Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 205 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
205
Dung lượng
7,3 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ HÀ NỘI - 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN Ngành: Kỹ thuật điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS HOÀNG MẠNH THẮNG HÀ NỘI - 2019 LỜI CAM ĐOAN Tôi xin cam đoan kết trình bày Luận án cơng trình nghiên cứu tơi hướng dẫn PGS.TS Hoàng Mạnh Thắng Các số liệu, kết trình bày luận án hồn tồn trung thực chưa công bố cơng trình trước Các kết sử dụng tham khảo trích dẫn đầy đủ theo quy định Hà nội, ngày 06 tháng 11 năm 2019 Tác giả Hoàng Xuân Thành LỜI CÁM ƠN Để hồn thành Luận án này, tơi xin gửi lời biết ơn sâu sắc đến Thày cô Bộ mơn Điện tử Kỹ thuật máy tính, Viện Điện tử–Viễn thông hỗ trợ, giúp đỡ động viên tơi suốt q trình làm luận án tiến sĩ Trường Đại học Bách khoa Hà Nội Tôi gửi lời cám ơn đến người hướng dẫn, PGS Hoàng Mạnh Thắng, người bảo định hướng cho trình nghiên cứu Xin cám ơn nhiều! Hà nội, ngày 06 tháng 11 năm 2019 Mục lục Trang DANH MỤC CÁC TỪ VIẾT TẮT iv DANH SÁCH HÌNH VẼ vii DANH SÁCH BẢNG x MỞ ĐẦU Chương 1: TỔNG QUAN VỀ HÀM HỖN LOẠN VÀ ẢNH SỐ 1.1 Giới thiệu 1.2 Mật mã đại phân loại .7 1.2.1 Định nghĩa 1.2.2 Phân loại mật mã 1.3 Hệ thống hỗn loạn 11 1.3.1 Hệ hỗn loạn liên tục theo thời gian 11 1.3.2 Hệ hỗn loạn rời rạc theo thời gian 12 1.3.2.1 Hàm Logistic 13 1.3.2.2 Hàm Henon 13 1.3.2.3 Hàm Cat 14 1.3.2.4 Hàm hỗn loạn Cat-Hadamard 14 1.3.2.5 Hàm Standard .15 1.3.2.6 Hàm Skew tent 15 1.3.2.7 Hàm Chebyshev 16 1.3.2.8 Hàm hỗn loạn không gian-thời gian 16 1.4 Các thuộc tính hàm hỗn loạn phù hợp cho ứng dụng mật mã 16 1.4.1 Các thuộc tính 16 1.4.2 Các tham số tính chất hàm hỗn loạn dùng mật mã 18 1.5 Tạo chuỗi ngẫu nhiên dùng hàm hỗn loạn 20 1.5.1 Tạo chuỗi bit ngẫu nhiên 21 1.5.2 Tạo chuỗi số giả ngẫu nhiên 22 1.6 Ảnh số đặc điểm 23 1.6.1 Biểu diễn ảnh số 23 1.6.2 Các đặc trưng liệu ảnh 24 1.7 Kết luận 26 i Chương 2: MẬT Mà ẢNH Ở MỨC BIT ỨNG DỤNG KỸ THUẬT HỖN LOẠN 2.1Giới thiệu 2.2 Mơ hình mật mã cấu trúc SPN 2.2.1 Hoán vị điểm ảnh sử dụn 2.2.1.2 Luật hoán vị dựa vào biến 2.2.2 Phép thay sử dụng hỗn 2.2.2.1 Phép thay không tạo 2.2.2.2 Thay có lan truyền 2.3 Đề xuất hệ mật mã hỗn loạn làm việc mức bit 2.3.1 Đề xuất 1: Hệ mật mã dựa 2.3.1.5 Kết thiết kế mạch cứn 2.3.2 Đề xuất 2: Hệ mật mã hỗn loạ 2.3.2.2 Giải thuật giải mật 2.3.2.3 Chi phí tính tốn 2.3.2.4 Giải thuật phân phối khóa 2.4 Chương 3: PHÂN TÍCH MẬT Mà HỖN LOẠN CĨ CẤU TRÚC SPN 3.1 Giới thiệu 69 3.2 Một số qui ước phân tích mã 71 3.3 Mô tả hệ mật mã hỗn loạn đề xuất W Zhang 71 3.4 Đề xuất 3: Phân tích hệ mật mã hỗn loạn có cấu trúc SPN với vòng lặp mã75 3.4.1 Tấn cơng lựa chọn rõ 76 3.4.1.1 Tấn cơng vào q trình hốn vị 76 3.4.1.2 Tấn công vào khuếch tán 79 ii 3.4.2 Tấn công lựa chọn mã 83 3.4.2.1 Tấn cơng q trình hốn vị ngược 83 3.4.2.2 Tấn công khuếch tán ngược 87 3.4.3 Ước lượng thời gian công 90 3.4.3.1 Thời gian cơng hốn vị 90 3.4.3.2 Thời gian công khuếch tán .91 3.4.4 Một số bàn luận cơng vòng lặp mã 92 3.5 Đề xuất 4: Phân tích mật mã hỗn loạn có cấu trúc SPN với nhiều vòng lặp mã 93 3.5.1 Giải thuật mật mã giải mật nhiều vòng lặp mã 93 3.5.2 Phân tích mã 95 3.5.2.1 Nhận diện điểm yếu hệ mật mã 96 3.5.2.2 Khơi phục luật hốn vị 101 3.5.3 Đề xuất phương pháp nâng cao bảo mật cho hệ mật mã .110 3.5.4 Kết luận .120 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 121 DANH MỤC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN 123 TÀI LIỆU THAM KHẢO 124 iii Danh sách từ viết tắt VIẾT TẮT 1D 2D AES BIC CCA CML COA CPA Cdr Cdr DBAP FIPS 199 HSV ID IP KPA LFSR NIST NPCR PRESENT PWLCM PAPC PKI iv PV RGB UACI SAC SAFER SPN SV v image encryption algorithm using the intrinsic features of bit distributions,” Commun Nonlinear Sci Numer Simulat, Vol 18, pp 584–600 [62] L E Bassham III, A L Rukhin, J Soto, J R Nechvatal, M E Smid, E B Barker, S D Leigh, M Levenson, M Vangel, D L Banks, et al (2010), “Sp 800-22 rev 1a a statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards & Technology, [63] C Solomon and T Breckon (2011), Fundamentals of Digital Image Process-ing: A Practical Approach with Examples in Matlab Wiley [64] L Kocarev and S Lian (2011), Chaos-based Cryptography Springer [65] L Kocarev (2001), “Chaos-based cryptography: a brief overview,” IEEE Cir-cuits and Systems Magazine, Vol 1, no 3, pp 6–21 [66] G Alvarez and S Li (2006), “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol 16, no 08, pp 2129–2151 [67] M Li, Y Guo, J Huang, and Y Li (2018), “Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure,” Signal Process-ing: Image Communication, Vol 62, pp 164 – 172 [68] A.-V Diaconu (2016), “Circular inter-intra pixels bit-level permutation and chaos-based image encryption,” Information Sciences, Vol 355-356, pp 314 – 327 [69] C Cao, K Sun, and W Liu (2018), “A novel bit-level image encryption al-gorithm based on 2D-LICM hyperchaotic map,” Signal Processing, Vol 143, pp 122 – 133 [70] L Teng, X Wang, and J Meng (2018), “A chaotic color image encryption using integrated bit-level permutation,” Multimedia Tools and Applications, Vol 77, no 6, pp 6883–6896 [71] L Xu, Z Li, J Li, and W Hua (2016), “A novel bit-level image encryption algorithm based on chaotic maps,” Optics and Lasers in Engineering, Vol 78, pp 17 – 25 [72] S Lian (2008), Multimedia Content Encryption: Techniques and Applications Auerbach Publications [73] C E Shannon (Sept 1, 1945), “A mathematical theory of cryptography,” Bell System Technical Memo MM, Vol 45-110-02, pp 1– 110+25 [74] M Kar, M K Mandal, D Nandi, A Kumar, and S Banik (2016), “Bitplane 129 encrypted image cryptosystem using chaotic, quadratic, and cubic maps,” IETE Technical Review, Vol 33, no 6, pp 651–661 [75] S Guo, Y Liu, L Gong, W Yu, and Y Gong (2018), “Bit-level image cryp-tosystem combining 2d hyper-chaos with a modified nonadjacent spatiotem-poral chaos,” Multimedia Tools and Applications, Vol 77, no 16, pp 21109– 21130 [76] R K Singh, B Kumar, D K Shaw, and D A Khan (2018), “Level by level im-age compression-encryption algorithm based on quantum chaos map,” Journal of King Saud University - Computer and Information Sciences [77] N Masuda, G Jakimoski, K Aihara, and L Kocarev (2006), “Chaotic block ciphers: from theory to practical algorithms,” Circuits and Systems I: Regular Papers, IEEE Transactions on, Vol 53, no 6, pp 1341–1352 [78] A Saito and A Yamaguchi (2016), “Pseudorandom number generation using chaotic true orbits of the bernoulli map,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 26, no 6, p 063122 [79] R Munir (2014), “A block-based image encryption algorithm in frequency do-main using chaotic permutation,” in Telecommunication Systems Services and Applications (TSSA), 2014 8th International Conference on, pp 1–5, IEEE [80] Y Suryanto, K Ramli, et al (2015), “Chaos properties of the chaotic permutation generated by multi circular shrinking and expanding movement,” in Quality in Research (QiR), 2015 International Conference on, pp 65–68, IEEE [81] M Ahmad, H Chugh, A Goel, and P Singla (2013), “A chaos based method for efficient cryptographic s-box design,” in Security in Computing and Com-munications: International Symposium, SSCC 2013, Mysore, India, August 22-24, 2013 Proceedings (S M Thampi, P K Atrey, C.-I Fan, and G M Perez, eds.), (Berlin, Heidelberg), pp 130–137, Springer Berlin Heidelberg [82] M Ahmad, F Ahmad, Z Nasim, Z Bano, and S Zafar ( Aug 2015), “Design-ing chaos based strong substitution box,” in 2015 Eighth International Confer-ence on Contemporary Computing (IC3), pp 97–100 [83] R L Devaney (2003), An Introduction to Chaotic Dynamical Systems 2nd Edition Westview Pr (Short Disc) [84] J Fridrich (1998), “Symmetric ciphers based on two-dimensional chaotic maps,” International Journal of Bifurcation and Chaos, Vol 08, no 06, pp 1259–1284 [85] A N Pisarchik, N J Flores-Carmona, and M Carpio-Valadez (2006), “En- 130 cryption and decryption of images with chaotic map lattices,” Chaos: An Inter-disciplinary Journal of Nonlinear Science, Vol 16, no 3, p 033118 [86] D Arroyo, R Rhouma, G Alvarez, S Li, and V Fernandez (2008), “On the security of a new image encryption scheme based on chaotic map lattices,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 18, no 3, p 033112 [87] X Wang, X Zhu, and Y Zhang (2018), “An image encryption algorithm based on josephus traversing and mixed chaotic map,” IEEE Access, Vol 6, pp 23733–23746 [88] R Li, Q Liu, and L Liu (2019), “Novel image encryption algorithm based on improved Logistic map,” IET Image Processing, Vol 13, no 1, pp 125–134 [89] Z liang Zhu, W Zhang, K wo Wong, and H Yu (2011), “A chaosbased sym-metric image encryption scheme using a bit-level permutation,” Information Sciences, Vol 181, no 6, pp 1171 – 1186 [90] C Fu, B bin Lin, Y sheng Miao, X Liu, and J jie Chen (2011), “A novel chaos-based bit-level permutation scheme for digital image encryption,” Op-tics Communications, Vol 284, no 23, pp 5415 – 5423 [91] T T K Hue, T M Hoang, and S Al Assad (2013), “Design and implemen-tation of a chaotic cipher block chaining mode for image encryption,” in Ad-vanced Technologies for Communications (ATC), 2013 International Confer-ence on, pp 185–190, IEEE [92] Y Feng and X Yu ( Nov 2009), “A novel symmetric image encryption approach based on an invertible two-dimensional map,” in 2009 35th Annual Conference of IEEE Industrial Electronics, pp 1973–1978 [93] J A Gordon and H Retkin (1983), “Are big s-boxes best?,” in Cryptogra-phy: Proceedings of the Workshop on Cryptography Burg Feuerstein, Ger-many, March 29–April 2, 1982 (T Beth, ed.), (Berlin, Heidelberg), pp 257– 262, Springer Berlin Heidelberg [94] C Adams and S Tavares (1990), “Good s-boxes are easy to find,” in Advances in Cryptology — CRYPTO’ 89 Proceedings (G Brassard, ed.), (New York, NY), pp 612–615, Springer New York [95] M H Dawson and S E Tavares ( May 1991), “An expanded set of design criteria for substitution boxes and their use in strengthening des-like cryptosystems,” in [1991] IEEE Pacific Rim Conference on Communications, Comput-ers and Signal Processing Conference Proceedings, pp 191–195 vol.1 131 [96] C Adams and S Tavares (1990), “The structured design of cryptographically good s-boxes,” J Cryptol., Vol 3, no 1, pp 27–41 [97] M Matsui (1994), “Linear cryptanalysis method for des cipher,” in Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings (T Helleseth, ed.), (Berlin, Heidelberg), pp 386–397, Springer Berlin Heidel-berg [98] E Biham (1995), “On matsui’s linear cryptanalysis,” in Advances in Cryp-tology — EUROCRYPT’94 (A De Santis, ed.), (Berlin, Heidelberg), pp 341– 355, Springer Berlin Heidelberg [99] A F Webster and S E Tavares (1986), “On the design of sboxes,” in Advances in Cryptology, CRYPTO ’85, (London, UK, UK), pp 523–534, Springer-Verlag [100] G Tang and X Liao (2005), “A method for designing dynamical s-boxes based on discretized chaotic map,” Chaos, Solitons & Fractals, Vol 23, no 5, pp 1901 – 1909 [101]J Detombe and S Tavares (1993), “Constructing large cryptographically strong s-boxes,” in Advances in Cryptology — AUSCRYPT ’92: Workshop on the Theory and Application of Cryptographic Techniques Gold Coast, Queensland, Australia, December 13–16, 1992 Proceedings (J Seberry and Y Zheng, eds.), (Berlin, Heidelberg), pp 165–181, Springer Berlin Heidelberg [102] E Biham and A Shamir (1991), “Differential cryptanalysis of des-like cryp-tosystems,” Journal of Cryptology, Vol 4, no 1, pp 3– 72 [103]G Jakimoski and L Kocarev (2001), “Chaos and cryptography: block encryp-tion ciphers based on chaotic maps,” IEEE Transactions on Circuits and Sys-tems I: Fundamental Theory and Applications, Vol 48, no 2, pp 163–169 [104] G Zaibi, A Kachouri, F Peyrard, and D Fournier-Prunaret ( June 2009), “On dynamic chaotic s-box,” in 2009 Global Information Infrastructure Sympo-sium, pp 1–5 [105] T T K Hue, T M Hoang, and D Tran ( July 2014), “Chaos-based s-box for lightweight block cipher,” in 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), pp 572–577 [106] Y Wang, K.-W Wong, X Liao, and T Xiang (2009), “A block cipher with dynamic s-boxes based on tent map,” Communications in Nonlinear Science and Numerical Simulation, Vol 14, no 7, pp 3089 – 3099 132 [107] D Lambic´ (2017), “A novel method of s-box design based on discrete chaotic map,” Nonlinear Dynamics, Vol 87, no 4, pp 2407–2413 [108] Y Zhang ( Jan 2018), “Test and verification of AES used for image encryp-tion,” 3D Research, Vol 9, p [109] Y Liu, L Y Zhang, J Wang, Y Zhang, and K.-w Wong ( June 2016), “Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure,” Nonlinear Dynamics, Vol 84, p 2241 [110] F Özkaynak ( Jan 2018), “Brief review on application of nonlinear dynamics in image encryption,” Nonlinear Dynamics, p [111]Y Dai, H Wang, and Y Wang (2016), “Chaotic medical image encryption algorithm based on bit-plane decomposition,” International Journal of Pattern Recognition and Artificial Intelligence, Vol 30, no 04, p 1657001 [112] J Liu, D Yang, H Zhou, and S Chen ( Nov 2017), “A digital image encryption algorithm based on bit-planes and an improved Logistic map,” Multimedia Tools and Applications, p [113] J xin Chen, Z liang Zhu, C Fu, L bo Zhang, and Y Zhang (2015), “An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach,” Communications in Nonlinear Science and Numerical Simulation, Vol 23, no 1, pp 294 – 310 [114] G Ye and K.-W Wong (2012), “An efficient chaotic image encryption algo-rithm based on a generalized Arnold map,” Nonlinear Dynamics, Vol 69, no 4, pp 2079–2087 [115] M Keyvanpour and F Merrikh-Bayat (2011), “An effective chaos-based im-age watermarking scheme using fractal coding,” Procedia Computer Science, Vol 3, pp 89–95 [116] W K Tang and Y Liu (2011), “Formation of high- dimensional chaotic maps and their uses in cryptography,” in ChaosBased Cryptography, pp 99–136, Springer [117] M Falcioni, L Palatella, S Pigolotti, and A Vulpiani (2005), “Properties mak-ing a chaotic system a good pseudo random number generator,” Physical Re-view E, Vol 72, no 1, p 016220 [118] T K H Ta, T M Hoang, A Braeken, and K Steenhaut (2017), “On con-struction of multi-maximum distance separable (MDS) matrix generator based on high dimensional Cat matrices,” Optik- International Journal for Light and Electron Optics, Vol 131, pp 454– 466 133 [119] Y Wu, Z Hua, and Y Zhou (2016), “n-dimensional discrete Cat map gener-ation using Laplace expansions,” IEEE transactions on cybernetics, Vol 46, no 11, pp 2622–2633 [120] D Giry “Bluekrypt: Cryptographic key length recommendation; https://www.keylength.com/en.” Accessed: 2019-11-2 [121] E Yavuz (2019), “A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme,” Optics & Laser Tech-nology, Vol 114, pp 224 – 239 [122] Y Li, C Wang, and H Chen (2017), “A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation,” Optics and Lasers in Engineering, Vol 90, pp 238 – 246 [123] X Wang and H li Zhang (2015), “A color image encryption with heterogeneous bit-permutation and correlated chaos,” Optics Communications, Vol 342, pp 51 – 60 [124] Y Wu, S Member, J P Noonan, L Member, S Agaian, and S Member (2011), “NPCR and UACI randomness tests for image encryption,” in Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Ar-eas in Telecommunications (JSAT) [125] G Maze (2003), Algebraic methods for constructing one- way trapdoor func-tions PhD thesis, University of Notre Dame Notre Dame [126] K Chain and W.-C Kuo (2013), “A new digital signature scheme based on chaotic maps,” Nonlinear Dynamics, Vol 74, no 4, pp 1003–1012 [127] A U Rehman, J S Khan, J Ahmad, and S O Hwang (2016), “A new im-age encryption scheme based on dynamic S-Boxes and chaotic maps,” 3D Re-search, Vol 7, no 1, pp 1–8 [128] A Medio and M Lines (2001), Nonlinear Dynamics: A Primer Cambridge University Press [129]Y Liu, S Tian, W Hu, and C Xing (2012), “Design and statistical analysis of a new chaotic block cipher for wireless sensor networks,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 8, pp 3267 – 3278 [130] L Y Zhang, C Li, K.-W Wong, S Shu, and G Chen (2012), “Cryptanalyzing a chaos-based image encryption algorithm using alternate structure,” Journal of Systems and Software, Vol 85, no 9, pp 2077 – 2085 Selected papers from the 2011 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011) 134 [131] C Li, L Y Zhang, R Ou, K.-W Wong, and S Shu (2012), “Breaking a novel colour image encryption algorithm based on chaos,” Nonlinear Dynamics, Vol 70, no 4, pp 2383–2388 [132] C Zhu, C Liao, and X Deng (2013), “Breaking and improving an image encryption scheme based on total shuffling scheme,” Nonlinear Dynamics, Vol 71, no 1-2, pp 25–34 [133] H Heys and S Tavares (1995), “Avalanche characteristics of substitution-permutation encryption networks,” Computers, IEEE Transactions on, Vol 44, no 9, pp 1131–1139 [134] D Stinson (2005), Cryptography: Theory and Practice CRC Press, 3rd ed [135] T St Denis (26 November 2001), “Advanced encryption standard (AES),” tech rep., Federal Information Processing Standards [136] P Paillier and I Verbauwhede, eds (2007), PRESENT: An Ultra- Lightweight Block Cipher, (Berlin, Heidelberg), Springer Berlin Heidelberg [137] J L Massey (1993), “SAFER K-64: A byte-oriented block- ciphering algo-rithm,” in International Workshop on Fast Software Encryption, pp 1–17, Springer [138] X.-J Tong (2013), “Design of an image encryption scheme based on a multiple chaotic map,” Communications in Nonlinear Science and Numerical Simula-tion, Vol 18, no 7, pp 1725 – 1733 [139] A Kanso and M Ghebleh (2012), “A novel image encryption algorithm based on a 3D chaotic map,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 7, pp 2943 – 2959 [140] X Zhang, L Shao, Z Zhao, and Z Liang (2014), “An image encryption scheme based on constructing large permutation with chaotic sequence,” Computers and Electrical Engineering, Vol 40, no 3, pp 931 – 941 Special Issue on Image and Video Processing [141] T T K Hue, C V Lam, T M Hoang, and S Al Assad ( Dec 2012), “Im-plementation of secure spn chaos-based cryptosystem on fpga,” in Signal Pro-cessing and Information Technology (ISSPIT), 2012 IEEE International Sym-posium on, pp 000129–000134 [142]Y Zhang, D Xiao, Y Shu, and J Li (2013), “A novel image encryption scheme based on a linear hyperbolic chaotic system of partial differential equations,” Signal Processing: Image Communication, Vol 28, no 3, pp 292 – 300 135 [143] E A Arnold and A Avez (1968), Ergodic Problems of Classical Mechanics Benjamin [144] F Rannou (1974), “Numerical study of discrete plane area- preserving map-pings,” Astron & Astrophys., Vol 31, pp 289–301 [145] E A Jackson (1991), Perspectives of Nonlinear Dynamics Cambridge Univer-sity Press 136 ... trung vào hệ mật mã sử dụng hàm hỗn loạn rời rạc theo thời gian Đề xuất hệ mật mã, giải thuật dùng cho mật mã hỗn loạn giải thuật phân tích hệ mật mã hỗn loạn - Phạm vi nghiên cứu: Hệ mật mã quan... Mật mã ảnh mức bit ứng dụng kỹ thuật hỗn loạn: Các mơ hình, cấu trúc, phương pháp chung ứng dụng hỗn loạn để hình thành hệ mật mã trình bày Những cải tiến hệ mật mã ứng dụng hỗn loạn theo hướng... bất đối xứng • Phân loại theo cách sử dụng khóa mật ta có mật mã khóa cơng khai (hay mật mã bất đối xứng) mật mã khóa riêng tư (hay mã đối xứng) Hệ mật mã đối xứng hệ mật mã có khóa mật dùng