1. Trang chủ
  2. » Giáo án - Bài giảng

tom tat hinh giai tich

2 255 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 145,5 KB

Nội dung

- HÌNH HỌC GIẢI TÍCH 1. Tọa độ , vectơ :  (a,b) ± (a / , b / ) = (a ± a / , b ± b / )  k(a, b) = (ka, kb)  (a, b) = (a / , b / ) ⇔    = = / / bb aa  (a, b).(a / ,b / ) = aa / + bb /  22 ba)b,a( +=  / / / v.v cos( v ,v ) v . v = r r r r r r  ABAB),yy,xx(AB ABAB =−−=  M chia AB theo tỉ số k ⇔ MBkMA = ⇔ , , 1 1 1 A B A B A B M M M x kx y ky z kz x y z k k k − − − = = = − − − (k ≠ 1)  M : trung điểm AB ⇔ , , 2 2 2 A B A B A B M M M x x y y z z x y z + + + = = =  M : trọng tâm ∆ABC ⇔ , , 3 3 3 A B C A B C A B C M M M x x x y y y z z z x y z + + + + + + = = = * Vectơ 3 chiều có thêm tích có hướng và tích hỗn hợp :  )'c,'b,'a(v),c,b,a(v / ==  [ ]         = ////// / b b a a , a a c c , c c b b v,v rr  / / / [ v ,v ] v . v .sin( v,v )= r r r r r r  // v,v]v,v[ rrrr ⊥  / vv rr ⊥ ⇔ / v.v rr = 0 ; / / v // v [ v ,v ]⇔ r r r r = 0 ; /// v,v,v rrr đồng phẳng⇔ 0v].v,v[ /// = rrr  [ ] AC,AB 2 1 S ABC = ∆  [ ] AS.AC,AB 6 1 V ABC.S =  / 'D'C'B'A.ABCD AA].AD,AB[V =  A, B, C thẳng hàng ⇔ AB // AC uuur uuur  trong mp : H là trực tâm ⇔      = = 0AC.BH 0BC.AH  H là chân đường cao h a ⇔      = BC//BH 0BC.AH  M là chân phân giác trong ∧ A ⇔ MC AC AB MB −=  M là chân phân giác ngòai ∧ A ⇔ MC AC AB MB +=  I là tâm đường tròn ngoại tiếp ⇔ IA = IB = IC. 2. Mặt phẳng trong không gian :  Xác đònh bởi 1 điểm M(x o , y o , z o ) và 1 pháp vectơ : n = (A, B, C) hay 2 vtcp 'v,v .  (P) : A(x – x o ) + B(y – y o ) + C(z – z o ) = 0  n = [ 'v,v ]  (P) : Ax + By + Cz + D = 0 có n = (A, B, C).  (P) qua A(a,0,0); B(0,b,0); C(0,0,c) ⇔ (P) : x/a + y/b + z/c = 1 Cho M(x o , y o , z o ), (P) : Ax + By + Cz + D = 0  d(M,(P)) = 222 ooo CBA DCzByAx ++ +++  (P) , (P / ) tạo góc nhọn ϕ thì : cos ϕ = )n,ncos( )'P()P(  (P) ⊥ (P / ) ⇔ )'P()P( nn ⊥ , (P) // (P / ) ⇔ )'P()P( n//n 3. Đường thẳng trong không gian : 1  Xác đònh bởi 1 điểm M (x o , y o , z o ) và 1 vtcp v = (a, b, c) hay 2 pháp vectơ : 'n,n : (d) : c zz b yy a xx :)d(, ctzz btyy atxx ooo o o o − = − =      − += += +=  ]'n,n[v =  (AB) : A A A B A B A B A x x y y z z x x y y z z − − − = = − − −  (d) = (P) ∩ (P / ) : 0 0 Ax By Cz D A' x B' y C' z D' + + + =   + + + =   (d) qua A, vtcp v thì :  d(M,(d)) = v ]v,AM[ ϕ là góc nhọn giữa (d), (d / ) thì :  cosϕ = )v,vcos( / d d ϕ là góc nhọn giữa (d), (P) thì :  sinϕ = )n,vcos( pd  (d) qua M, vtcp v , (P) có pvt n :  (d) cắt (P) ⇔ n.v ≠ 0  (d) // (P) ⇔ n.v = 0 và M ∉ (P)  (d) ⊂ (P) ⇔ n.v = 0 và M ∈ (P)  (d) qua A, vtcp v ; (d / ) qua B, vtcp 'v :  (d) cắt (d / ) ⇔ [ 'v,v ] ≠ 0 , AB]'v,v[ = 0  (d) // (d / ) ⇔ [ 'v,v ] = 0 , A ∉ (d / )  (d) chéo (d / ) ⇔ [ 'v,v ] ≠ 0 , AB]'v,v[ ≠ 0  (d) ≡ (d / ) ⇔ [ 'v,v ] = 0 , A ∈ (d / )  (d) chéo (d / ) : d(d, d / ) = ]'v,v[ AB]'v,v[  (d) chéo (d / ), tìm đường⊥chung(∆) :tìm ]'v,v[n = ; tìm(P) chứa (d), // n ; tìm (P / ) chứa (d / ), // n ; (∆) = (P) ∩ (P / ).  (d) ⊥ (P), cắt (d / ) ⇒ (d) nằm trong mp ⊥ (P), chứa (d / ).  (d) qua A, // (P) ⇒ (d) nằm trong mp chứa A, // (P).  (d) qua A, cắt (d / ) ⇒ (d) nằm trong mp chứa A, chứa (d / ).  (d) cắt (d / ), // (d // ) ⇒ (d) nằm trong mp chứa (d / ), // (d // ).  (d) qua A, ⊥ (d / ) ⇒ (d) nằm trong mp chứa A, ⊥ (d / ).  Tìm hc H của M xuống (d) : viết pt mp (P) qua M, ⊥ (d), H = (d) ∩ (P).  Tìm hc H của M xuống (P) : viết pt đt (d) qua M, ⊥ (P) : H = (d) ∩ (P).  Tìm hc vuông góc của (d) xuống (P) : viết pt mp (Q) chứa (d), ⊥ (P); (d / ) = (P) ∩ (Q)  Tìm hc song song của (d) theo phương (∆) xuống (P) : viết pt mp (Q) chứa (d)// (∆); (d / ) = (P) ∩ (Q). 2

Ngày đăng: 08/09/2013, 08:10

HÌNH ẢNH LIÊN QUAN

- HÌNH HỌC GIẢI TÍCH - tom tat hinh giai tich
- HÌNH HỌC GIẢI TÍCH (Trang 1)
w