1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chế tạo và nghiên cứu tính chất quang học của vật liệu tio2 có cấu trúc nano pha tạp ion đất hiếm

134 87 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 134
Dung lượng 6,33 MB

Nội dung

LỜI CAM ĐOAN Tơi cam đoan cơng trình nghiên cứu riêng tôi, đƣợc thực dƣới hƣớng dẫn PGS TS Nguyễn Mạnh Sơn, Khoa Vật lý, Trƣờng Đại học Khoa học, Đại học Huế Các số liệu kết luận án đƣợc đảm bảo xác, trung thực chƣa đƣợc cơng bố cơng trình khác Nguyễn Trùng Dƣơng i LỜI CẢM ƠN Trong suốt thời gian thực luận án, nỗ lực thân, tác giả nhận đƣợc nhiều giúp đỡ quý báu vật chất lẫn tinh thần Trƣớc hết, tơi xin bày tỏ tình cảm biết ơn sâu sắc đến ngƣời hƣớng dẫn khoa học PGS TS Nguyễn Mạnh Sơn, tận tình giúp đỡ tơi suốt trình thực luận án tiến sĩ Tác giả gửi lời cảm ơn đến Ban Chủ nhiệm, cán bộ, giảng viên Khoa Vật lý, trực tiếp Bộ môn Vật lý Chất rắn (Trƣờng Đại học Khoa học, Đại học Huế) tạo điều kiện để luận án đƣợc hoàn thành Xin chân thành cảm ơn TS Trƣơng Văn Chƣơng, ThS Lê Ngọc Minh, Khoa Vật lý, Trƣờng Đại học Khoa học – Đại học Huế hỗ trợ tích cực thảo luận đăng tải cơng trình liên quan đến nội dung luận án Tác giả tỏ lòng biết ơn đến Nghiên cứu sinh Khoa Vật lý, Trƣờng Đại học Khoa học, Đại học Huế, đồng nghiệp Phân hiệu Đại học Huế Quảng Trị tình cảm tốt đẹp giúp đỡ vơ tƣ lúc tác giả khó khăn Cuối cùng, xin dành lời cảm ơn đặc biệt đến gia đình, bạn bè tất đồng nghiệp Thành phố Huế, năm 2018 Tác giả luận án ii KÝ HIỆU VIẾT TẮT Ký hiệu Ý nghĩa A Anatase CT Charge Transfer: Truyền điện tích CTS Charge Transfer State: Trạng thái truyền điện tích DFT Density Function Theory: Lý thuyết phiếm hàm mật độ DSSC Dye Sensitized Solar Cell: Pin mặt trời nhạy màu Eg Năng lƣợng vùng cấm GGA Generalised Gradient Approximation MB Methylene Blue: Methylene Xanh NIR Near-infrared: Hồng ngoại gần Octahedra Bát diện Orthorhombic Mặt thoi R Rutile RE Rare Earth: Đất SEM Scanning electron microscopy: Hiển vi điện tử quét TEM Transmission electron microscopy: Hiển vi điện tử truyền qua UV - Vis UltraViolet–Visible: tử ngoại khả kiến XRD X-ray diffraction: Nhiễu xạ tia X iii KÝ HIỆU VIẾT TẮT DANH MỤC HÌNH DANH MỤC BẢNG MỞ ĐẦU CHƢƠN TỔNG QUAN LÝ THUYẾT 1.1 TỔNG QUAN VỀ VẬT LIỆU TiO2 CÓ CẤU TRÚC NANO 1.1.1 Giới thiệu TiO2 có cấu trúc nano 1.1.1.1 Các dạng cấu trúc số tính chất vật lý TiO2 1.1.1 1.1.1.3 Một vài ứng dụng TiO2 nano 1.1.2 Các phƣơng pháp chế tạo TiO2 nano 1.1.2.1 Phƣơng pháp thủy nhiệt 1.1.2.2 Phƣơng pháp sol – gel 1.1.2.3 Phƣơng pháp vi sóng 1.1.2.4 Phƣơng pháp siêu âm 1.1.2.5 Phƣơng pháp điện hóa 1.2 ĐẶC TRƢNG QUANG PHỔ CỦA CÁC ION ĐẤT HIẾM 1.2.1 Tổng quan nguyên tố đất 1.2.2 Đặc trƣng quang phổ Europium Samarium 1.2.2.1 Đặc trƣng quang phổ Europium 1.2.2.2 Đặc trƣng quang phổ Samarium 19 1.3 SƠ LƢỢC VỀ QUÁ TRÌNH NGHIÊN CỨU TiO2 NANO VÀ TiO2 NANO PHA TẠP 21 1.3.1 Thực trạng nghiên cứu nƣớc .21 1.3.2 Tình hình nghiên cứu vấn đề khoa học nƣớc 22 CHƢƠNG 27 CÔNG NGHỆ CHẾ TẠO, CẤU TRÚC, VI CẤU TRÚC CỦA VẬT LIỆU TiO2 NANO PHA TẠP RE3+ (Eu3+, Sm3+) 27 2.1 TỔNG HỢP VẬT LIỆU TiO2 NANO 27 2.1.1 Tổng hợp TiO2 nano phƣơng pháp siêu âm - thủy nhiệt 27 2.1.2 Tổng hợp TiO2 nano phƣơng pháp sử dụng axit sulfuric .28 2.1.3 Chế tạo vật liệu TiO2 nano pha tạp RE 28 2.1.4 Các phƣơng pháp phân tích .29 2.2 CẤU TRÚC VÀ VI CẤU TRÚC CỦA TiO2 TiO2 PHA TẠP 30 2.2.1 Cấu trúc vi cấu trúc TiO2 nano .30 2.2.1.1 Vi cấu trúc TiO2 nano 30 2.2.1.2 Cấu trúc tinh thể TiO2 nano 33 2.2.2 Cấu trúc, vi cấu trúc TiO2 nano pha tạp RE3+ 38 2.2.2.1 Vi cấu trúc TiO2 nano pha tap RE3+ 38 2.2.2.2 Cấu trúc tinh thể TiO2 nano pha tạp RE 40 CHƢƠNG 47 ĐẶC TRƢNG QUANG PHỔ CỦA VẬT LIỆU TiO2 NANO PHA TẠP ION Eu3+, Sm3+ 47 3.1 PHỔ HẤP THỤ UV-VIS 47 v 3.2 PHỔ HUỲNH QUANG CỦA TiO2 NANO PHA TẠP RE3+ 49 3.2.1 Phổ phát quang TiO2 nano pha tạp RE3+ 49 3.2.2 Phổ kích thích huỳnh quang TiO2 pha tạp RE3+ .53 3.3 CƠ CHẾ PHÁT QUANG CỦA CÁC TÂM ĐẤT HIẾM TRÊN NỀN TiO2 NANO 55 3.4 MÔ PHỎNG CẤU TRÚC VÙNG NĂNG LƢỢNG CỦA TiO2 VÀ TiO2 PHA TẠP RE3+ 61 3.4.1 Giới thiệu phần mềm Material Studio 61 3.4.2 Giới thiệu chƣơng trình Castep 633 3.4.3 Mô cấu trúc vùng lƣợng TiO2 .63 3.4.4 Mô cấu trúc vùng lƣợng TiO2 pha tạp RE3+ 65 CHƢƠNG 699 ỨNG DỤNG TiO2 NANO VÀO LĨNH VỰC QUANG XÚC TÁC .699 4.1 CƠ CHẾ QUANG XÚC TÁC CỦA TiO2 699 4.2 ỨNG DỤNG QUANG XÚC TÁC CỦA TiO2 NANO 733 4.3 ỨNG DỤNG QUANG XÚC TÁC CỦA TiO2 NANO PHA TẠP RE 799 KẾT LUẬN 833 DANH MỤC CƠNG TRÌNH LIÊN QUAN ĐẾN LUẬN ÁN .855 TÀI LIỆU THAM KHẢO 866 vi DANH MỤC HÌNH Hình 1 Cấu trúc anatase rutile TiO2 Hình Sự xếp khối bát diện Hình 1.3 Giản đồ vùng lƣợng TiO2 Hình 1.4 Giản đồ mức lƣợng ion RE3+- Giản đồ Dieke 14 Hình Phổ xạ ion Eu2+ Al2O3 ion Eu3+ TiO2 nano 18 Hình Phổ xạ ion Sm 3+ TiO2 nano 20 Hình Quy trình chế tạo TiO2 nano phƣơng pháp siêu âm – thủy nhiệt .27 Hình 2 Quy trình chế tạo TiO2 nano phƣơng pháp sử dụng axit sulfuric 28 Hình Ảnh SEM TiO2 nano chế tạo phƣơng pháp siêu âm – thủy nhiệt nung 550oC 2h 31 Hình Ảnh SEM TiO2 nano chế tạo phƣơng pháp sử dụng axit sulfuric nung 550oC 2h .31 Hình Ảnh TEM TiO2 nano chế tạo phƣơng pháp siêu âm – thủy nhiệt nung 550oC 2h 31 Hình Ảnh TEM TiO2 nano chế tạo phƣơng pháp sử dụng axit sulfuric nung 550oC 2h .32 Hình Ảnh TEM TiO2 nano chế tạo phƣơng pháp sử dụng axit sulfuric nung 950oC 2h .32 Hình Giản đồ nhiễu xạ tia X TiO2 nano chế tạo phƣơng pháp siêu âm – thủy nhiệt 33 vii Hình Giản đồ nhiễu xạ tia X TiO2 nano chế tạo phƣơng pháp sử dụng axit sulfuric 33 Hình 10 Kích thƣớc hạt theo nhiệt độ nung mẫu chế tạo phƣơng pháp .36 Hình 11 Phổ Raman TiO2 chế tạo phƣơng pháp siêu âm - thủy nhiệt (a), phƣơng pháp axit sulfuric (b) 36 Hình 12 Phổ Raman TiO2 nung 550oC (a), 950oC (b) 37 Hình 13 Phổ hấp thụ mẫu TiO2 theo nhiệt độ nung 37 Hình 14 Ảnh TEM mẫu TiO2: Eu3+ (1% mol) nung 500oC chụp vị trí khác 39 Hình 15 Ảnh TEM TiO2:Sm3+ (1%mol) nung 550oC chụp vị trí khác 40 Hình 16 Giản đồ nhiễu xạ tia X mẫu TiO 2: Eu 3+ (a), TiO2: Sm 3+ (b) theo nồng độ pha tạp đƣợc nung 550oC 2h 41 Hình 17 Giản đồ nhiễu xạ tia X TiO2: Eu3+ (2% mol) (a), TiO2: Sm3+ (2% mol) (b) đƣợc nung từ 450oC đến 950oC 41 3+ 3+ Hình 18 Phổ Raman TiO2 nano pha tạp 2% mol Eu (a), 2% mol Sm (b), mẫu đƣợc nung từ 550oC đến 950oC .43 Hình 19 Phổ hấp thụ mẫu TiO2: Eu3+ (1% mol) nung theo nhiệt độ từ 350oC đến 950oC 44 3+ Hình 20 Phổ hấp thụ mẫu TiO2: Sm (1% mol) nung theo nhiệt độ từ 350oC đến 950oC 44 Hình Phổ hấp thụ UV-Vis Eu2O3 (a) Sm2O3 (b) đo nhiệt độ phòng 47 Hình Phổ hấp thụ UV-Vis TiO2 550oC pha tạp 1% mol Eu3+ (a), 1% mol Sm3+ (b) 48 viii Hình 3 Phổ hấp thụ UV-Vis TiO2 950oC pha tạp 1% mol Eu3+ (a),1% mol Sm3+ (b) 49 Hình Phổ phát quang TiO2: Eu (1% mol) theo nhiệt độ nung mẫu 50 Hình Phổ phát quang TiO2: Sm (1% mol) theo nhiệt độ nung mẫu 50 Hình Phổ phát quang TiO2 nano pha tạp Eu3+ theo nồng độ nung 450oC 52 Hình Phổ phát quang TiO2 nano pha tạp Sm3+ theo nồng độ nung 550oC 53 Hình Phổ kích thích xạ 615 nm TiO2 nano pha tạp 1% mol Eu3+ theo nhiệt độ nung mẫu 53 Hình Phổ kích thích xạ 613 nm TiO2 nano pha tạp 1% mol Sm3+ theo nhiệt độ nung mẫu 54 Hình 10 Các vị trí ion Eu3+ mạng tinh thể TiO2 nano [8] 56 Hình 11 Giản đồ nhiễu xạ tia X TiO2, TiO2: Eu3+ (1% mol) TiO2: Sm3+ (1% mol) đƣợc nung 550oC 57 3+ Hình 12 Phổ Raman TiO2 (a), TiO2: 1% mol Eu (b)và TiO2: 1% mol Sm3+ (c) đƣợc nung 550oC 58 Hình 13 Phổ hấp thụ TiO2: Eu3+ (1% mol, 550oC) (a), TiO2: Sm3+ (1% mol, 550oC) (b), TiO2: Eu3+ (1% mol, 950oC) (c), TiO2: Sm3+ (1% mol, 950oC) (d) 59 Hình 14 Ảnh TEM TiO2: Eu3+ (a), TiO2: Sm3+ (b) nung 500oC .60 Hình 3.15 Mơ hình cấu trúc mạng tinh thể TiO2 62 Hình 3.16 Cấu trúc vùng lƣợng hàm mật độ trạng thái TiO2 anatase 644 Hình 3.17 Cấu trúc vùng lƣợng hàm mật độ trạng thái TiO rutile 655 Hình 3.18 Cấu trúc vùng lƣợng hàm mật độ trạng thái TiO2 anatase pha tạp 1% mol Eu3+ 666 ix Hình 3.19 Cấu trúc vùng lƣợng hàm mật độ trạng thái TiO2 anatase pha tạp 1% mol Sm3+ Hình Giản đồ lƣợng ph Hình Sự hình thành gốc OH* O Hình Cơ chế phản ứng quang xúc tác Hình 4 Phổ hấp thụ MB (a) khả tự phân hủy MB sau chiếu xạ đèn Philip ML 160 30 phút (b) Hình Phổ hấp thụ khả phân hủy chất màu MB TiO2 nung 250oC kết hợp chiếu xạ Hình Phổ hấp thụ khả phân hủy chất màu MB TiO2 nung 350oC kết hợp chiếu xạ Hình 4.7 Phổ hấp thụ khả phân hủy chất màu MB TiO2 nung 450oC kết hợp chiếu xạ Hình 4.8 Phổ hấp thụ khả phân hủy chất màu MB TiO2 nung 550oC kết hợp chiếu xạ Hình 4.9 Phổ hấp thụ khả phân hủy chất màu MB TiO2 nung 750oC kết hợp chiếu xạ Hình 10 So sánh khả phân hủy chất màu MB TiO2 nung nhiệt độ khác từ 250oC đến 750oC Hình 11 Số phân tử MB bị phân hủy dƣới tác động TiO2 nano nung nhiệt độ khác Hình 12 Phổ hấp thụ khả phân hủy MB TiO2: Eu3+ (1% mol) nung 550oC Hình 13 Phổ hấp thụ khả phân hủy MB TiO2: Sm3+ (1% mol) nung 550oC Hình 14 Đồ thị so sánh khả phân hủy chất màu MB TiO2, TiO2: Eu3+ (1% mol) TiO2: Sm3+ (1% mol) x 91 41 Wan, Leng, Y X., Huang, N., Yang, P., Chen, J Y., Sun, H., Wang, J., G J., Tian, X B., Fu, R K Y., Wang, L P., and Chu, P K (2002), "Structure and properties of biomedical TiO2 films synthesized by dual plasma deposition", Surface and Coatings Technology 156(1), pp 295300 42 Li, Ying, Wang, Guofeng, Meng, Lingrong, Zhao, Yuzhen, Jiang, Baojiang, Liu, Shuai, Xu, Bingyu, Wang, Yuping, and Su, Jiamin (2014), "Photoluminescence and photocatalytic activity of flowerlike hierarchical TiO2:Sm3+ microspheres", Materials Research Bulletin 50, pp 203-208 43 Linggen Kong, Inna Karatchevtseva, Mark Blackford, Ilkay Chironi, and Gerry Triani (2012), "Synthesis and Characterization of Rutile Nanocrystals Prepared in Aqueous Media at Low Temperature", Journal of the American Ceramic Society 95 (2), pp 816-822 44 Liu, Wenwu, Zhang, Huanyu, Wang, Hui-gang, Zhang, Mei, and Guo, Min (2017), "Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells", Applied Surface Science 422, pp 304-315 45 Liu, Yongsheng, Luo, Wenqin, Zhu, Haomiao, and Chen, Xueyuan (2011), "Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals", Journal of Luminescence 131(3), pp 415-422 46 Loan, Trinh Thi, Huong, Vu Hoang, Tham, Vu Thi, and Long, Nguyen Ngoc (2018), "Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires", Physica B: Condensed Matter 532, pp 210-215 92 47 M Malekshahi Byranvand, A Nemati Kharat, L Fatholahi, Z Malekshahi Beiranvand (2013), "A Review on Synthesis of Nano-TiO2 via Different Methods", Journal of Nanostructures 3(1), pp 1-9 48 Mahsa, Pashazadeh, Elnaz, Irani, Mir Maqsood, Golzan, and Rasoul, Sadighi-Bonabi (2018), "Controlling the properties of TiO nanoparticles generated by nanosecond laser ablation in liquid solution", Laser Physics 28(8), p 085601 49 Ge Ming Luo, Kui Cheng, Wenjian Weng, Chenlu Song, Piyi Du, Shen, Gang Xu, Gaorong Han (2009), "Enhanced Luminescence of EuDoped TiO2 Nanodots", Nanoscale Res Lett 4, pp 809 - 813 50 Mizusawa, Kenji Sakurai and Mari (2010), "X-ray Diffraction Imaging of Anatase and Rutile", Analytical Chemistry 82, pp 3519– 3522 51 Mosaddeq-ur-Rahman, Md, Murali Krishna, K., Miki, Takeshi, Soga, Tetsuo, Igarashi, Kazuo, Tanemura, Sakae, and Umeno, Masayoshi (1997), "Investigation of solid state Pb doped TiO2 solar cell", Solar Energy Materials and Solar Cells 48(1), pp 123-130 52 Noor Mohammadi, Navid, Pajootan, Elmira, Bahrami, Hajir, and Arami, Mokhtar (2018), "Magnetization of TiO nanofibrous spheres by one-step ultrasonic-assisted electrochemical technique", Journal of Molecular Liquids 265, pp 251-259 53 Ohsaki, Hisashi, Tachibana, Yuko, Mitsui, Akira, Kamiyama, Toshihisa, and Hayashi, Yasuo (2001), "High rate deposition of TiO by DC sputtering of the TiO2−X target", Thin Solid Films 392(2), pp 169173 54 Ortega-Díaz, D., Fernández, D., Sepúlveda, S., Lindeke, R R., PérezBueno, J J., Peláez-Abellán, E., and Manríquez, J (2018), "Preparation of nanoparticulate TiO2 containing nanocrystalline phases of anatase 93 and brookite by electrochemical dissolution of remelted titanium components", Arabian Journal of Chemistry 55 Philip Colombo, D., Roussel, Kirsten A., Saeh, Jamal, Skinner, David E., Cavaleri, Joseph J., and Bowman, Robert M (1995), "Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters", Chemical Physics Letters 232(3), pp 207-214 56 Ramteke, D D., Ganvir, V Y., Munishwar, S R., and Gedam, R S (2015), "Concentration Effect of Sm 3+ Ions on Structural and Luminescence Properties of Lithium Borate Glasses", Physics Procedia 76, pp 25-30 57 Ranfang Zuo, Gaoxiang Du, Weiwei Zhang, Lianhua Liu, Yanming Liu, Lefu Mei, and Zhaohui Li (2014), "Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite", Advances in Materials Science and Engineering 2014, p 170148 58 Razavi, Faezeh-sadat, Shabani-Nooshabadi, Mehdi, and Behpour, Mohsen (2018), "Sol-gel synthesis, characterization and electrochemical corrosion behavior of S-N-C-doped TiO nano coating on copper", Journal of Molecular Liquids 266, pp 99-105 59 Russell, Joshua A (2011), Measurement of Optical Bandgap Energies of Semiconductors, Science in Physics, pp 1-73 60 S L N Zulmajdi, S N F H Ajak, J Hobley, N Duraman, M H Harunsani, H M Yasin, M Nur, A Usman (2017), "Kinetics of Photocatalytic Degradation of Methylene Blue in Aqueous Dispersions of TiO2 Nanoparticles under UV-LED Irradiation", American Journal of Nanomaterials (1), pp 1-6 61 Saif, Mona and Abdel-Mottaleb, M S A (2007), "Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: 94 Preparation, characterization and potential applications", Inorganica Chimica Acta 360(9), pp 2863-2874 62 Sakthivel, T., Kumar, K Ashok, Rajajeyaganthan, Ramanathan, Senthilselvan, J., and Jagannathan, K (2017), "Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications", Materials Research Express 4(12), p 126310 63 Sergio Valencia, Juan Miguel Marín and Gloria Restrepo (2010), "Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment", The Open Materials Science Journal 4, pp 9-14 64 Shang, Qingkun, Yu, Hui, Kong, Xianggui, Wang, Hongdan, Wang, Xin, Sun, Yajuan, Zhang, Youlin, and Zeng, Qinghui (2008), "Green and red up-conversion emissions of Er3+–Yb3+ Co-doped TiO2 nanocrystals prepared by sol–gel method", Journal of Luminescence 128(7), pp 1211-1216 65 Su, Zi Fei YinLong WuHua Gui YangYong Hua (2013), "Recent progress in biomedical applications of titanium dioxide", Physical Chemistry Chemical Physics 15 (14) 66 Tahereh Jafari, Ehsan Moharreri , Alireza Shirazi Amin, Ran Miao, Wenqiao Song and Steven L Suib (2016), "Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances", Molecules 21 (7), p 29 67 Tan, Zhenquan, Sato, Kazuyoshi, and Ohara, Satoshi (2015), "Synthesis of layered nanostructured TiO2 by hydrothermal method", Advanced Powder Technology 26(1), pp 296-302 68 Tofail, Karrina McNamara & Syed A M (2017), "Nanoparticles in biomedical applications", Advances in Physics (1), pp 54–88 95 69 Tsai, Shi-Jane and Cheng, Soofin (1997), "Effect of TiO crystalline structure in photocatalytic degradation of phenolic contaminants", Catalysis Today 33(1), pp 227-237 70 Th.Nando Singh, Th.Gomti Devi and Sh.Dorendrajit Singh (2016), "Photoluminescence study of TiO2:Eu3+ @ SiO2 core-shell and pre phases of TiO2 nanoparticles", International Journal of Luminescence and applications (3), pp 172‐182 71 Thoudam Nando Singhi, Thongam Gomti Devi and Shougaijam Dorendrajit Singh (2017), "Synthesis and photoluminescence study on europium ion activated titania nanoparticle", Advanced Materials Letters (4), pp 557-564 72 Vesna ĐorđevićBojana, Bojana Milićević and Miroslav D Dramicanin (2017), Rare Earth‐Doped Anatase TiO2 Nanoparticles, INTECH open science 73 Vranješ, M., Kuljanin-Jakovljević, J., Radetić, T., Stoiljković, M., Mitrić, M., Šaponjić, Z V., and Nedeljković, J (2012), "Structure and luminescence properties of Eu 3+ doped TiO2 nanocrystals and prolate nanospheroids synthesized by the hydrothermal processing", Ceramics International 38(7), pp 56295636 74 Wei, Xu, Cai, Huidong, Feng, Qingge, Liu, Zheng, Ma, Dachao, Chen, Kao, and Huang, Yan (2018), "Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination", Materials Letters 228, pp 379-383 75 Wenqin Luo, Renfu Li, Guokui Liu, Mark R Antonio, and Xueyuan Chen (2008), "Evidence of Trivalent Europium Incorporated in Anatase TiO2 Nanocrystals with Multiple Sites", J Phys Chem C 112 (28), pp 10370–10377 96 76 Wu, Xue-Wei, Wu, Da-Jian, and Liu, Xiao-Jun (2009), "Silver- Doping Induced Lattice Distortion in TiO2 Nanoparticles", Chinese Physics Letters 26(7), p 077809 77 Yan, Yige, Keller, Valérie, and Keller, Nicolas (2018), "On the role of BmimPF6 and P/F- containing additives in the sol-gel synthesis of TiO photocatalysts with enhanced activity in the gas phase degradation of methyl ethyl ketone", Applied Catalysis B: Environmental 234, pp 5669 78 Yaru, Ni, Chunhua, Lu, Yan, Zhang, Qitu, Zhang, and Zhongzi, Xu (2007), "Study on Optical Properties and Structure of Sm2O3 Doped Boron-Aluminosilicate Glass", Journal of Rare Earths 25, pp 94-98 79 Yeniyol S, He Z, Yüksel B, Boylan RJ, Urgen M, Ozdemir T, Ricci JL (2014), "Antibacterial Activity of As-Annealed TiO2 Nanotubes Doped with Ag Nanoparticles against Periodontal Pathogens", Bioinorganic Chemistry and Applications 2014, pp 829496-829503 80 Yilmaz, Mehmet, Cirak, Burcu Bozkurt, Aydogan, Sakir, Grilli, Maria Luisa, and Biber, Mehmet (2018), "Facile electrochemicalassisted synthesis of TiO2 nanotubes and their role in Schottky barrier diode applications", Superlattices and Microstructures 113, pp 310318 81 Yu, Hai Liu and Lixin (2013), "Preparation and Photoluminescence Properties of Europium Ions Doped TiO Nanocrystals", Journal of Nanoscience and Nanotechnology 13, pp 5119–5125 82 Zanatta, A R (2017), "A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2", American Institute of Physics 7, pp 075201-075207 83 Zhang, Jie, Wang, Xin, Zheng, Wei-Tao, Kong, Xiang-Gui, Sun, Ya-Juan, and Wang, Xin (2007), "Structure and luminescence properties of 97 TiO2:Er3+ nanocrystals annealed at different temperatures", Materials Letters 61(8), pp 1658-1661 84 Zhang, Jinju, Li, Lei, Li, Yanxiang, and Yang, Chuanfang (2017), "Microwave-assisted synthesis of hierarchical mesoporous nanoTiO2/cellulose composites for rapid adsorption of Pb2+", Chemical Engineering Journal 313, pp 1132-1141 85 (2018), Zhang, Jinju, Li, Lei, Li, Yanxiang, and Yang, Chuanfang "H2SO4 induced mesoporous TiO2 nano-photocatalyst synthesized free of template under microwave", Powder Technology 335, pp 54-61 86 Zheng, Wen, Zou, Hai-Feng, Lv, Shao-Wu, Lin, Yan-Hong, Wang, Min, Yan, Fei, Sheng, Ye, Song, Yan-Hua, Chen, Jie, and Zheng, KeYan (2017), "The effect of nano-TiO photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH", Journal of Photochemistry and Photobiology B: Biology 174, pp 251-260 87 Zou, Kaishun, Dong, Guangzong, Liu, Juncheng, Xu, Boxu, and Wang, Danping (2018), "Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2:Ho3+-Yb3+ nanocrystals", Journal of Materials Science & Technology 88 Zwijnenburg, Enrico Berardo and Martijn A (2015), "Modeling the Water Splitting Activity of a TiO2 Rutile Nanoparticle", Journal of Physical Chemistry C 119 (24), p 13384−13393 98 ... nano pha tạp ion đất Đối tƣợng nghiên cứu luận án hệ vật liệu TiO2 cấu trúc nano pha tạp ion đất Nội dung nghiên cứu bao gồm: Về nghiên cứu  Nghiên cứu, chế tạo vật liệu TiO2 nano pha tạp đất phƣơng... TẠP 30 2.2.1 Cấu trúc vi cấu trúc TiO2 nano .30 2.2.1.1 Vi cấu trúc TiO2 nano 30 2.2.1.2 Cấu trúc tinh thể TiO2 nano 33 2.2.2 Cấu trúc, vi cấu trúc TiO2 nano pha tạp RE3+ ... TỔNG QUAN VỀ VẬT LIỆU TiO2 CÓ CẤU TRÚC NANO 1.1.1 Giới thiệu TiO2 có cấu trúc nano 1.1.1.1 Các dạng cấu trúc số tính chất vật lý TiO2 1.1.1 1.1.1.3 Một vài ứng dụng TiO2 nano

Ngày đăng: 28/11/2019, 18:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w