các bài toán ptvt siêu hay .chúc các bạn xem vui vẻ .........................................................................................................................................................................................................................................................
TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Bài Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AD, BE, CF cắt H cắt đường tròn (O) M,N,P TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Chứng minh rằng: Tứ giác CEHD, nội tiếp Bốn điểm B,C,E,F nằm đường tròn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đường tròn nội tiếp tam giác DEF Lời giải: Xét tứ giác CEHD ta có: CEH = 900 (Vì BE đường cao) CDH = 900 (Vì AD đường cao) => CEH + CDH = 1800 TUYỂN TẬP 80 BÀI TỐN HÌNH HỌC LỚP Mà CEH CDH hai góc đối tứ giác CEHD Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEC = 900 CF đường cao => CF AB => BFC = 900 Như E F nhìn BC góc 900 => E F nằm đường tròn đường kính BC Vậy bốn điểm B,C,E,F nằm đường tròn Xét hai tam giác AEH ADC ta có: AEH = ADC = 900 ; A góc chung AE AH => AEH ADC => => AE.AC = AH.AD AD AC * Xét hai tam giác BEC ADC ta có: BEC = ADC = 900 ; C góc chung BE BC => BEC ADC => => AD.BC = BE.AC AD AC Ta có C1 = A1 (vì phụ với góc ABC) C2 = A1 (vì hai góc nội tiếp chắn cung BM) => C1 = C2 => CB tia phân giác góc HCM; lại có CB HM => CHM cân C => CB đương trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đường tròn => C1 = E1 (vì hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp C1 = E2 (vì hai góc nội tiếp chắn cung HD) E1 = E2 => EB tia phân giác góc FED Chứng minh tương tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đường tròn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đường cao AD, BE, cắt H Gọi O tâm đường tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp Bốn điểm A, E, D, B nằm đường tròn Chứng minh ED = BC Chứng minh DE tiếp tuyến đường tròn (O) Tính độ dài DE biết DH = Cm, AH = Cm Lời giải: Xét tứ giác CEHD ta có: CEH = 900 (Vì BE đường cao) CDH = 900 (Vì AD đường cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEA = 900 AD đường cao => AD BC => BDA = 900 Như E D nhìn AB góc 900 => E D nằm đường tròn đường kính AB Vậy bốn điểm A, E, D, B nằm đường tròn Theo giả thiết tam giác ABC cân A có AD đường cao nên đường trung tuyến => D trung điểm BC Theo ta có BEC = 900 Vậy tam giác BEC vng E có ED trung tuyến => DE = BC Vì O tâm đường tròn ngoại tiếp tam giác AHE nên O trung điểm AH => OA = OE => tam giác AOE cân O => E1 = A1 (1) Theo DE = BC => tam giác DBE cân D => E3 = B1 (2) Mà B1 = A1 ( phụ với góc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mà E1 + E2 = BEA = 900 => E2 + E3 = 900 = OED => DE OE E Vậy DE tiếp tuyến đường tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm Áp dụng định lí Pitago cho tam giác OED vng E ta có ED2 = OD2 – OE2 ED2 = 52 – 32 ED = 4cm Bài 3: Cho nửa đường tròn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By C D Các đường thẳng AD BC cắt N 1.Chứng minh AC + BD = CD Lời giải: 2.Chứng minh COD = 90 AB 3.Chứng minh AC BD = 4.Chứng minh OC // BM 5.Chứng minh AB tiếp tuyến đường tròn đường kính CD 5.Chứng minh MN AB 6.Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ 1.Theo tính chất hai tiếp tuyến cắt ta có: CA = CM; DB = DM => AC + BD = CM + DM Mà CM + DM = CD => AC + BD = CD 2.Theo tính chất hai tiếp tuyến cắt ta có: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà AOM BOM hai góc kề bù => COD = 900 3.Theo COD = 900 nên tam giác COD vng O có OM CD ( OM tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OM2 = CM DM, AB Mà OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = 4 Theo COD = 900 nên OC OD (1) Theo tính chất hai tiếp tuyến cắt ta có: DB = DM; lại có OM = OB =R => OD trung trực BM => BM OD (2) Từ (1) Và (2) => OC // BM ( Vì vng góc với OD) 5.Gọi I trung điểm CD ta có I tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO bán kính Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đường trung bình hình thang ACDB � IO // AC , mà AC AB => IO AB O => AB tiếp tuyến O đường tròn đường kính CD CN AC CN CM Theo AC // BD => , mà CA = CM; DB = DM nên suy BN BD BN DM => MN // BD mà BD AB => MN AB ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vng góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đường tròn nội tiếp, K tâm đường tròn bàng tiếp góc A , O trung điểm IK Chứng minh B, C, I, K nằm đường tròn Chứng minh AC tiếp tuyến đường tròn (O) Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Lời giải: (HD) Vì I tâm đường tròn nội tiếp, K tâm đường tròn bàng tiếp góc A nên BI BK hai tia phân giác hai góc kề bù đỉnh B Do BI BK hayIBK = 900 Tương tự ta có ICK = 900 B C nằm đường tròn đường kính IK B, C, I, K nằm đường tròn Ta có C1 = C2 (1) ( CI phân giác góc ACH C2 + I1 = 900 (2) ( IHC = 900 ) hoctoancapba.com I1 = ICO (3) ( tam giác OIC cân O) Từ (1), (2) , (3) => C1 + ICO = 900 hay AC OC Vậy AC tiếp tuyến đường tròn (O) Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm AH2 = AC2 – HC2 => AH = 20 12 = 16 ( cm) CH 12 = (cm) AH 16 OH HC 12 225 = 15 (cm) CH2 = AH.OH => OH = OC = Bài 5: Cho đường tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đường thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC MB, BD MA, gọi H giao điểm AC BD, I giao điểm OM AB Chứng minh tứ giác AMBO nội tiếp Chứng minh năm điểm O, K, A, M, B nằm đường tròn Chứng minh OI.OM = R2; OI IM = IA2 Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đường thẳng d Lời giải: (HS tự làm) Vì K trung điểm NP nên OK NP ( quan hệ đường kính Và dây cung) => OKM = 900 Theo tính chất tiếp tuyến ta có OAM = 900; OBM = 900 K, A, B nhìn OM góc 900 nên nằm đường tròn đường kính OM Vậy năm điểm O, K, A, M, B nằm đường tròn Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM AB I Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vng A có AI đường cao Áp dụng hệ thức cạnh đường cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA2 Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH => Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH AB; theo OM AB => O, H, M thẳng hàng( Vì qua O có đường thẳng vng góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động ln cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đường thẳng d nửa đường tròn tâm A bán kính AH = R Bài hoctoancapba.com Cho tam giác ABC vuông A, đường cao AH Vẽ đường tròn tâm A bán kính AH Gọi HD đường kính đường tròn (A; AH) Tiếp tuyến đường tròn D cắt CA E 1.Chứng minh tam giác BEC cân Gọi I hình chiếu A BE, Chứng minh AI = AH 3.Chứng minh BE tiếp tuyến đường tròn (A; AH) 4.Chứng minh BE = BH + DE Lời giải: (HD) AHC = ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB CE (gt), AB vừa đường cao vừa đường trung tuyến BEC => BEC tam giác cân => B1 = B2 Hai tam giác vng ABI ABH có cạnh huyền AB chung, B1 = B2 => AHB = AIB => AI = AH AI = AH BE AI I => BE tiếp tuyến (A; AH) I DE = IE BI = BH => BE = BI+IE = BH + ED Bài Cho đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M Từ (1) (2) => é ABM = é Chứng minh tứ giác APMO nội tiếp AOP (3) đường tròn Chứng minh BM // OP Đường thẳng vng góc với AB O cắt tia BM N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: (HS tự làm) 2.Ta có é ABM nội tiếp chắn cung AM; é AOM góc tâm �AOM chắn cung AM => é ABM = (1) OP tia phân giác é AOM ( �AOM t/c hai tiếp tuyến cắt ) => é AOP = (2) Mà ABM AOP hai góc đồng vị nên suy BM // OP (4) 3.Xét hai tam giác AOP OBN ta có : PAO=900 (vì PA tiếp tuyến ); NOB = 900 (gt NOAB) => PAO = NOB = 900; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta có PM OJ ( PM tiếp tuyến ), mà ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO (t/c đường chéo hình chữ nhật) (6) AONP hình chữ nhật => éAPO = é NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt Ta có PO tia phân giác APM => APO = MPO (8) Từ (7) (8) => IPO cân I có IK trung tuyến đông thời đường cao => IK PO (9) Từ (6) (9) => I, J, K thẳng hàng Bài Cho nửa đường tròn tâm O đường kính AB điểm M nửa đường tròn (M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đường tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K 1) Chứng minh rằng: EFMK tứ giác nội tiếp 2) Chứng minh rằng: AI2 = IM IB 3) Chứng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi 5) Xác định vị trí M để tứ giác AKFI nội tiếp đường tròn Lời giải: Ta có : AMB = 900 (nội tiếp chắn nửa đường tròn) => KMF = 900 (vì hai góc kề bù) AEB = 900 (nội tiếp chắn nửa đường tròn) => KEF = 900 (vì hai góc kề bù) => KMF + KEF = 1800 Mà KMF KEF hai góc đối tứ giác EFMK EFMK tứ giác nội tiếp Ta có IAB = 900 (vì AI tiếp tuyến) => AIB vng A có AM IB ( theo trên) Áp dụng hệ thức cạnh đường cao => AI2 = IM IB Theo giả thiết AE tia phân giác góc IAM => IAE = MAE => AE = ME (lí ……) => ABE =MBE ( hai góc nội tiếp chắn hai cung nhau) => BE tia phân giác góc ABF (1) Theo ta có éAEB = 900 => BE AF hay BE đường cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B BAF tam giác cân B có BE đường cao nên đồng thời đương trung tuyến => E trung điểm AF (3) Từ BE AF => AF HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác éHAK (5) Từ (4) (5) => HAK tam giác cân A có AE đường cao nên đồng thời đương trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đường chéo vng góc với trung điểm đường) (HD) Theo AKFH hình thoi => HA // FK hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đường tròn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ABM = MAI = 450 (t/c góc nội tiếp ) (7) Tam giác ABI vng A có ABI = 450 => éAIB = 450 (8) Từ (7) (8) => IAK = AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đường tròn Bài Cho nửa đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đường tròn Các tia AC AD cắt Bx E, F (F B E) Chứng minh AC AE không đổi Chứng minh ABD = DFB Chứng minh CEFD tứ giác nội tiếp 1.C thuộc nửa đường tròn nên ACB = 900 (nội tiếp chắn nửa đường tròn) => BC AE ABE = 900 (Bx tiếp tuyến) Lời giải: => tam giác ABE vng B có BC đường cao => AC AE = AB2 (hệ thức cạnh đường cao), mà AB đường kính nên AB = 2R khơng đổi AC AE khơng đổi 2. ADB có ADB = 900 (nội tiếp chắn nửa đường tròn) => ABD + BAD = 900 (vì tổng ba góc tam giác 1800) (1) ABF có ABF = 900 ( BF tiếp tuyến ) => AFB + BAF = 900 (vì tổng ba góc tam giác 1800) (2) Từ (1) (2) => ABD = DFB ( phụ với BAD) 3.Tứ giác ACDB nội tiếp (O) => ABD + ACD = 1800 ECD + ACD = 1800 (Vì hai góc kề bù) => ECD = ABD ( bù với ACD) Theo ABD = DFB => ECD = DFB Mà EFD + DFB = 1800 (Vì hai góc kề bù) nên suy ECD + EFD = 1800, mặt khác ECD EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Bài 10 Cho đường tròn tâm O đường kính AB điểm M nửa đường tròn cho AM < MB Gọi M’ điểm đối xứng M qua AB S giao điểm hai tia BM, M’A Gọi P chân đường Bài 38 Cho hai đường tròn (O) ; (O’) tiếp xúc A, BC tiếp tuyến chung ngoài, B(O), C (O’) Tiếp tuyến chung A cắ tiếp tuyến chung BC M Gọi E giao điểm OM AB, F giao điểm O’M AC Chứng minh : Chứng minh tứ giác OBMA, AMCO’ nội tiếp Tứ giác AEMF hình chữ nhật ME.MO = MF.MO’ OO’ tiếp tuyến đường tròn đường kính BC BC tiếp tuyến đường tròn đường kính OO’ Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có MA = MB =>MAB cân M Lại có ME tia phân giác => ME AB (1) Chứng minh tương tự ta có MF AC (2) Theo tính chất hai tiếp tuyến cắt ta có MO MO’ tia phân giác hai góc kề bù BMA CMA => MO MO’ (3) Từ (1), (2) (3) suy tứ giác MEAF hình chữ nhật Theo giả thiết AM tiếp tuyến chung hai đường tròn => MA OO’=> MAO vng A có AE MO ( theo ME AB) MA2 = ME MO (4) Tương tự ta có tam giác vng MAO’ có AFMO’ MA2 = MF.MO’ (5) Từ (4) (5) ME.MO = MF MO’ Đường tròn đường kính BC có tâm M theo MB = MC = MA, đường tròn qua Avà co MA bán kính Theo OO’ MA A OO’ tiếp tuyến A đường tròn đường kính BC (HD) Gọi I trung điểm OO’ ta có IM đường trung bình hình thang BCO’O => IMBC M (*) Ta cung chứng minh OMO’ vuông nên M thuộc đường tròn đường kính OO’ => IM bán kính đường tròn đường kính OO’ (**) Từ (*) (**) => BC tiếp tuyến đường tròn đường kính OO’ Bài 39 Cho đường tròn (O) đường kính BC, dấy AD vng góc với BC H Gọi E, F theo thứ tự chân đường vng góc kẻ từ H đến AB, AC Gọi ( I ), (K) theo thứ tự đường tròn ngoại tiếp tam giác HBE, HCF Hãy xác định vị trí tương đối đường tròn (I) (O); (K) (O); (I) (K) Tứ giác AEHF hình gì? Vì sao? => éAFH = 900 (vì hai góc kề bù) Chứng minh AE AB = AF AC Chứng minh EF tiếp tuyến chung hai đường tròn (I) (K) Xác định vị trí H để EF có độ dài lớn Lời giải: 1.(HD) OI = OB – IB => (I) tiếp xúc (O) OK = OC – KC => (K) tiếp xúc (O) IK = IH + KH => (I) tiếp xúc (K) Ta có : éBEH = 900 ( nội tiếp chắn nửa đường tròn ) => éAEH = 900 (vì hai góc kề bù) (1) éCFH = 900 ( nội tiếp chắn nửa đường tròn ) éBAC = 900 ( nội tiếp chắn nửa đường tròn hay éEAF = 900 (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Theo giả thiết ADBC H nên AHB vng H có HE AB ( éBEH = 900 ) => AH2 = AE.AB (*) Tam giác AHC vng H có HF AC (theo éCFH = 900 ) => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC ( = AH2) Theo chứng minh tứ giác AFHE hình chữ nhật, gọi G giao điểm hai đường chéo AH EF ta có GF = GH (tính chất đường chéo hình chữ nhật) => GFH cân G => éF1 = éH1 KFH cân K (vì có KF KH bán kính) => éF2 = éH2 => éF1 + éF2 = éH1 + éH2 mà éH1 + éH2 = éAHC = 900 => éF1 + éF2 = éKFE = 900 => KF EF Chứng minh tương tự ta có IE EF Vậy EF tiếp tuyến chung hai đường tròn (I) (K) e) Theo chứng minh tứ giác AFHE hình chữ nhật => EF = AH OA (OA bán kính đường tròn (O) có độ dài khơng đổi) nên EF = OA AH = OA H trùng với O Vậy H trùng với O túc dây AD vng góc với BC O EF có độ dài lớn Bài 40 Cho nửa đường tròn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Trên Ax lấy điểm M kẻ tiếp tuyến MP cắt By N 1.Chứng minh tam giác MON đồng dạng với tam giác APB 2.Chứng minh AM BN = R2 S MON R 3.Tính tỉ số AM = S APB 4.Tính thể tích hình nửa hình tròn APB quay quanh cạnh AB sinh Lời giải: Theo tính chất hai tiếp tuyến cắt ta có: OM tia phân giác góc AOP ; ON tia phân giác góc BOP, mà AOP BOP hai góc kề bù => MON = 900 hay tam giác MON vuông O APB = 900((nội tiếp chắn nửa đường tròn) hay tam giác APB vng P Theo tính chất tiếp tuyến ta có NB OB => OBN = 900; NP OP => OPN = 900 =>OBN+OPN =1800 mà OBN OPN hai góc đối => tứ giác OBNP nội tiếp =>OBP = PNO Xét hai tam giác vuông APB MON có APB = MON = 900; OBP = PNO => APB MON Theo MON vng O có OP MN ( OP tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OP2 = PM PM Mà OP = R; AM = PM; BN = NP (tính chất hai tiếp tuyến cắt ) => AM BN = R2 R R R Theo OP2 = PM PM hay PM PM = R2 mà PM = AM = => PM = => PN = R2: = 2R 2 R 5R MN 5R => MN = MP + NP = + 2R = Theo APB MON => = : 2R = = k (k tỉ số 2 AB đồng dạng).Vì tỉ số diện tich hai tam giác đồng dạng bình phương tỉ số đồng dạng nên ta có: S MON S MON �5 � 25 = k => = � � S APB S APB �4 � 16 Bài 41 Cho tam giác ABC , O trung điển BC Trên cạnh AB, AC lấy điểm D, E cho DOE = 600 1)Chứng minh tích BD CE khơng đổi 2)Chứng minh hai tam giác BOD; OED đồng dạng Từ suy tia DO tia phân giác góc BDE 3)Vẽ đường tròn tâm O tiếp xúc với AB Chứng minh đường tròn ln tiếp xúc với DE Lời giải: Tam giác ABC => ABC = ACB = 600 (1); DOE = 600 (gt) =>DOB + EOC = 1200 (2) DBO có DOB = 600 => BDO + BOD = 1200 (3) Từ (2) (3) => BDO = COE (4) BD BO Từ (2) (4) => BOD CEO => => BD.CE = CO CE BO.CO mà OB = OC = R không đổi => BD.CE = R2 không đổi BD OD BD OD BD BO Theo BOD CEO => mà CO = BO => (5) CO OE BO OE OD OE Lại có DBO = DOE = 600 (6) Từ (5) (6) => DBO DOE => BDO = ODE => DO tia phân giác BDE Theo DO tia phân giác BDE => O cách DB DE => O tâm đường tròn tiếp xúc với DB DE Vậy đường tròn tâm O tiếp xúc với AB ln tiếp xúc với DE Bài 42 Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên, nội tiếp đường tròn (O) Tiếp tuyến B C cắt AC, AB D E Chứng minh : BD2 = AD.CD Tứ giác BCDE nội tiếp BC song song với DE Lời giải: Xét hai tam giác BCD ABD ta có CBD = BAD ( Vì góc nội tiếp góc tiếp tuyến với dây chắn cung), BD CD lại có D chung => BCD ABD => => BD2 = AD BD AD.CD Theo giả thiết tam giác ABC cân A => ABC = ACB => EBC = DCB mà CBD = BCD (góc tiếp tuyến với dây chắn cung) => EBD = DCE => B C nhìn DE góc B C nằm cung tròn dựng DE => Tứ giác BCDE nội tiếp Tứ giác BCDE nội tiếp => BCE = BDE ( nội tiếp chắn cung BE) mà BCE = CBD (theo ) => CBD = BDE mà hai góc so le nên suy BC // DE Bài 43 Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn Vẽ điểm N đối xứng với A qua M, BN cắt (O) C Gọi E giao điểm AC BM N Chứng minh tứ giác MNCE nội tiếp Chứng minh NE AB _ F Gọi F điểm đối xứng với E qua M Chứng minh FA tiếp tuyến / M (O) C / _ Chứng minh FN tiếp tuyến đường tròn (B; BA) E Lời giải: (HS tự làm) B A O H (HD) Dễ thấy E trực tâm tam giác NAB => NE AB 3.Theo giả thiết A N đối xứng qua M nên M trung điểm AN; F E xứng qua M nên M trung điểm EF => AENF hình bình hành => FA // NE mà NE AB => FA AB A => FA tiếp tuyến (O) A Theo tứ giác AENF hình bình hành => FN // AE hay FN // AC mà AC BN => FN BN N BAN có BM đường cao đồng thời đường trung tuyến ( M trung điểm AN) nên BAN cân B => BA = BN => BN bán kính đường tròn (B; BA) => FN tiếp tuyến N (B; BA) Bài 44 AB AC hai tiếp tuyến đường tròn tâm O bán kính R ( B, C tiếp điểm ) Vẽ CH vng góc AB H, cắt (O) E cắt OA D Chứng minh CO = CD Lời giải: Chứng minh tứ giác OBCD hình thoi Theo giả thiết AB AC hai tiếp Gọi M trung điểm CE, Bm cắt OH I Chứng minh tuyến đường tròn tâm O => OA I trung điểm OH tia phân giác BOC => BOA = Tiếp tuyến E với (O) cắt AC K Chứng minh ba điểm COA (1) O, M, K thẳng hàng B H I E O D A M K C OB AB ( AB tiếp tuyến ); CH AB (gt) => OB // CH => BOA = CDO (2) Từ (1) (2) => COD cân C => CO = CD.(3) theo ta có CO = CD mà CO = BO (= R) => CD = BO (4) lại có OB // CH hay OB // CD (5) Từ (4) (5) => BOCD hình bình hành (6) Từ (6) (3) => BOCD hình thoi M trung điểm CE => OM CE ( quan hệ đường kính dây cung) => OMH = 900 theo ta có OBH =900; BHM =900 => tứ giác OBHM hình chữ nhật => I trung điểm OH M trung điểm CE; KE KC hai tiếp tuyến => O, M, K thẳng hàng Bài 45 Cho tam giác cân ABC ( AB = AC) nội tiếp đường tròn (O) Gọi D trung điểm AC; tiếp tuyến đường tròn (O) A cắt tia BD E Tia CE cắt (O) F 1.Chứng minh BC // AE 2.Chứng minh ABCE hình bình hành 3.Gọi I trung điểm CF G giao điểm BC OI So sánh BAC BGO Lời giải: (HS tự làm) 2).Xét hai tam giác ADE CDB ta có EAD = BCD (vì so le ) AD = CD (gt); ADE = CDB (đối đỉnh) => ADE = CDB => AE = CB (1) Theo AE // CB (2) Từ (1) (2) => AECB hình bình hành 3) I trung điểm CF => OI CF (quan hệ đường kính dây cung) Theo AECB hình bình hành => AB // EC => OI AB K, => BKG vng K Ta cung có BHA vuông H => BGK = BAH ( cung phụ với ABH) mà BAH = BAC (do ABC cân nên AH phân giác) => BAC = 2BGO Bài 46: Cho đường tròn (O) điểm P ngồi đường tròn Kẻ hai tiếp tuyến PA, PB (A; B tiếp điểm) Từ A vẽ tia song song với PB cắt (O) C (C �A) Đoạn PC cắt đường tròn điểm thứ hai D Tia AD cắt PB E a Chứng minh ∆EAB ~ ∆EBD B b Chứng minh AE trung tuyến ∆PAB � HD: a) ∆EAB ~ ∆EBD (g.g) vì: BEA chung E � = EBD � (góc nội tiếp góc tạo tia tiếp tuyến…) EAB O P EB ED D � EB = EA.ED (1) � C EA EB � � (góc nội tiếp góc tạo tia tiếp tuyến…) � = PCA � = PCA * EPD (s.l.t) ; EAP A � = EAP � ; PEA � chung � ∆EPD ~ ∆EAP (g.g) � EPD EP ED � EP2 = EA.ED (2)Từ & � EB2 = EP2 � EB = EP � AE trung tuyến ∆ PAB � EA EP Bài 47: Cho ∆ABC vuông A Lấy cạnh AC điểm D Dựng CE vng góc BD a Chứng minh ∆ABD ~ ∆ECD b Chứng minh tứ giác ABCE tứ giác nội tiếp c Chứng minh FD vng góc BC, F giao điểm BA CE � d Cho ABC = 600; BC = 2a; AD = a Tính AC; đường cao AH ∆ABC bán kính đường tròn C ngoại tiếp tứ giác ADEF HD: a) ∆ABD ~ ∆ECD (g.g) E b) tứ giác ABCE tứ giác nội tiếp (Quĩ tích cung chứa góc 900) K c) Chứng minh D trực tâm ∆ CBF D 2a � d) AC = BC.sin ABC = 2a.sin60 = 2a =a H a 60 � AB = BC.cos ABC = 2a.cos60 = 2a =a A B F � � � AH = AB.sin ABC = a.sin600 = a ; ∆ FKB vng K , có ABC = 600 � BFK = 300 � � AD = FD.sin30 � AD = FD.sin BFK � a = FD.0,5 � FD = a : 0,5 = 2a � Bài 48: Cho ∆ABC vuông ( ABC = 900; BC > BA) nội tiếp đường tròn đưòng kính AC Kẻ dây cung BD vng góc AC H giao điểm AC BD Trên HC lấy điểm E cho E đối xứng với A qua H Đường tròn đường kính EC cắt BC I (I �C) B CI CE a Chứng minh CB CA I b Chứng minh D; E; I thẳng hàng c Chứng minh HI tiếp tuyến đường tròn đường kính EC H HD; a) AB // EI (cùng BC) A C O E O’ CI CE (đ/lí Ta-lét) CB CA b) chứng minh ABED hình thoi � DE // AB mà EI //AB � D, E, I nằm đường thẳng qua E // AB � D, E, I thẳng hàng D � � c) EIO' = IEO' ( ∆ EO’I cân ; O’I = O’E = R(O’)) � = HED � � = HDI � (đ/đ) ; ∆BID vuông ; IH trung tuyến � ∆HID cân � HIE IEO' � + HED � Mà HDI = 900 � đpcm � Bài 49: Cho đường tròn (O; R) đường thẳng (d) cố định không cắt (O; R) Hạ OH (d) (H �d) M điểm thay đổi (d) (M �H) Từ M kẻ tiếp tuyến MP MQ (P, Q tiếp điểm) với (O; R) Dây cung PQ cắt OH I; cắt OM K a Chứng minh điểm O, Q, H, M, P nằm đường tròn b Chứng minh IH.IO = IQ.IP P � c Giả sử PMQ = 60 Tính tỉ số diện tích tam giác: ∆MPQvà ∆OPQ HD: a) điểm O, Q, H, M, P nằm đường tròn K O M (Dựa vào quĩ tích cung chứa góc 900) I IO IQ � IH.IO = IQ.IP b) ∆ OIP ~ ∆ QIH (g.g) � IP IH Q PQ PQ � c) ∆v MKQ có : MK = KQ.tg MQK = KQ.tg60 = 3 H 2 PQ PQ � ∆v OKQ có: OK = KQ.tg OQK = KQ.tg300 = KQ 3 SMPQ PQ PQ � = : =3 SOPQ Bài 50: Cho nửa đường tròn (O), đường kính AB=2R Trên tia đối tia AB lấy điểm E (E �A) Từ E, A, B kẻ tiếp tuyến với nửa đường tròn Tiếp tuyến kẻ từ E cắt hai tiếp tuyến kẻ từ A B theo thứ tự C D a Gọi M tiếp điểm tiếp tuyến kẻ từ E tới nửa đường tròn Chứng minh tứ giác ACMO nội tiếp đường tròn DM CM b Chứng minh ∆EAC ~ ∆EBD, từ suy D DE CE c Gọi N giao điểm AD BC Chứng minh MN // BD M d Chứng minh: EA2 = EC.EM – EA.AO � e Đặt AOC = α Tính theo R α đoạn AC BD C N Chứng tỏ tích AC.BD phụ thuộc giá trị R, không phụ thuộc vào α HD:a) ACMO nội tiếp (Dựa vào quĩ tích cung chứa góc 90 ) B O A E b) AC // BD (cùng EB) � ∆EAC ~ ∆EBD CE AC CE CM DM CM � (1)mà AC = CM ; BD = MD (T/c hai tiếp tuyến cắt nhau) � (2) � DE BD DE DM DE CE NC AC NC CM � MN // BD c) AC // BD (cmt) � ∆NAC ~ ∆NBD � (3) Từ 1; 2; � NB BD NB DM d) � O1 = � O2 ; � O3 = � O mà � O1 + � O2 + � O3 + � O = 1800 � � O2 + � O3 = 900 ; � O4 + � D1 = 900 (…) OB R R �� = ; Lại có: AC = OA.tgα = R.tgα � AC.DB = R.tgα D1 = � O2 = � O1 = α Vậy: DB = tg tg tg � AC.DB = R (Đpcm) Bài 51: Cho ∆ABC có góc nhọn Gọi H giao điểm đường cao AA1; BB1; CC1 a Chứng minh tứ giác HA1BC1 nội tiếp đường tròn Xác định tâm I đường tròn b Chứng minh A1A phân giác � B1A1C1 A c Gọi J trung điểm AC Chứng minh IJ trung trực A1C1 MH d Trên đoạn HC lấy điểm M cho MC B1 So sánh diện tích tam giác: ∆HAC ∆HJM C HD: a) HA1BC1 nội tiếp (quĩ tích cung chứa góc 90 ) J H Tâm I trung điểm BH b) C/m: � HA1C1 = � HBC1 ; � HA1B1 = � HCB1 ; M K � � � � � � I đpcm HBC = HCB HA C = HA B 1 1 1 12 c) IA1 = IC1= R(I) ; JA = JA1= AC/2 … C A1 � ỊJ trung trực A1C1 B 1 d) S HJM = HM.JK ; SHAC = HC.AC1 2 HC.AC1 MH HC HM+MC MC AC1 � SHAC : S HJM = � 1 1 ; (JK// AC1 mà HM.JK MC HM HM HM JK � SHAC : S HJM = Bài 52: Cho điểm C cố định đường thẳng xy Dựng nửa đường thẳng Cz vng góc với xy lấy điểm cố định A, B (A C B) M điểm di động xy Đường vng góc với AM A với BM B cắt P a Chứng minh tứ giác MABP nội tiếp tâm O đường tròn nằm đường thẳng cố định qua điểm L AB b Kẻ PI Cz Chứng minh I điểm cố định c BM AP cắt H; BP AM cắt K Chứng minh KH PM d Cho N trung điểm KH Chứng minh điểm N; L; O thẳng hàng z HD: a) MABP nội tiếp đ/tròn đ/k MP.(quĩ tích cung chứa góc 900…) P I OA = OB = R(O) � O thuộc đường trung trực AB qua L trung điểm AB… B b) IP // CM ( Cz) � MPIC hình thang � IL = LC khơng đổi H A,B,C cố định � I cố định O N c) PA KM ; PK MB � H trực tâm ∆ PKM L � KH PM K d) AHBK nội tiếp đ/tròn đ/k KH (quĩ tích cung chứa góc…) � N tâm đ/tròn ngoại tiếp … � NE = NA = R(N) A � N thuộc đường trung trực AB � O,L,N thẳng hàng x M y C Bài 53: Cho nửa đường tròn (O) đường kính AB K điểm cung AB Trên cung AB lấy điểm M (khác K; B) Trên tia AM lấy điểm N cho AN = BM Kẻ dây BP song song với KM Gọi Q giao điểm đường thẳng AP, BM a So sánh hai tam giác: ∆AKN ∆BKM b Chứng minh: ∆KMN vuông cân c Tứ giác ANKP hình gì? Vì sao? HD: a) ∆ AKN = ∆ BKM(c.g.c) U b) HS tự c/m ∆ KMN vuông cân c) ∆ KMN vuông � KN KM mà KM // BP � KN BP P � = 900 (góc nội tiếp…) � AP BP APB � KN // AP ( BP) � � 450 KM // BP � KMN PAT � // N � PKU � PKM 450 Mà PAM A 0 � 45 ; KNM � PKN 45 � PK // AN Vậy ANPK hình bình hành K M T O = B Bài 54: Cho đường tròn tâm O, bán kính R, có hai đường kính AB, CD vng góc với M điểm tuỳ ý thuộc cung nhỏ AC Nối MB, cắt CD N a Chứng minh: tia MD phân giác góc AMB b Chứng minh:∆BOM ~ ∆BNA Chứng minh: BM.BN không đổi c Chứng minh: tứ giác ONMA nội tiếp Gọi I tâm đường tròn ngoại tiếp tứ giác ONMA, I di động nào? C � � HD: a) AMD (chắn cung ¼ đ/tròn) DMB 45 � � MD tia phân giác AMB M F b) ∆ OMB cân OM = OB = R(O) N I ∆ NAB cân có NO vừa đ/cao vừa đường trung tuyến B � ∆ OMB ~ ∆ NAB A E O BM BO � � BM.BN = BO.BA = 2R không đổi BA BN c) ONMA nội tiếp đ/tròn đ/k AN Gọi I tâm đ/tròn ngoại tiếp � I cách A O cố định � I thuộc đường trung trực OA Gọi E F trung điểm AO; AC D Vì M chạy cung nhỏ AC nên tập hợp I đoạn EF Bài 55: Cho ∆ABC cân (AB = AC) nội tiếp đường tròn (O) Gọi D trung điểm AC; tia BD cắt tiếp tuyến A với đường tròn (O) điểm E; EC cắt (O) F a Chứng minh: BC song song với tiếp tuyến đường tròn (O) A b Tứ giác ABCE hình gì? Tại sao? � với BAC � c Gọi I trung điểm CF G giao điểm tia BC; OI So sánh BGO A E � d Cho biết DF // BC Tính cos ABC HD:a) Gọi H trung điểm BC � AH BC (∆ ABC cân A) lập luận AH AE � BC // AE (1) D M b) ∆ ADE = ∆ CDB (g.c.g) � AE = BC (2) N F Từ � ABCE hình bình hành O _ I c) Theo c.m.t � AB // CF � GO AB _ � � � � = BAC � BGO = 900 – ABC = BAH H C d) Tia FD cắt AB taijM, cắt (O) N.; DF // BC AH trục B đối xứng cuarBC đ/tròn (O) nên F, D thứ tự đối xứng với N, M qua AH 1 � FD = MN = MD = BC = ND = BH ; ∆ NDA ~ ∆ CDF (g.g) � DF.DN = DA.DC 2 BH � � 2BH2 = AC2 � BH = AC � cos ABC = = AB 4 G Bài 56: Cho đường tròn (O) (O’) cắt hai điểm A B Các đường thẳng AO; AO’ cắt đường tròn (O) điểm C; D cắt (O’) E; F E a Chứng minh: C; B; F thẳng hàng b Chứng minh: Tứ giác CDEF nội tiếp D c Chứng minh: A tâm đường tròn nội tiếp ∆BDE A d Tìm điều kiện để DE tiếp tuyến chung (O) (O’) � � (góc nội tiếp chắn nửa đ/tròn) O’ HD: a) CBA = 900 = FBA O � � = 180 � C, B, F thẳng hàng � CBA + FBA � = 900 = CEF � � CDEF nội tiếp (quĩ tích …) F b) CDF C B � (cùng chắn cung EF) � c) CDEF nội tiếp � ADE = ECB � (cùng chắn cung AB) � Xét (O) có: ADB = ECB = ADB Tương tự EA tia phân giác DEB � � � DA tia phân giác BDE � � � ADE Vậy A tâm đường tròn nội tiếp ∆BDE � � � � � � d) ODEO’ nội tiếp Thực : DOA = DCA ; EO'A = EFA mà DCA = EFA (góc nội tiếp chắn � � � � � � � ODEO’ nội tiếp cung DE) � DOA = EO'A ; mặt khác: DAO = EAO' (đ/đ) � ODO' = O'EO Nếu DE tiếp xúc với (O) (O’) ODEO’ hình chữ nhật � AO = AO’ = AB Đảo lại : AO = AO’ = AB kết luận DE tiếp tuyến chung (O) (O’) Kết luận : Điều kiện để DE tiếp tuyến chung (O) (O’) : AO = AO’ = AB Bài 57: Cho đường tròn (O; R) có đường kính cố định AB CD a) Chứng minh: ACBD hình vng b) Lấy điểm E di chuyển cung nhỏ BC (E �B; E �C) Trên tia đối tia EA lấy đoạn EM = EB � ED // MB Chứng tỏ: ED tia phân giác AEB c) Suy CE đường trung trực BM M di chuyển đường tròn mà ta phải xác định tâm bán kính theo R HD: a) AB CD ; OA = OB = OC = OD = R(O) C � ACBD hình vng E // M � � � � b) AED = = DOB = 450 AOD = 45 ; DEB = 2 � � � � AED � ED tia phân giác AEB = DEB B A O 0 � � = 45 ; EMB = 45 (∆ EMB vuông cân E) AED � � � AED = EMB (2 góc đồng vị) � ED // MB c) ∆ EMB vuông cân E CE DE ; ED // BM � CE BM � CE đường trung trực BM D d) Vì CE đường trung trực BM nên CM = CB = R Vậy M chạy đường tròn (C ; R’ = R ) Bài 58: Cho ∆ABC đều, đường cao AH Qua A vẽ đường thẳng phía ngồi tam giác, tạo với cạnh AC góc 400 Đường thẳng cắt cạnh BC kéo dài D Đường tròn tâm O đường kính CD cắt AD E Đường thẳng vng góc với CD O cắt AD M a Chứng minh: AHCE nội tiếp Xác định tâm I đường tròn b Chứng minh: CA = CM c Đường thẳng HE cắt đường tròn tâm O K, đường thẳng HI cắt đường tròn tâm I N cắt đường thẳng DK P Chứng minh: Tứ giác NPKE nội tiếp Bài 59: BC dây cung đường tròn (O; R) (BC �2R) Điểm A di động cung lớn BC cho O nằm ∆ABC Các đường cao AD; BE; CF đồng quy H a Chứng minh:∆AEF ~ ∆ABC b Gọi A’ trung điểm BC Chứng minh: AH = 2.A’O c Gọi A1 trung điểm EF Chứng minh: R.AA1 = AA’.OA’ d Chứng minh: R.(EF + FD + DE) = 2.SABC Suy vị trí điểm A để tổng (EF + FD + DE) đạt GTLN Bài 60: Cho đường tròn tâm (O; R) có AB đường kính cố định CD đường kính thay đổi Gọi (∆) tiếp tuyến với đường tròn B AD, AC cắt (∆) Q P a Chứng minh: Tứ giác CPQD nội tiếp b Chứng minh: Trung tuyến AI ∆AQP vng góc với DC c Tìm tập hợp tâm E đường tròn ngoại tiếp ∆CPD � < 900), cung tròn BC nằm bên ∆ABC tiếp xúc với AB, AC Bài 61: Cho ∆ABC cân (AB = AC; A B C Trên cung BC lấy điểm M hạ đường vng góc MI, MH, MK xuống cạnh tương ứng BC, CA, AB Gọi Q giao điểm MB, IK a Chứng minh: Các tứ giác BIMK, CIMH nội tiếp � b Chứng minh: tia đối tia MI phân giác HMK c Chứng minh: Tứ giác MPIQ nội tiếp � PQ // BC Bài 62: Cho nửa đường tròn (O), đường kính AB, C trung điểm cung AB; N trung điểm BC Đường thẳng AN cắt nửa đường tròn (O) M Hạ CI AM (I �AM) C a Chứng minh: Tứ giác CIOA nội tiếp đường tròn b Chứng minh: Tứ giác BMCI hình bình hành M = � CAI � c Chứng minh: MOI N d Chứng minh: MA = 3.MB I = 0 � � HD: a) COA 90 (…) ; CIA 90 (…) � Tứ giác CIOA nội tiếp (quĩ tích cung chứa góc 900) O B A b) MB // CI ( BM) (1) � NBM � (slt) ∆ CIN = ∆ BMN (g.c.g) � N1 � N (đ/đ) ; NC = NB ; NCI � CI = BM (2) Từ � BMCI hình bình hành � COA � 450 ) � MI = CI ; ∆ IOM = ∆ IOC OI chung ; � 900 ; CMI c) ∆ CIM vuông cân ( CIA � � mà: IOC � CAI � � MOI � CAI � � IC = IM (c.m.t) ; OC = OM = R(O) MOI IOC R AC (với R = AO) 2 R2 R 10 NC2 R 10 MI ; NI = AC2 +CN 2R + R MN = 2 NA 10 d) ∆ ACN vng có : AC = R ; NC = Từ : AN = � MB = NC2 MN � AM = BM R2 R2 2R R 10 � AM = AN + MN = R 10 + R 10 = 3R 10 10 10 10 � = 600 nội tiếp đường tròn (O), đường cao AH cắt đường tròn D, Bài 63: Cho ∆ABC có A đường cao BK cắt AH E � BCD � a Chứng minh: BKH � b Tính BEC c Biết cạnh BC cố định, điểm A chuyển động cung lớn BC Hỏi tâm I đườngtròn nội tiếp ∆ABC chuyển động đường nào? Nêu cách dựng đường (chỉ nêu cách dựng) cách xác định rõ (giới hạn đường đó) d Chứng minh: ∆IOE cân I A � BAH � ; HD: a) ABHK nội tiếp � BKH � BAH � � BKH � ( chắn cung BD) � BCD BCD b) CE cắt AB F ; K 0 0 � � � � � AFEK nội tiếp FEK 180 A 180 60 120 BEC = 120 F E I � � � 1800 B C 1800 120 1200 c) BIC 2 Vậy I chuyển động cung chứa góc 1200 dựng đoạn BC, cung C B H nằm đường tròn tâm (O) � � DS � � = sđ IO d) Trong đ/tròn (O) có DAS = sđ ; đ/tròn (S) có ISO D S 2 � � � = IE � = ISO � (so le trong) nên: DS = IO mà DS � = IE � � IO � � đpcm DAS 2 Bài 64: Cho hình vng ABCD, phía hình vng dựng cung phần tư đường tròn tâm B, bán kính AB nửa đường tròn đường kính AB Lấy điểm P cung AC, vẽ PK AD PH AB Nối PA, cắt nửa đường tròn đường kính AB I PB cắt nửa đường tròn M Chứng minh rằng: C D a I trung điểm AP b Các đường PH, BI AM đồng quy c PM = PK = AH d Tứ giác APMH hình thang cân P � 900 (góc nội tiếp …) K HD: a) ∆ ABP cân B (AB = PB = R(B)) mà AIB M � BI AP � BI đường cao đường trung tuyến � I trung điểm AP I b) HS tự c/m c) ∆ ABP cân B � AM = PH ; AP chung � ∆vAHP = ∆v PMA � AH = PM ; AHPK hình chữ nhật � AH = KP � PM = PK = AH d) PMAH nằm đ/tròn đ/k AP mà PM = AH (c.m.t) B A H � = AH � � PA // MH � PM Vậy APMH hình thang cân Bài 65: Cho đường tròn tâm O, đường kính AB = 2R Kẻ tia tiếp tuyến Bx, M điểm thay đổi Bx; AM cắt (O) N Gọi I trung điểm AN a Chứng minh: Tứ giác BOIM nội tiếp đường tròn b Chứng minh:∆IBN ~ ∆OMB c Tìm vị trí điểm M tia Bx để diện tích tam giác AIO có GTLN H O � OBM � 900 HD: a) BOIM nội tiếp OIM A B � OBM � 90 ; NIB � BOM � b) INB (2 góc nội tiếp chắn cung BM) � ∆ IBN ~ ∆OMB I c) SAIO = AO.IH; SAIO lớn � IH lớn AO = R(O) N M Khi M chạy tia Bx I chạy nửa đường tròn đ/k AO Do SAIO lớn � 450 Khi IH bán kính, ∆ AIH vng cân, tức HAI Vây M cách B đoạn BM = AB = 2R(O) SAIO lớn Bài 66: Cho ∆ ABC đều, nội tiếp đường tròn (O; R) Gọi AI đường kính cố định D điểm di động cung nhỏ AC (D �A D �C) A � a Tính cạnh ∆ABC theo R chứng tỏ AI tia phân giác BAC D b Trên tia DB lấy đoạn DE = DC Chứng tỏ ∆CDE DI CE c Suy E di động đường tròn mà ta phải xác định tâm giới hạn = d Tính theo R diện tích ∆ADI lúc D điểm cung nhỏ AC = E O HD: a) ∆ ABC đều, nội tiếp đường tròn (O; R) HS tự c/m : � AB = AC = BC = R Trong đ/tròn (O; R) có: AB = AC � Tâm O cách cạnh AB AC C B � � AO hay AI tia phân giác BAC � � = 600 (cùng chắn BC � ) b) Ta có : DE = DC (gt) � ∆ DEC cân ; BDC = BAC I � � BDI � � IB � = IC � � = IDC � ∆CDE I điểm BC � � DI tia phân giác BDC � ∆CDE có DI tia phân giác nên đường cao � DI CE c) ∆CDE có DI đường cao đường trung trực CE � IE = IC mà I C cố định � IC � (cung nhỏ ) không đổi � E di động đ/tròn cố định tâm I, bán kính = IC Giới hạn : I �AC � nhỏ đ/t (I; R = IC) chứa ∆ ABC D → C E → C ; D → A E → B � E động BC Bài 67: Cho hình vng ABCD cạnh a Trên AD DC, người ta lấy điểm E F cho : a AE = DF = a So sánh ∆ABE ∆DAF Tính cạnh diện tích chúng b Chứng minh AF BE c Tính tỉ số diện tích ∆AIE ∆BIA; diện tích ∆AIE ∆BIA diện tích tứ giác IEDF IBCF � = 450 Vẽ đường cao BD CE Bài 68: Cho ∆ABC có góc nhọn; A Gọi H giao điểm BD, CE a Chứng minh: Tứ giác ADHE nội tiếp đường tròn.; b Chứng minh: HD = DC DE c Tính tỷ số: d Gọi O tâm đường tròn ngoại tiếp ∆ABC Chứng minh: OA DE BC Bài 69: Cho hình bình hành ABCD có đỉnh D nằm đường tròn đường kính AB Hạ BN DM vng góc với đường chéo AC Chứng minh: a Tứ giác CBMD nội tiếp đường tròn � � b Khi điểm D di động đường tròn ( BMD + BCD ) không đổi c DB.DC = DN.AC Bài 70: Cho ∆ABC nội tiếp đường tròn (O) Gọi D điểm cung nhỏ BC Hai tiếp tuyến C D với đường tròn (O) cắt E Gọi P, Q giao điểm cặp đường thẳng AB CD; AD CE Chứng minh: a BC // DE b Các tứ giác CODE, APQC nội tiếp c Tứ giác BCQP hình gì? Bài 71: Cho đường tròn (O) (O’) cắt A B; tiếp tuyến A đường tròn (O) (O’) cắt đường tròn (O) (O’) theo thứ tự C D Gọi P Q trung điểm dây AC AD Chứng minh: a ∆ABD ~ ∆CBA � � b BQD = APB c Tứ giác APBQ nội tiếp Bài 72: Cho nửa đường tròn (O), đường kính AB Từ A B kẻ tiếp tuyến Ax By Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến thứ ba, cắt tiếp tuyến Ax By E F a Chứng minh: AEMO tứ giác nội tiếp b AM cắt OE P, BM cắt OF Q Tứ giác MPOQ hình gì? Tại sao? c Kẻ MH AB (H �AB) Gọi K giao điểm MH EB So sánh MK với KH d.Cho AB = 2R gọi r bán kính đường tròn nội tiếp ∆EOF Chứng minh: r R Bài 73: Từ điểm A ngồi đường tròn (O) kẻ tiếp tuyến AB, AC cát tuyến AKD cho BD//AC Nối BK cắt AC I a Nêu cách vẽ cát tuyến AKD cho BD//AC b Chứng minh: IC2 = IK.IB � c Cho BAC = 600 Chứng minh: Cát tuyến AKD qua O Bài 74: Cho ∆ABC cân A, góc A nhọn Đường vng góc với AB A cắt đường thẳng BC E Kẻ EN AC Gọi M trung điểm BC Hai đ/thẳng AM EN cắt F a Tìm tứ giác nội tiếp đường tròn Giải thích sao? Xác định tâm đường tròn b Chứng minh: EB tia phân giác �AEF c Chứng minh: M tâm đường tròn ngoại tiếp VAFN Bài 75: Cho nửa đường tròn tâm (O), đường kính BC Điểm A thuộc nửa đường tròn Dựng hình vng ABED thuộc nửa mặt phẳng bờ AB, không chứa đỉnh C Gọi F giao điểm AE nửa đường tròn (O) K giao điểm CF ED a Chứng minh: Bốn điểm E, B, F, K nằm đường tròn b ∆BKC tam giác gì? Vì sao? c Tìm quỹ tích điểm E A di động nửa đường tròn (O) AB Trên cạnh BC lấy điểm E (E khác B C) Từ B kẻ đường thẳng d vng góc với AE, gọi giao điểm d với AE, AC kéo dài I, K � a Tính độ lớn góc CIK b Chứng minh: KA.KC = KB.KI; AC2 = AI.AE – AC.CK c Gọi H giao điểm đường tròn đường kính AK với cạnh AB Chứng minh: H, E, K thẳng hàng d Tìm quỹ tích điểm I E chạy BC Bài 76: Cho ∆ABC vuông C, có BC = Bài 77: Cho ∆ABC vng A Nửa đường tròn đường kính AB cắt BC D Trên cung AD lấy điểm E Nối BE kéo dài cắt AC F a Chứng minh: CDEF nội tiếp � � b Kéo dài DE cắt AC K Tia phân giác CKD cắt EF CD M N Tia phân giác CBF cắt DE CF P Q Tứ giác MPNQ hình gì? Tại sao? c Gọi r, r1, r2 theo thứ tự bán kính đường tròn nội tiếp tam giác ABC, ADB, ADC Chứng minh: r2 = r12 + r22 Bài 78: Cho đường tròn (O;R) Hai đường kính AB CD vng góc với E điểm cung nhỏ BC; AE cắt CO F, DE cắt AB M a Tam giác CEF EMB tam giác gì? b Chứng minh: Tứ giác FCBM nội tiếp Tìm tâm đường tròn c Chứng minh: Cấc đường thẳng OE, BF, CM đồng quy Bài 79: Cho đường tròn (O; R) Dây BC < 2R cố định A thuộc cung lớn BC (A khác B, C khơng trùng điểm cung) Gọi H hình chiếu A BC; E, F thứ tự hình chiếu B, C đường kính AA’ a Chứng minh: HE AC b Chứng minh: ∆HEF ~ ∆ABC c Khi A di chuyển, chứng minh: Tâm đường tròn ngoại tiếp ∆HEF cố định Bài 80: Cho ∆ ABC vuông A Kẻ đường cao AH Gọi I, K tương ứng tâm đường tròn nội tiếp ∆ ABH ∆ ACH 1) Chứng minh ∆ ABC ~ ∆ HIK 2) Đường thẳng IK cắt AB, AC M N a) Chứng minh tứ giác HCNK nội tiếp đường tròn b) Chứng minh AM = AN c) Chứng minh S’ ≤ S , S, S’ diện tích ∆ ABC ∆ AMN ... BM Bài 36 Cho tam giác nhọn ABC , Kẻ đường cao AD, BE, CF Gọi H trực tâm tam giác Gọi M, N, P, Q hình chiếu vng góc D lên AB, BE, CF, AC Chứng minh : Các tứ giác DMFP, DNEQ hình chữ nhật Các. .. nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vng góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đường tròn nội... thoi => AH = AO = R Vậy M di động d H di động cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đường thẳng d nửa đường tròn tâm A bán kính AH = R Bài hoctoancapba.com Cho tam giác ABC vuông