Nghiên cứu ảnh hưởng của một số thông số công nghệ đến quá trình tạo thành sợi cacbon hoạt tính từ sợi viscose thương mại

131 41 0
Nghiên cứu ảnh hưởng của một số thông số công nghệ đến quá trình tạo thành sợi cacbon hoạt tính từ sợi viscose thương mại

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu khoa học tơi khơng trùng lặp với cơng trình khoa học khác Các kết số liệu trình bày luận án hoàn toàn trung thực kết nghiên cứu luận án chưa công bố cơng trình khác ngồi cơng trình tác giả Hà Nội, ngày tháng năm 2019 Nghiên cứu sinh T/M tập thể hướng dẫn khoa học PGS TS Lê Thái Hùng Nguyễn Hữu Sơn i LỜI CẢM ƠN Tác giả luận án xin trân trọng cảm ơn Bộ Giáo dục Đào tạo, Trường Đại học Bách khoa Hà Nội, Phòng Đào tạo, Viện Khoa học Kỹ thuật Vật liệu Bộ môn Cơ học vật liệu Cán kim loại tạo điều kiện thuận lợi, động viên khích lệ tơi q trình học tập thực đề tài nghiên cứu Tôi xin chân thành cảm ơn PGS.TS Lê Thái Hùng TS Phạm Văn Cường tận tình hướng dẫn cho ý kiến đóng góp q giá q trình tơi thực luận án Tơi xin chân thành cảm ơn Bộ Quốc phòng, Tổng cục Cơng nghiệp Quốc phòng, Viện Cơng nghệ Phòng Cơng nghệ Vật liệu cho phép tạo điều kiện cho học tập thực luận án Những kết nghiên cứu đạt nhờ giúp đỡ tận tình Thầy giáo Viện Khoa học Kỹ thuật Vật liệu, Bộ môn Cơ học vật liệu Cán kim loại - Trường Đại học Bách khoa Hà Nội, đồng nghiệp Phòng Cơng nghệ Vật liệu Phòng Đo lường - Viện Công nghệ Bộ Tham mưu - Tổng cục Công nghiệp Quốc phòng, Viện Khoa học Vật liệu, Viện Kỹ thuật nhiệt đới – Viện Khoa học Công nghệ Việt Nam, Viện Cơ khí Năng lượng mỏ Khoa Hoá học, Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội, Viện Hóa học mơi trường quân - Bộ Tư lệnh Hóa học Khoa Hoá lý, Đại học Sư Phạm Hà Nội Xin cảm ơn thầy cô giáo đồng nghiệp giúp đỡ tơi hồn thành luận án Tác giả xin gửi lời cảm ơn chân thành tới gia đình, người thân, bạn bè đồng nghiệp giúp đỡ, động viên tinh thần suốt trình thực luận án Hà Nội, ngày tháng năm 2019 Tác giả luận án Nguyễn Hữu Sơn ii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT v DANH MỤC CÁC BẢNG vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ viii MỞ ĐẦU Chương TỔNG QUAN NGHIÊN CỨU VỀ SỢI CÁC BON HOẠT TÍNH 1.1 Sợi bon 1.1.1 Quá trình hình thành phát triển sợi bon 1.1.2 Các phương pháp chế tạo sợi bon 13 1.2 Sợi bon hoạt tính 15 1.2.1 Quá trình nghiên cứu phát triển sợi bon hoạt tính 15 1.2.2 Các ảnh hưởng đến tính chất sợi bon hoạt tính từ sợi Viscose 23 1.3 Kết luận 26 Chương .27 CƠ SỞ KHOA HỌC CỦA CÁC Q TRÌNH CƠNG NGHỆ CHẾ TẠO SỢI CÁC BON HOẠT TÍNH .27 2.1 Sự phân huỷ nhiệt xenlulô 27 2.1.1 Thành phần sản phẩm phân hủy xenlulô 27 2.1.2 Sự phân hủy nhiệt xenlulơ có chất xúc tác 29 2.1.3 Ảnh hưởng môi trường 31 2.1.4 Cơ chế phân hủy nhiệt xenlulô 32 2.2 Các quy luật bon hóa xenlulơ điều kiện để chế tạo sợi bon34 2.2.1 Các q trình hóa lý xảy bon hóa .35 2.2.2 Sự thay đổi tính chất sợi q trình bon hóa 40 2.2.3 Điều kiện tiến hành q trình bon hóa 41 2.3 Hoạt hóa sợi bon 42 2.3.1 Hoạt hóa vật lý 43 2.3.2 Hoạt hóa hóa học 46 2.4 Các nguyên lý hấp phụ giải hấp phụ 46 2.4.1 Các khái niệm hấp phụ phân loại 46 2.4.2 Cân hấp phụ, đẳng nhiệt động học hấp phụ 48 iii 2.4.3 Enthalpy hấp phụ 51 2.5 Kết luận 51 Chương .52 NGHIÊN CỨU QUÁ TRÌNH ỔN ĐỊNH HÓA VÀ CÁC BON HÓA SỢI VISCOSE 52 3.1 Phương pháp thực nghiệm nghiên cứu trình ổn định hóa bon hóa52 3.2 Ổn định hóa sợi Viscose 53 3.2.1 Vật liệu ban đầu 53 3.2.2 Chuẩn bị sợi ban đầu 55 3.2.3 Điều kiện thí nghiệm 56 3.2.4 Kết q trình ổn định hóa 57 3.2.5 Nhận xét q trình ổn định hóa 67 3.3 Nghiên cứu trình bon hóa 67 3.3.1 Ảnh hưởng tốc độ nâng nhiệt 68 3.3.2 Ảnh hưởng nhiệt độ bon hóa 69 3.3.3 Thiết bị thí nghiệm 70 3.3.4 Kết q trình bon hóa 70 3.3 Kết luận 77 Chương .79 NGHIÊN CỨU Q TRÌNH HOẠT HĨA VÀ ỨNG DỤNG SỢI CÁC BON HOẠT TÍNH 79 4.1 Nghiên cứu q trình hoạt hóa sợi bon 79 4.1.1 Phương pháp nghiên cứu 79 4.1.2 Điều kiện thí nghiệm 80 4.1.3 Thiết bị thí nghiệm 80 4.1.4 Kết q trình hoạt hóa sợi bon 84 4.1.5 Nghiên cứu đẳng nhiệt hấp phụ phân bố kích thước lỗ trống sợi bon hoạt tính 88 4.1.6 Nghiên cứu hình thái lỗ xốp sợi bon hoạt tính .90 4.2 Kết nghiên cứu ứng dụng sợi bon hoạt tính 91 4.2.1 Nghiên cứu chế thử áo phòng hóa 91 4.2.2 Nghiên cứu chế thử hộp lọc độc 93 4.3 Kết luận 94 KẾT LUẬN VÀ KIẾN NGHỊ .95 TÀI LIỆU THAM KHẢO 97 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 103 PHỤ LỤC 104 iv DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Tên Ký hiệu ACF/SCBHT Activated Carbon Fibers/ Sợi bon hoạt tính PAN Polyacrylonitrile PVA Polyvinylalchohol DA Dubinin-Ashtakov BET Brunauer–Emmett–Teller  Hs P Nhiệt hấp phụ Áp suất cân Po Áp suất bão hòa v Lượng khí bị hấp phụ vm C Lượng khí bị hấp phụ đơn lớp Hằng số BET N Số Avogadro, At Tổng diện tích bề mặt mẫu hấp phụ, V Thể tích mol khí hấp phụ Khối lượng chất hấp phụ m ABET E1 Diện tích bề mặt riêng BET Nhiệt hấp phụ lớp thứ EL Nhiệt hấp phụ lớp thứ cao V1 Lưu lượng dòng khí sục qua bình bay V2 Pa Lưu lượng dòng khí pha lỗng Áp suất khí Ps Áp suất bão hòa chất bị hấp phụ a Độ hấp phụ chất hấp phụ Độ giãn lò xo tương ứng với giá trị li P/Ps khác lo lo, l Độ giãn lò xo treo mẫu (P/Ps = 0) Độ dài ban đầu độ dài lò xo giãn v M am Trọng lượng phân tử chất bị hấp phụ ao as vb Vn Vt t  Tknm Co vk Độ hấp phụ đơn lớp phân tử benzen chất hấp phụ Độ hấp phụ P/Ps = 0,175 Độ hấp phụ P/Ps = 0,99 o Thể tích mmol benzen 25 C (= 0,089 cm ) Tổng thể tích lỗ trống nhỏ Tổng thể tích lỗ trống trung Nhiệt độ Thời gian Nhiệt độ khử nước mạnh ПМЦ Nồng độ benzen ban đầu ЭПР Tốc độ dòng khí Nồng độ cực đại trung tâm thuận từ Phương pháp cộng hưởng thuận từ điện tử vi DANH MỤC CÁC BẢNG Bảng 2.1 Ảnh hưởng cấu trúc xenlulô tới lượng đầu levoglucosan .28 Bảng 2.2 Ảnh hưởng phương pháp xử lý a xít vật liệu hydratcellulose thời gian nung 42 Bảng 3.1 Các mẫu thí nghiệm với hàm lượng dung dịch xúc tác khác 56 Bảng 3.2 Kết thí nghiệm ổn định hóa với hàm lượng chất xúc tác khác 62 Bảng 3.3 Các chế độ thực nghiệm ảnh hưởng tốc độ nâng nhiệt .68 Bảng 3.4 Các chế độ thực nghiệm xem xét ảnh hưởng nhiệt độ bon hóa 69 Bảng 3.5 Kết nghiên cứu ảnh hưởng tốc độ nâng nhiệt 71 o o -1 Bảng 3.6 Kết thực nghiệm với tốc độ nâng nhiệt 600 C C.min 72 Bảng 3.7 Kết nghiên cứu ảnh hưởng nhiệt độ bon hóa 73 Bảng 4.1 Các chế độ thực nghiệm hoạt hóa sợi bon theo nhiệt độ 80 Bảng 4.2 Các chế độ thực nghiệm hoạt hóa sợi bon theo thời gian 80 Bảng 4.3 Kết thực nghiệm hoạt hóa sợi bon theo nhiệt độ 84 Bảng 4.4 Kết thực nghiệm hoạt hóa sợi bon theo thời gian .86 Bảng 4.5 Kết kiểm tra hộp lọc độc dùng vải (sợi) bon hoạt tính .93 vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Tổng hợp ấn phẩm SCBHT từ tạp chí ScienceDirect vào năm 1980-2012 Hình 1.2 Sơ đồ khối cơng nghệ chế tạo sợi bon từ nguyên liệu thể rắn Hình 2.1 Lượng nhựa từ xenlulơ cốt tơng (1) từ viscose (2) tùy thuộc vào mức độ phân hủy xenlulô Hình 2.2 Sơ đồ biến đổi hình học theo chiều dọc Tang Bacon Hình 2.3 Sơ đồ biến đổi hình học theo chiều ngang Tang Bacon Hình 2.4 Sơ đồ biến đổi hình học từ xenlulơ sang graphite Davidson [110] Hình 2.5 Sơ đồ biến đổi hình học Losty Blakelock [nguồn: 112] Hình 2.6 Sự tiêu hao khối lượng (1) độ co ngót (2) sợi Fortizan phụ thuộc vào nhiệt độ gia công Hình 2.7 Cấu trúc tinh thể xenlulô I, xenlulô II graphite Hình 2.8 Sự phụ thuộc phần tinh thể vơ định hình sợi bon hóa vào nhiệt độ bon hóa: 1- Sợi mành dạng PAN -2; 2- sợi mành dạng BA [nguồn:110] Hình 2.9 Sự thay đổi nồng độ ПМЦ vào nhiệt độ bon hóa - Sợi mành dạng PAN-2; 2- Sợi mành dạng BA [nguồn: 115] Hình 2.10 Ảnh hưởng nhiệt độ bon hóa tới chiều rộng đường (1) -6 nồng độ ПМЦ (2) Đo chân không 10 torr [nguồn: 112] Hình 2.11 Sự thay đổi điện trở suất: (1) sợi hàm lượng bon (2), phụ thuộc vào nhiệt độ bon hóa o Hình 2.12 Các dạng khác đường đẳng nhiệt hấp phụ N2 77 K Hình 2.13 Minh họa khuếch tán Knudsen (A) and khuếch tán phân tử (B) Hình 3.1 Quy trình thí nghiệm nghiên cứu q trình ổn định hóa bon hóa 52 Hình 3.2 Sợi Viscose thương mại chưa xử lý Hình 3.3 Ảnh SEM đơn sợi Viscose chưa xử lý với độ phóng đại (a) x500, (b) x 4000 Hình 3.4 Giản đồ nhiễu xạ Rơnghen sợi Viscose Hình 3.5 Quá trình chuẩn bị mẫu sợi ban đầu: Hình 3.6 Lò nung sử dụng để ổn định hóa sợi, vải Viscose Hình 3.7 Thiết bị phân tích nhiệt TGA DTG - 60H hãng Shimadzu dùng để nghiên cứu trình ổn định hóa Hình 3.8 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose không thấm chất xúc tác V0 Hình 3.9 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 0,84 % chất xúc tác V1 59 viii Hình 3.10 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 5,73 % chất xúc tác V2 60 Hình 3.11 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 5,73 % chất xúc tác V3 60 Hình 3.12 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 6,82 % chất xúc tác V4 61 Hình 3.13 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 8,71 % chất xúc tác V5 61 Hình 3.14 Giản đồ phân tích nhiệt TGA mẫu sợi Viscose thấm 8,71 % chất xúc tác V6 62 Hình 3.15 Quan hệ hàm lượng xúc tác nhiệt độ xảy q trình khử nước xenlulơ mạnh Tknm 63 Hình 3.16 Sợi Viscose thương mại trước (a) sau (b) ổn định hóa 63 Hình 3.17 Ảnh SEM đơn sợi Viscose thương mại sau ổn định hóa với độ phóng đại 64 (a) x500, (b) x4000 64 o Hình 3.18 Giản đồ nhiễu xạ X-ray (a) sợi Viscose ban đầu 25 C (b) sợi o Viscose thực q trình ổn định hóa 250 C 64 Hình 3.19 Hệ thống lò ống dùng để nghiên cứu q trình bon hóa sợi, 70 vải mơi trường khí Ar 70 Hình 3.20 Quan hệ tốc độ gia nhiệt với hàm lượng bon cuối o bon hóa sợi Viscose 1200 C 71 Hình 3.21 Quan hệ tốc độ gia nhiệt với hàm lượng bon cuối hiệu o suất bon hóa sợi Viscose 1200 C 72 Hình 3.22 Quan hệ nhiệt độ bon hóa với hàm lượng bon lượng chất dư lại 74 o Hình 3.23 Sợi Viscose ban đầu (a); sợi sau ổn định hóa 250 C (b); sợi bon o sau bon hóa 1200 C (c) 74 o Hình 3.24 Vải bon sau bon hóa 1200 C 75 Hình 3.25 Giản đồ nhiễu xạ X-Ray sợi trình bon hóa 75 Hình 3.26 Sự khác cấu trúc bon turbostratic mạng tinh thể graphite 3D 76 Hình 3.27 Ảnh SEM đơn sợi Viscose sau bon hóa nhiệt độ khác 76 o Hình 3.28 Ảnh HRTEM đơn sợi Viscose sau bon hóa 1200 C: 77 (a) Vị trí chụp; (b) Ảnh phóng đại vi cấu trúc vị trí .77 Hình 4.1 Sơ đồ bước quy trình nghiên cứu q trình hoạt hóa sợi bon 79 Hình 4.2 Sơ đồ hệ thống thí nghiệm hoạt hóa sợi bon 81 Hình 4.3 Lò hoạt hóa sợi bon 81 ix KẾT LUẬN CHUNG CỦA LUẬN ÁN VÀ KIẾN NGHỊ Từ điều kiện nghiên cứu thực nghiệm Trường Đại học Bách Khoa Hà Nội Viện Công nghệ - Tổng cục Công nghiệp Quốc phòng, luận án thực số nghiên cứu ảnh hưởng thông số công nghệ trình chế tạo sợi bon hoạt tính từ sợi Viscose (xenlulơ tổng hợp), cụ thể sau: Luận án dùng sợi Viscose thương mại loại nguyên liệu có sẵn thị trường với hàm lượng bon 40,7 % trọng lượng để tiến hành nghiên cứu Sử dụng q trình ơxy hóa sợi khơng khí tức q trình ổn định hóa để nâng cao hiệu suất bon hóa giảm thiểu lượng bon cháy hao trình bon hóa sợi sở xenlulơ Sử dụng hỗn hợp urea/diammonium hydrogen phosphate làm chất xúc tác cho trình ổn định hóa để kết hợp vai trò hai loại xúc tác riêng rẽ Xác định hàm lượng xúc tác thích hợp - % trọng lượng, với tỉ lệ khối lượng urea/diammonium hydrogen phosphate 2/1, hạ nhiệt độ khử o o nước celllulose từ 290 C (khi khơng có xúc tác) xuống khoảng 250 C (khi có xúc tác) Q trình tiến hành mơi trường khơng khí với tốc độ o -1 nâng nhiệt C.min đến nhiệt độ khử nước mạnh T knm giữ nhiệt 60 phút Hàm lượng bon sợi sau ổn định hóa đạt 59,72 % trọng lượng, hao hụt khối lượng sợi 25,23 % Cấu trúc sợi sau q trình ổn định hóa dạng khơng có trật tự tinh thể, giống cấu trúc vơ định hình o Nhiệt độ bon hóa cuối chọn 1200 C, thời gian giữ nhiệt 60 phút Q trình bon hóa môi trường argon với tốc o -1 o độ gia nhiệt phù hợp chọn là: C.min (giai đoạn 600 C), o -1 C.min o (giai đoạn 600 – 1200 C) Theo chế độ này, hiệu suất bon hóa đạt 43,57 % (sợi ban đầu chứa 40,70 % trọng lượng), hàm lượng bon đạt tới 94,15 % trọng lượng Cấu trúc tinh thể sợi bon thu cấu trúc bon turbostratic o Kích thước đơn sợi bon thu 1200 C điều kiện không căng kéo 8,00 m, giảm 56,05 % so với kích thước đơn sợi Viscose ban đầu (18,20 m) Kích thước đơn sợi giảm nhanh tới 26,65 % (13,35 m) q trình ổn o định hóa đến 250 C, sau kích thước đơn sợi giảm chậm đến nhiệt độ bon o hóa cuối 1200 C Phương pháp hoạt hóa vật lý thực để nghiên cứu q trình hoạt hóa sợi bon sau bon hóa dòng khí CO để chế tạo sợi bon hoạt tính Các yếu tố ảnh hưởng nghiên cứu nhiệt độ thời gian hoạt hóa Xác o định nhiệt độ hoạt hóa thích hợp 870 C thời gian hoạt hóa sợi 90 phút Sợi bon hoạt tính sau hoạt hóa đạt tính chất hấp phụ như: -1 diện tích bề mặt riêng BET 1875,43 m g dung lượng hấp phụ benzen -1 6,07 mmol.g , lớn tất loại bon hoạt tính dạng khác Kích thước lỗ xốp bên sợi bon hoạt tính đạt phần lớn nhỏ 50 nm, chủ yếu nằm giới hạn lỗ trống trung lỗ trống nhỏ Vải bon hoạt tính luận án nghiên cứu chế tạo với độ hấp phụ -1 benzen 3,02 - 3,78 mmol.g ứng dụng để chế thử trang bị phòng độc áo phòng hóa hộp lọc độc đạt yêu cầu kỹ thuật 95 KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO Từ kết đạt luận án, nhóm nghiên cứu mong muốn tiếp tục nghiên cứu hoàn thiện q trình bon hóa sợi Viscose thương mại để chế tạo sợi bon đạt tính chất hóa lý khơng đáp ứng u cầu chế tạo sợi bon hoạt tính, mà sử dụng để chế tạo loại vật liệu bon ứng dụng nhiều lĩnh vực khác vật liệu kết cấu, vật liệu cách nhiệt… Có nghiên cứu cụ thể để làm rõ chế hình thành lỗ xốp liên thơng, chế bon hóa hoạt hóa mơ số cấp độ phân tử 96 TÀI LIỆU THAM KHẢO [1] A, Linares-sananoand D Carzola-Amorós (2008), “Chapter Seventeen Adsorption on Activated Carbon Fibers”, Elsevier [2] J Alcaniz-Monge, M.A De La Casa-Lillo, D Cazorla-Amoros and A Linares-Salano (1997), “Carbon”, pp.291 [3] H Marsh and F R Reinoso (2006), “Activated Carbon”, Elsevier, Oxford, UK [4] C O Ania and F Béguin (2007), “Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions” Water Research, vol 41, pp 3372–3380 [5] Villar, D J S De la Calle, Z González et al (2011), “Carbon materials as electrodes for electrosorption of NaCl in aqueous solutions” Adsorption, vol 17, pp 467–471 [6] A Subrenat, J Bellettre, and P Le Cloirec, (2003), “3-D numerical simulations of flows in a cylindrical pleated filter packed with activated carbon cloth” Chemical Engineering Science, vol 58, no 22, pp 4965–4973 [7] L Kiwi-Minsker, M Ruta, T Eslanloo-Pereira, and B Bromley (2010), “Structured catalytic wall microreactor for efficient performance of exothermic reactions,” Chemical Engineering and Processing, vol 49, no 9, pp 973–978 [8] Gurudatt, K., Tripathi, V.S & Sen, A.K (1997), ‘Adsorbent carbon fabrics: new generation armour for toxic chemicals’, Defence Science Journal, vol 47, no 2, pp.239-250 [9] F Rodríguez-Reinoso (2002), “Production and applications of activated carbons,” in Handbook of Porous Solids, F Schüth, K S W Sing, and J Weitkamp, Eds., Chapter 4, 8, 1, pp 1766–1827, Wiley-VCH, Weinheim, Germany [10] J M D Tascón (2008), “Overview of carbon materials in relation to adsorption,” in Adsorption By Carbons, E J Bottani and J M D Tascón, Eds., pp 15–49, Elsevier, Oxford, UK [11] W Shen, H Wang, R Guan, and Z Li (2008), “Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid,” Colloids and Surfaces A, vol 331, no 3, pp 263–267 [12] J C Naranjo, A Córdoba, L Giraldo, V S García, and J C Moreno-Piraján (2010), “Lipase supported on granular activated carbon and activated carbon cloth as a catalyst in the synthesis of biodiesel fuel”, Journal of Molecular Catalysis B, vol 66, pp 166–171 [13] R V Ramanujan, S Purushotham, and M H Chia (2007), “Processing and characterization of activated carbon coated magnetic particles for biomedical applications,” Materials Science and Engineering C, vol 27, no 4, pp 659–664 [14] R V Ramanujan, S Purushotham, and M H Chia (2007), “Processing and characterization of activated carbon coated magnetic particles for biomedical applications,” Materials Science and Engineering C, vol 27, No 4, pp 659–664 [15] Nagesh K Tripathi, Virendra V Singh, Manisha Sathe, Vikas B Thakare, and Beer Singh (2018), “Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing”, Defence Science Journal, Vol 68, No.1 [16] Bacon, R and M Tang (1964), “Carbon”, p 221 [17] Konkin A.A., (1985), “Production of Cellulose Based Carbon Fibrous Materials”, in Handbook Composites, W Watt, Editor, Elsevier Science: Moscou p 275 [18] Bacon, R., (1973), “Carbon Fibers from Rayon Precursor” Chemistry and Physics of Carbon, 9: p 97 [19] Bacon, R (1964), “Carbon fibers from rayon precursors; In Chemistry and Physics of Carbon”; Walker p 1.J Polym Sci C, 6, pp.65–81 [20] Bacon, R.T., M., (1964), “Carbonization of cellulose fibers‐ II physical property study” Carbon, 2: p 221‐ 225 [21] Ting Lee, Chee-Heong Ooi, Radzali Othman and Fei-Yee Yeoh (2014), “Activated carbon fibre-the hybrid of carbon fibres and activatited carbon” Rev Adv Mater Sci 36, p.118-136 [22] J Wang and S Kaskel (2012), “KOH activation of carbon-based materials for energy storage”, Journal of Materials Chemistry, vol 22, pp 23710-23725 [23] T.J Mays (1999), “Chapter - Active Carbon Fibers”, Elsevier Science Ltd, Oxford [24] Y.L Wang, Y.Z Wan, X.H Dong, G.X Cheng, H.M Tao and T.Y Wen (1998), “Carbon”, p.1567 [25] Edison, T., (1980): U S Patent p 223-898 [26] Bacon, R (1973), “Carbon Fibers from Rayon Precursor Chemistry and Physics of Carbon”, 9: p.2 [27] Cranch, G.E (1962), “Unique Properties of flexible Carbon Fibers” th Proceedings of Conference on Carbon, 11: p.589 [28] Ford, C.E., (1963), U.S Patent p 107,152 [29] Losty N.N; Blaclock N.D (1965), “Second conference Industry carbon and Graphite” London [30] Татевский В.М (1953), Химическое строение углеводородов и закономерности в их физико-химических свойствах”, Из-во Московского университета, 321 с [31] Hawthorne, H.M (1970), “High Strength, High Modulus Graphite Fibers from Pitch” Nature, vol.227 p 946 [32] Hawthorne, H.M (1971), “Carbon Fibers: Their Composites and Applications” The first International Conference on Carbon Fibers, London [33] Chwastiak, S Lewis, I.C (1978), “Solubility of mesophase pitch” Carbo, p.156–157 [34] Fu, T.W.; Katz, M (1991), “Process for making mesophase pitch” US Pat 4999099 [35] Peter, S.; Beneke, H.; Oeste, F.; Fexer, W.; Jaumann, W.; Meinbreckse, M.; Kempfert, J (1988), “A method for the production of a carbon fiber precursor” US Pat 4756818 [36] Bolanos, G.; Liu, G.Z.; Hochgeschurtz, T.; Thies, M.C (1993), “Producing a carbon fiber precursor by supercritical fluid extraction”, Fluid Phase Equilibria Vol.82, p.303–310 [37] Diefendorf, R.J.; Riggs, D.M, (1980), “Forming optically anisotropic pitches” US Pat 4208267, 1980 [38] Kalback, W.; Romine, E.; Bourrat, X, (1993), “Solvated mesophase pitches” US Pat 5259947 [39] Romine, E.; Rodgers, J.; Southard, M.; Nanni, E (2004), “Solvating component and solvent system for mesophase pitch” US Pat 6717021 [40] Yamada, Y.; Imamura, T.; Shibata, M.; Arita, S.; Honda, H (1986), “Method for the preparation of pitches for spinning carbon fibers” US Pat 4606808 [41] Guigon, M.; Oberlin, A (1986), “Preliminary studies of mesophase-pitchbased carbon fibers: Structure and microtexture” Compos Sci Technol Vol.25, pp.231– 241 [42] Fitz Gerald, J.D.; Pennock, G.M (1991), “Taylor, G.H Domain structure in MP (mesophase pitch)-based fibres” Carbon Vol.29, pp.139–164 98 [43] Huang, Y.; Young, R J (1995), “Effect of fiber microstructure upon the modulus of PAN- and pitch-based carbon fibers” Carbon, Vol.33, pp.97–107 [44] Kobets, L.P.; Deev, I.S (1997), “Carbon fibres: Structure and mechanical properties”, Compos Sci.Technol vol.57, pp.1571–1580 [45] Friedlander, H.N.; Peebles, L.H.Jr.; Brandrup, J.; Kirby, J.R (1968), “On the chromophore of polyacrylonitrile VI Mechanism of color formation in polyacrylonitrile”, Macromolecules, Vol.1, pp.79–86 [46] Perret, R.; Ruland, W (1970), “The microstructure of PAN-base carbon fibres” J Appl Crystallogr Vol 3, pp.525–532 [47] Huang, Y.; Young, R J (1995), “Effect of fiber microstructure upon the modulus of PAN- and pitch-based carbon fibers” Carbon, vol.33, pp.97–107 [48] Masahiro, T.; Takeji, O.; Takashi, F (1984), “Preparation of acrylonitrile precursor for carbon fiber” JP59204914 [49] Grove, D.; Desai, P.; Abhiraman, A.S (1988), “Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers” Carbon, Vol.26, pp.403–411 [50] Hunter, W.L (1967), “Liability of the α-hydrogen in PAN” J Polym Sci B vol.5, pp.23–26 [51] Shindo A (1961), “Studies on Graphite Fiber Report of the Government Industrial Research Institutes Osaka”, Agency of Industrial Science and Technology, Osaka, Japan [52] Donnet, J.B.; Bansal, R.C (1990), “Carbon Fibers”, 2nd ed.; Marcel Dekker: New York, NY, USA, pp.1–145 [53] Madorsky, V E Hart,3 and S Straus (1958), “Thermal Degradation of Cellulosic Materials Iournal of Research of the National Bureau of Standards” Vol 60, No.4 [54] Tang, M M.; Bacon, R (1964), “Carbonization of cellulose fibers—I Low temperature pyrolysis” Carbon [55] Konkin, A.A (1985), “Production of Cellulose Based Carbon Fibrous Materials”, in Handbook of Composites, W Watt, Editor, Elsevier Science: Moscou pp 275 [56] Bacon, R (1973), “Carbon Fibers from Rayon Precursor” Chemistry and Physics of Carbon, Vol.9: p.2 [57] Boucher, E.A (1970), “Preparation and Structure of Saran ‐ Carbon Fibers” Carbon, vol.8, pp 597 [58] Qingfeng, L.c., Lv.; Yonggang, Y.; Lichen, L (2004), “Investigation on the effects of fire retardants on the thermal decomposition of wood derived rayon fiber in an inert atmosphere by thermogravimetry ‐ mass spectrometry” Thermochimica Acta, pp.205‐ 209 [59] Pappa, A.M., K.; Tzamtzis, N.; Statheropoulos, M (2002), “Chemometric methods for studing the effetc of chemicals on cellulose pyrolysis by thermogravimetry ‐ mass spectrometry” Journal of Analytical and Applied Pyrolysis, vol.67, pp.221‐ 235 [60] Statheropoulos, M.K., S.A (2000), “Quantitative thermogravimetric ‐ mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis”, Analytica Chimica Acta, vol.409, pp.203-214 [61] [62] Kim, D.Y.N., Y.; Wada, M.; Kuga, S (2001), “High yield carbonization of cellulose by sulfuric impregnation” Cellulose, vol.8, pp.29‐ 33 Baker, R.R (1974), “Thermal decomposition of cellulose” Journal of Thermal Analysis, vol.8, pp.163‐ 173 99 [63] Ball, R., A.C McIntosh, and J Brindley (1999), “The role of char forming processes in thermal decomposition of cellulose”, Phys Chem Chem Phys, vol.1, pp.5035‐ 5043 [64] Arseneau, D.F (1970), “Competitive reactions in thermal decomposition of cellulose” Canadian Journal of chemistry, vol.49, pp.632 [65] Ruland W., Jappl Phy (1967), vol.38, No 9, pp.3585 [66] фиалков А, Сю и др (1968), “Химия твердово топлива”, No3, pp.116 [67] Zhbankov, R.G., A.A Konkin, and G.S Bychkova, K Volokna (1976), Vol [68] Tang, M.B., R (1964), “Carbonization of cellulose fibers I low temperature pyrolysis” Carbon, Vol.2, pp.211‐ 220 [69] F Rodriguez-Reinoso, A C Pastor, H Marsh, and M A Martínez (2000), “Preparation of activated carbon cloths from viscous rayon Part II: physical activation processes”, Carbon, vol 38, pp 379–395 [70] A C Pastor, F Rodríguez-Reinoso, H Marsh, and M A Martínez (1999), “Preparation of activated carbon cloths from viscous rayon Part I Carbonization procedures” Carbon, vol 37, pp 1275–1283 [71] F Rodríguez-Reinoso, A C Pastor, H Marsh, and A Huidobro (2000), “Preparation of activated carbon cloths from viscous rayon Part III Effect of carbonization on CO2 activation”, Carbon, vol 38, No.3, pp 397–406 [72] A Huidobro, A C Pastor, and F R Reinoso, (2001), “Preparation of activated carbon cloth from viscous rayon Part IV: chemical activation”, Carbon, vol 38, pp 389–398 [73] Gurudait, V.S Tripathi & A.K Sen adsorbent Carbon Fabrics (1997), “New Generation Armour for Toxic Chemical” Defence Science Journal Vo147 No 2, pp 239-250 [74] P Scharff New (1998), “Carbon materials for research”, Carbon Vol 36, No 5-6, pp.481-486 [75] P.V Cường, P.N Cảnh, L.X Hòe (1998), “Nghiên cứu chế tạo sợi bon hoạt tính làm áo phòng độc”, Tạp chí Kỹ thuật Trang bị [76] Young Gunko, Ung Su Choi, Dong June Ahn, Jeong Su Kim, Tae Young Kim (2001), “Physicochemical and Thermal Studies of Viscose Rayon Borate Fiber and Its Carbon Fiber” Journal of Polymer Science: Part A: Polymer Chemistry, Vol 39, pp.3875– 3883 [77] Zenzhong Sheng, Hui Wang, Zihong lui, Quinhjie Guo, Yuanli Zhang (2007), “Oxidisation activated carbon fibres through nitrocellolose conbustion., colloids and surfaces”, A physicochem Eng Aspect 308 Pp.20-24 [78] Y LI, S HU (2009), “Oxidation of activated carbon fibre and its adsorption of amylase” Materials Science-Poland, Vol 27 [79] Wenzhong Shen, Zhijie Li and Yihong Liu (2008), “Surface Chemical Functional Groups Modification of Porous Carbon” Recent Patents on Chemical Engineering, vol.1, pp.27-40 [80] Y Chen, N Jiang, L Sun (2006), “Negulescu Activated Carbon Nonwoven as Chemical Protective Materials” RJTA Vol 10 [81] Carrott, P.J.M (1991), “Boron trifluoride initiated polymerization of isobutene in the micro-pores of activated charcoal cloth” Carbon 29 (4/5), pp.507–513 [82] Debasish Das, Vivekanand Gaur, Nishith Verma (2004), “Removal of volatile organic compound by activated carbon fiber” Carbon, vol.42, pp.2949–2962 100 [83] Hua Zhu, Ping chen and ruixin Wu, Hui Zhang (2007), “Microwave absorption properties of carbon fiber nonwovens”, Indian Journal of fibre & textile Research, Vol.32, pp.381-398 [84] Naiqin Zhao, Tianchun Zou, Chunsheng Shi, Jiajun Li, Weikai Guo (2006), “Microwave absorbing properties of activated carbon-fiber felt screens (verticalarranged carbon fibers)/epoxy resin composites”, Materials Science and Engineering B, vol.127, pp.207–211 [85] Ana Lea Cukierman (2013), “Development and Environmental Applications of Activated Carbon Cloths” Hindawi Publishing Corporation ISRN Chemical Engineering [86] Surendra Bhati, J S Mahur, Savita Dixit, and O N Choubey (2013), “Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method”, Bull Korean Chem Soc Vol.34, No.2, pp.569 [87] Tianchun Zou, Naiqin Zhao, Chunsheng Shi and Jiajun Li (2011), “Microwave absorbing properties of activated carbon fibre polymer composites: Bull Mater Sci., Vol 34, No 1, pp 75–79 [88] Cukierman, A.L (2013), “Development and environmental applications of activated carbon cloths” ISRN Chem Eng, pp.261-523 [89] Park, S.J & Heo, G.Y (2015), “Precursors and manufacturing of carbon fibers”, In Carbon Fibers, pp.31-66 Springer Netherlands [90] Huang, X (2015), “Fabrication and properties of carbon fibers” Materials, vol.2, pp.2369-03 [91] Peebles Jr, L.H (1995), “Carbon fibers, formation, structure and properties” CRC Press, USA [92] Bhati, S.; Mahur, J S.; Dixit, S & Chobey, O.N (2014), “Study on effect of chemical impregnation on the surface and porous characteristics of activated carbon fabric prepared from viscose rayon”, Carbon Letters, vol.15, pp.45-49 [93] Su, C.I.; Zeng, Z.L.; Peng, C.C & Lu, C.H (2012), “Effect of temperature and activators on the characteristics of activated carbon fibers prepared from viscoserayon knitted fabrics”, Fibers Polymers, vol.13, pp.21-27 [94] Bhati, S.; Mahur, J.S.; Dixit, S & Choubey, O.N (2013), “Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: mixed activation method”, Bulletin Korean Chem Soc, vol.34, pp.569-573 [95] Rosas, J.M.; Berenguer, R.; Valero-Romero, M.J.; Rodríguez-Mirasol, J & Cordero, T (2014), “Preparation of different carbon materials by thermochemical conversion of lignin Front Mater, vol.1, pp.29 [96] Majibur, M.; Khan, R.; Gotoh, Y.; Morikawa, H.; Miura, M.; Fujimori, Y.; Nagura, M (2007), “Carbon fiber from natural biopolymer: Bombyxmori silk fibroin with iodine treatment” Carbon, vol.45, pp.1035–42 [97] Bengisu, M & Yilmaz, E (2002), “Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation”, Carbohydrate Polyemers, pp.165–175 [98] Prauchner, M.J.; Pasa, V.M.D.; Otani, S & Otani, C (2005), “Biopitch-based general purpose carbon fibers: Processing and properties” Carbon, vol.43, pp.591– 97 [99] Nagesh K Tripathi, Virendra V Singh, Manisha Sathe, Vikas B Thakare and Beer Singh (2018), “Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing”, Defence Science Journal, Vol 68, No.1, pp.83-90 [100] Tsuyoshi Yoda, Keita Shibuya, Hideki Myoubudani (2018), “Preparation of activated carbon fibers from mixtures of cotton and polyester fibers”, Measurement 125, pp.572–576, Elsever Ltd 101 [101] A Y Nuryantini, F Rahayu, E C S Mahen, A Sawitri and B Wnuryadin (2018), “Synthesis of activated carbon fiber from pyrolyzed cotton for adsorption of fume pollutants”, 4th International Seminar of Mathematics, Science and Computer Science Education, IOP Conf Series: Journal of Physics: Conf Series 1013, 012200 [102] E.Taer, A Apriwandi, Y.S Ningsih, R Taslim, Agustino, (2019), Preparation of activated carbon electrode from pineapple crown waste for supercapacitor application, Int, J.Electrochem.Sci., 14, pp.2462-2475 [103] Nguyễn Văn Tư (2014) “Nghiên cứu ổn định cơng nghệ chế tạo ứng dụng than hoạt tính từ vỏ trấu Việt Nam”, Đề tài nghị định thư với Hàn Quốc [104] Голова О П, Пахомов Р.Г., Николаева И И (1995), “Высокомол” Соед., т.л, с [105] Голова О П, Крылова А.М (1957), “Андриевская” Е.А., ДАН СССР, т 112, с 389 [106] Byrne G.A., Gardiner D., Holmes F.H (1966), J Appl Chem., vol.16, No 3, p.81 [107] Голова О П., Эпштйе и Я.В., Дурынина Л И (1961), “Высокомол” Соед., т.з, с.537 [108] Berkowitz –Mattuuck J.B., Noguchi T (1963), J Appl Polymer Si., 1vol.7, p.709 [109] Bacon R and Tang MM (1964), “Carbonization of Cellulose Fibers-I: Low Temperature Pyrolysis” Pergamon Press Ltd, Carbon, vol.2, pp.211-220 [110] Davidson W (1963), U.S.Patt, 3, 104, 159 [111] Davidson W, Losty HHW (1963), “The initial pyrolyses of celluloses” GEC J, 30, pp.22-28 [112] Losty HHW, Blakelock HD (1965), “The structure and properties of partially nd pyrolysed cellulose carbon” Proc Conf Ind Carbon and Graphite, London, pp.2935 [113] Bacon R and Tang MM (1964), “Carbonization of Cellulose Fibers-II: Physical Property Study” Pergamon Press Ltd, Carbon, vol 2, pp.221-225 [114] Higgins H.G (1958) J Polymer Sci., vol 28, p.645 [115] Фиалков А С и др (1968), “Химия твердово топливо”, No3, c 116 [116] Losty N.N., Blaclock N D (1965), “Second Confference Industry Carbon and Graphite”, London [117] Ross SE (1968), “Observations concerning the carbonization of viscose rayon yarn” Text Res J, 38, pp.906-913 [118] Marsh, H., Rodriguez-Reinoso, F (2006), “Activated Carbon” Elsevier Science & Technology Books, New York [119] Hermann, G., Heuttinger, K.J (1986), “Mechanisms of non-catalysed and iron-catalysed water vapour gasification of carbon” Fuel 65 (10), pp.1410–1418 [120] Rodrı´guez-Reinoso, F., Pastor, A.C., Marsh, H., Huidobro, A (2000), “Preparation of activated carbon cloths from viscous rayon: Part III Effect of carbonization on CO2 activation” Carbon, vol.38(3), pp.379–395 [121] Gregg, J., Sing, K.S.W (1982), “Adsorption, Surface Area and Porosity”, seconded Academic Press, New York [122] Brunauer, S., Deming, L.S., Deming, W.E., Teller, E.J (1940), “On a theory of the Van der Waals adsorption of gases” J Am Chem Soc Vol.62(7), pp.1723–1732 [123] Ruthven, D.M., (1984), “Principles of Adsorption and Adsorption Processes” John Wiley and Sons, New York 102 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN Nguyễn Hữu Sơn, Phạm Văn Cường, Vũ Lê Hoàng, Lê Thái Hùng (2016), “Ổn định hóa sợi Visco thương mại cho chế tạo sợi bon”, Hội thảo khoa học cấp quốc gia Luyện kim công nghệ vật liệu tiên tiến, ĐH Bách Khoa Hà Nội, pp34-39, ISBN.978-604-95-0019-0 Nguyễn Hữu Sơn, Phạm Văn Cường, Vũ Lê Hoàng, Lê Thái Hùng (2018), Ảnh hưởng hàm lượng chất xúc tác đến trình ổn định hóa sợi viscose thương mại làm tiền chất cho chế tạo sợi bon, Tạp chí khoa học Công nghệ kim loại, Số 76, trang 38-43, ISSN 1859-4344 Nguyen Huu Son, Pham Van Cuong, Vu Le Hoang, Le Thai Hung (2018), Producing of Các bon Fibers from Commercial Viscose Fibers, Proceedings of the International Conference on Material, Machines and Methods for Sustainable Development, Da nang, pp34-39, ISBN: 978-604-950502-7 Nguyen Huu Son, Pham Van Cuong, Vu Le Hoang, Le Thai Hung (2018), Effect of heating rate and temperature on the carbonization process of commercial Viscose fibers, Journal of Science and Technology technical universities Vol.127B, pp71-74 Nguyen Huu Son, Vu Le Hoang, Pham Van Cuong, La Xuan Thao, Le Thai Hung (2019), Producing of Carbon Fibers from Commercial Viscose Fibers, Journal of Applied Mechanics and Materials, Vol 889, pp 58-64 Hoang Le VU, Son Huu NGUYEN, Khanh Quoc DANG, Cuong Van PHAM, Hung Thai LE (2019), The effect of oxidation temperature on activating commercial Viscose rayon-based carbon fibers to make the activated carbon fibers (ACFs), Accepted to Journal of Materials Science Forum 103 PHỤ LỤC Các phiếu kết thử nghiệm hàm lượng bon Các phiếu kết thử nghiệm độ hấp phụ diện tích bề mặt riêng 104 ... hoạt tính từ nguồn nguyên liệu sợi Viscose cho sản xuất thực cần thiết Luận án đề tài Nghiên cứu ảnh hưởng số thơng số cơng nghệ đến q trình tạo thành sợi bon hoạt tính từ sợi Viscose thương mại ... mục tiêu nghiên cứu q trình cơng nghệ chế tạo sợi bon hoạt tính từ nguồn sợi Viscose thương mại, làm sở cho việc thiết lập quy trình cơng nghệ thích hợp để chế tạo sợi/ vải bon hoạt tính từ nguồn... là: Nghiên cứu ảnh hưởng thông số công nghệ q trình chuyển hóa sợi Viscose thương mại thành sợi bon hoạt tính khả áp dụng chúng trang bị phòng độc 3 Đối tượng phạm vi nghiên cứu -Đối tượng nghiên

Ngày đăng: 31/10/2019, 14:45

Tài liệu cùng người dùng

Tài liệu liên quan