of Hazardous Materials, vol 162, no 2–3 pp 1371–1378, 2009 [188] M N Grace, G M Wilson, and P F Leslie, “Statistical testing of input factors in the carbonation of brine impacted fly ash,” J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng., vol 47, no 2, pp 245– 259, Jan 2012 [189] A Asfaram, M Ghaedi, A Goudarzi, and M Rajabi, “Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: Kinetic and isothermal studies,” Dalt Trans., vol 44, no 33, pp 14707– 14723, 2015 [190] N Ilaiyaraja, K R Likhith, G R Sharath Babu, and F Khanum, “Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM),” Food Chem., vol 173, pp 348–354, Apr 2015 [191] I Arslan-Alaton, G Tureli, and T Olmez-Hanci, “Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology,” J Photochem Photobiol A Chem., vol 202, no 2–3, pp 142–153, 2009 [192] T Van Tran et al., “MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation,” J Environ Chem Eng., vol 7, no 1, p 102881, Feb 2019 157 [193] M Uchimiya, S C Chang, and K T Klasson, “Screening biochars for heavy metal retention in soil: Role of oxygen functional groups,” J Hazard Mater., vol 190, no 1–3, pp 432–441, Jun 2011 [194] F A Pavan, S L P Dias, E C Lima, and E V Benvenutti, “Removal of Congo red from aqueous solution by anilinepropylsilica xerogel,” Dye Pigment., vol 76, no 1, pp 64–69, Jan 2008 [195] V Vimonses, S Lei, B Jin, C W K Chow, and C Saint, “Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials,” Chemical Engineering Journal, vol 148, no 2–3 pp 354– 364, 2009 [196] C Namasivayam, N Muniasamy, K Gayatri, M Rani, and K Ranganathan, “Removal of dyes from a queous solutions by cellulosic waste orange peel,” Bioresour Technol., vol 57, no 1, pp 37–43, 1996 [197] A M Youssef AM and Al-Awadhi MM, “Adsorption of Acid Dyes onto Bentonite and Surfactant-modified Bentonite,” J Anal Bioanal Tech., vol 04, no 04, pp 3–7, 2014 [198] L Wang and A Wang, “Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite,” J Hazard Mater., vol 147, no 3, pp 979–985, Aug 2007 [199] H Y Zhu et al., “Adsorption removal of congo red onto magnetic cellulose/Fe O /activated carbon composite: Equilibrium, kinetic and thermodynamic studies,” Chem Eng J., vol 173, no 2, pp 494– 502, 2011 [200] F Ashenai Ghasemi, I Ghasemi, S Menbari, M Ayaz, and A Ashori, “Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology,” Polym Test., vol 53, pp 283–292, Aug 2016 [201] H M Jang, S Yoo, Y K Choi, S Park, and E Kan, “Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar,” Bioresour Technol., vol 259, pp 24– 31, Jul 2018 [202] N V Sych et al., “Porous structure and surface chemistry of phosphoric acid activated carbon from corncob,” Appl Surf Sci., vol 261, pp 75– 82, 2012 158 PHỤ LỤC 159 ... CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ …… ….***………… PHẠM VĂN THỊNH NGHIÊN CỨU TỔNG HỢP VẬT LIỆU TỪ TÍNH TRÊN NỀN GRAPHIT VIỆT NAM ỨNG DỤNG TRONG XỬ LÝ MÔI TRƯỜNG Ô NHIỄM MÀU HỮU CƠ... liệu tham khảo Thành cơng nghiên cứu tổng hợp vật liệu từ tính graphit Việt Nam ứng dụng xử lý môi trường ô nhiễm chất màu hữu congo red sở cho việc đa dạng hóa phương pháp vật liệu xử lý ô nhiễm. .. Nhờ vào đặc tính tốt vật liệu từ tính, luận án có định hướng sử dụng loại vật liệu lai cho trình xử lý môi trường nhiễm chất màu hữu độc hại Nghiên cứu tập trung tổng hợp vật liệu từ tính (EG@MFe

Ngày đăng: 31/12/2019, 13:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w