ٌٍثسٌ هللا اىشحَِ اىشح IMPLEMENTATION OF HVDC TRANSMISSION SYSTEM USING SIMULATION SOFTWARE A Report submitted in partial fulfillment of the requirement for the degree of B.Sc (HON) In Electrical and Electronic Engineering (Power system Engineering) BY MOHAMMED MOHAMMED ELHABIB AHMED MOHAMMED Under Supervision of Dr Kamal Ramadan To Department of Electrical and Electronic Engineering Faculty of Engineering University of Khartoum June 2011 Acknowledgment First of all, I would like to say Alhamdulillah, for giving me the health and strength to complete this project Thanks to my supervisor Dr Kamal Ramadan for guiding us through this project and taking by our hand me and my partner He helped us to refine our thesis and pointed out the concepts calibrating and organization Moreover, he taught us patiently until we knew what to do, he tried and tried with all sustain until we understand what is supposed to Your valuable insight, wisdom and assistance are appreciated I would like to thank the crew in the Load Dispatch Center (LDC) in Kilo x station for feeding us with the required data for the National Distribution Grid, the thanks involving Dr A.Karrar for ease our visit to Kilo x station And I would like to thank the most important people in my life, my family, and my friend who had encouraged me throughout this project Last but not least, deeply appraising to my partner Awab Abd-Elmoniem for his hard work, encouragement, team spirit, and the unforgettable times those we spent I Abstract In times of increasing of the production costs and highly competitive market, it‟s seems to be so wise to prospect for the most economical method in operating and production managing With looking to the future, the fossil fuel will be scarce and more power will have to be obtained from the sustainable energy sources The hydropower schemes which will be the major source of energy are usually planted far away from the consumption areas To interconnect the consumption to the production areas over this long distance between, the transmission systems should be suggested to be more sufficient and affecting positively in the whole system stability This project aims to develop HVDC transmission system that provides more power saving due to decreasing transmission losses, and provide more reliable transmission capabilities ETAP simulation program was chosen for this work, it provides high simulation capabilities, since it can be run in the real time execution The method developed resulted in a system that is reliable, flexible to control and provide less transmission losses and costs comparing to the prior AC system II المستخلص فً صٍبّْب ٕزا ٗاىزي شٖذ رضاٌذًا ٍضطشدًا فً رنبىٍف اإلّزبج ٗاىزشغٍوّ ،دذ أُ اىشؤٌخ اإلقزصبدٌخ صبسد اىَشاقت اىَقٌٍ إلّشبء اىَشبسٌغ ٗرشغٍيٖب ىزا فَِ اىحنَخ ثَنبُ أُ رْشظ اىجح٘س اىؼيٍَخ ص٘ة ٍشٍى اىزنيفخ األقو س٘اء أمبّذ رنيفخ إّشبء أٗ رنبىٍف اىزشغٍو ىٖزٓ اىَششٗػبد. إرا رَذدد سؤٌزْب فً اىَسزقجو ّدذ َّ أُ اىؼبىٌ سٍزدٔ إىى ٍصبدس اىطبقخ اىَبئٍخ أٗ اىشَسٍخ أٗ اىٖ٘ائٍخ ّسجخ ألسخحٍخ ّض٘ة ٍصبدس اىطبقخ اىحشاسٌخ أي ٍِ ٍصبدس اىطبقخ اىَقزشحخ ٗىْأخز اىطبقخ اىَبئٍخ فً حٍض اإلػزجبس قذ رجؼذ ٍْطقخ اإلّزبج ٍئبد اىنٍيٍ٘زشاد ػِ ٍْبطق اإلسزٖالكٗ.ىشثظ ٍْبطق اإلسزٖالك ثَصبدس ر٘ىٍذ اىطبقخ ٌز٘خت أُ ٌنُ٘ ّظبً اىْقو ػبىً اإلسزقشاسٌخ ٗأمثش حف ً ظب ىيطبقخ اىَْق٘ىخ. ٕزا اىَششٗع ٌٖذف إىى رصٌٍَ ّظبً ّقو ىيقذسح اىنٖشثبئٍخ ثإسزخذاً رقٍْخ اىدٖذ اىَجبشش اىؼبىً ٗ HVDCاىزي ٌسبػذ ػيى حفظ اىقذسح اىَْق٘ىخ ٍِ ٍْبطق اإلّزبج إىى ٍْبطق اإلسزٖالك ػجش رقيٍو فق٘داد اىْقو ػجش اىَسبفبد اىطٌ٘يخ ٗمزىل ٌسبػذ ثشنو ٍب ػيى إسزقشاسٌخ ّظبً ر٘صٌغ اىطبقخ اىنٖشثبئٍخ رٌ إسزخذاً ثشّبٍح اىَحبمبح ٗ ETAPاىزي ثٔ ٍٍضح إحز٘ائٔ ػيى إٍنبٍّخ اىزشغٍو اىحً ػيى اىشجنخ اىنٖشثبئٍخ. رٌ اىحص٘ه ػيى ّظبً ٍسزقش ثٔ فق٘داد ّقو أقو ٍَب سبػذ فً ر٘فٍش ٗحفظ اىقذسح اىَْق٘ىخ ثص٘سح خٍذح ،اىْزبئح اىَسزخيصخ رحَو رشدٍؼًب ػيى رْفٍز ٕزا اىَششٗع ػيى أسض اى٘اقغ. III Table of Contents Acknowledgment I Abstract II اىَسزخيص III Table of Contents IV List of Figures VII List of Tables VIII Abbreviations IX Chapter 1.1 OVERVIEW 1.2 STATEMENT OF THE PROBLEM 1.3 PROJECT OBJECTIVES 1.4 METHODOLOGY AND TOOLS 1.5 THESIS LAYOUT Chapter 2.1 INTRODUCTION 2.2 HISTORY OF HVDC TRANSMISSION 2.3 HVDC CONFIGURATION 2.3.1 MONOPOLE AND EARTH RETURN 2.3.2 BIPOLAR TRANSMISSION 2.3.3 BACK TO BACK SYSTEM 2.4 SYSTEMS WITH TRANSMISSION LINES 2.5 TRIPOLE, CURRENT MODELING CONTROL 2.6 ADVANTAGES AND DISADVANTAGES OF HVDC TRANSMISSION 2.6.1 ADVANTAGES 2.6.2 DISADVANTAGES 11 2.7 ENVIRONMENTAL CONSIDERATIONS 11 Chapter 14 3.1 TRANSFORMER MODEL 14 IV 3.1.1 EQUIVALENT CIRCUIT REPRESENTATION 14 3.1.2 REPRESENTATION OF THREE-WINDING TRANSFORMERS 15 3.2 TRANSMISSION LINE MODEL 17 3.2.1 ELECTRICAL CHARACTERISTICS 17 3.2.2 POWER FLOW EQUATIONS 17 3.2.3 EQUIVALENT CIRCUIT OF A TRANSMISSION LINE 17 3.3 CONVERTOR MODEL 19 3.3.1 CONVERTER THEORY AND PERFORMANCE EQUATION 19 3.3.2 VALVE CHARACTERISTICS 19 3.3.3 CONVERTER CIRCUITS 20 3.4 SYNCHRONOUS GENERATOR MODELING 35 3.4.1 INTRODUCTION 35 3.4.2 MACHINE VOLTAGE EQUATION 36 Chapter 41 4.1 SOFTWARE USED (ETAP) 41 4.1.1 INTRODUCTION 41 4.1.2 CAPABILITIES 42 4.1.3 SPECIFICATIONS 43 4.2 LOAD FLOW REQUIRED DATA 45 4.2.1 BUS DATA 45 4.2.2 BRANCH DATA 45 4.2.3 SYNCHRONOUS GENERATOR DATA 45 4.2.4 STATIC LOAD DATA 45 4.2.5 CAPACITOR DATA 46 4.2.6 LUMPED LOAD DATA 46 4.2.7 HVDC LINK DATA 46 4.2.8 OTHER DATA 47 4.3 CASE STUDY 47 4.3.1 STAGE I DATA COLLECTION AND ENTERING 47 4.3.2 STAGE II DATA REFINING 48 4.3.3 STAGE III HVDC IMPLEMENTATION 49 V Chapter 50 5.1 CONCLUSION 50 5.2 DISCUSSION 50 5.3 FUTURE WORK 51 References 52 Appendix A Simulation Model 53 Appendix B Lines Data 54 Appendix C Transformers Data 58 Appendix D Generators Data 62 Appendix E Capacitors and Reactors Data 65 Appendix F Peak Loading Data 67 Appendix G AC load Flow Report 69 Appendix H DC Load Flow Report 70 VI List of Figures Figure 2-1: Thury HVDC Transmission System Figure 2-2: Block Diagram Of A Monopole System With Earth Return Figure 2-3: Block Diagram Of A Bipolar System That Also Has An Earth Return Figure 3.1: 2-Windings Transformer Equivalent Circuit 14 Figure 3.2: Equivalent Circuit Of A Three-Winding Transformer 15 Figure 3.3: Transmission Line Equivalent Circuit 18 Figure 3.4: Major Elements Of The Convertor 19 Figure 3.5: Symbol For Controlled Valve 20 Figure 3.6: Three-Phase, Full-Wave Bridge Circuit 20 Figure 3.7: Equiv Circuit For Three-Phase Full-Wave Bridge Converter 22 Figure 3.8: Waveforms Of Voltages And Currents Of Bridge Circuit Of Figure 3.7 23 Figure 3.9: Voltage Wave Forms And Valve Currents, With Ignition Delay 25 Figure 3.10: Line Current Waveform 25 Figure 3.11: Effect Of Overlap Angle On Periods Of Conduction Of Valves 26 Figure 3.12: Periods Of Valve Conduction With Ignition Delay 27 Figure 3.13: Equivalent Circuit During Commutation 27 Figure 3.14: Valve Currents Related to Commutation Voltage 29 Figure 3.15: The Effect Of Overlap During Commutation From V1 To V2 29 Figure 3.16: Bridge Rectifier Equivalent Circuit 31 Figure 3.18: Angles Used In Rectifier And Inverter 34 Figure 3.19: Inverter Equivalent Circuits (With Positive) 35 Figure 3.20: Schematic Representation Of A Three-Phase Synchronous Generator 36 VII List of Tables Table 4.1: DC links, AC loses, DC loses for each and the percentage of saving VIII 49 Abbreviations HVDC High Voltage Direct Current LCC Line Commutated Converter CCC Capacitor Commutative Converters AVR Absolute Value Rectifier LDC Load Dispatch Center (Kilo x) IX Appendix B Lines Data ID To Bus From Bus Length RPos XPos YPos Line82 Gedarif Girba 140 0.067 0.302 4.11 Line83 Girba Kassala 66 0.067 0.302 4.11 Line84 Girba Kassala 66 0.067 0.302 4.11 Line85 ElDebba Merowi220 100 0.067 0.302 4.11 Line86 ElDebba Dongola 150 0.067 0.269 4.11 Line87 Hasahisa Giad110 77 0.348 0.421 2.7 Line88 Bus5 Hasahisa 55 0.348 0.421 2.7 Line89 HagAbdalla Bus5 35 0.067 0.302 4.11 Line90 Sennar110 HagAbdalla 60 0.067 0.302 4.11 Line91 Bus6 Sennar110 10 0.067 0.302 4.11 Line92 Giad110 Bageir 0.348 0.421 2.7 Line93 Bageir Bus2 28 0.348 0.421 2.7 Line94 MinaSharief Bus6 69 0.067 0.302 4.11 Line76 Mugran Omdurman 9.7 0.067 0.269 4.11 Line95 Mugran GAM 110 20 0.067 0.269 4.11 Line96 Mugran GAM 110 20 0.067 0.269 4.11 Line97 Khartoum Eid Babikir 12 0.067 0.302 4.11 North 110 Khartoum Eid Babikir 12 0.067 0.302 4.11 North 110 Line99 Kuku KHE 110 3.2 0.067 0.302 4.11 Line100 Kuku KHE 110 3.2 0.067 0.302 4.11 Bus5 35 0.067 0.302 4.11 Bus5 65.3 0.105 0.289 4.11 Line103 HagAbdalla Bus5 35 0.067 0.302 4.11 O.RBK110 Bus6 96 0.348 0.421 4.11 Line98 Line101 HagAbdalla Line102 Line104 MAN 110 57 Appendix C Transformers Data Appendix C Transformers data (ratings and reactance’s) Two winding Transformers ID PrimKV SecKV MVA PosX Prm Bus Sec Bus T42 220 110 150 12 KUK 110 33 90 9.3 KUK 33 KUK 33 T53 110 33 90 9.3 KUK 33 KUK 33 T54 110 33 90 9.3 KhnT1 110 11.8 41.25 12.2 Bus50 Bus50 T58 110 110 0 KhnT3 118.7 11 75 11.92 Bus52 Bus52 KhnT4 118.7 11 75 11.92 Bus53 Bus53 KhnT05 115 13.8 150 13 Bus54 Bus54 T60 220 110 60 12 T 225 10.5 50 13.79 T1 500 220 300 T2 500 220 300 T3 500 220 300 T4 525 220 300 Bus3 Bus3 T5 220 110 150 11 Mahdia110 Mahdia110 T6 220 110 150 11 Mahdia110 Mahdia110 T7 220 110 150 9.7 T8 220 110 150 9.7 T9 220 110 100 T10 220 110 100 T11 220 110 T12 220 T13 TR Bus3 Bus3 Bus2 Bus2 100 Bus2 Bus2 110 150 11 220 110 150 11 Bus3 Bus3 T14 220 110 150 12 T15 220 110 150 12 Bus4 Bus4 58 Appendix C ID Transformers Data PrimKV SecKV MVA PosX Prm Bus Sec Bus T16 500 220 150 10.8 T17 220 110 60 12 T18 220 110 80 13.8 Meringan Meringan T19 220 110 80 13.8 Bus5 Bus5 T20 220 110 55 7.65 T21 220 110 55 7.65 T31 525 220 300 T32 500 220 300 T33 500 220 300 GAD 215 33 75 11.92 T38 118.7 11 75 11.92 T45 118.7 11 75 11.92 T49 225 10.5 50 13.79 Garri Garri T63 230 11 70 15 T65 225 10.5 50 13.79 T66 230 11 50 13.6 Garri Garri T67 118.7 11 75 11.92 T68 225 10.5 50 13.79 Garri Garri T69 225 11 50 13.79 T70 230 11 70 15 T71 230 11 70 15 T72 230 10.5 50 13.79 T73 230 10.5 50 13.79 T74 230 10.5 50 13.79 T75 230 11 50 13.79 T76 225 11 50 13.79 T77 230 11 50 13.79 T78 230 11 50 13.79 T79 230 11 50 13.79 T80 230 11 50 13.79 T81 220 10.5 50 13.6 T2 59 Appendix C Transformers Data Three windings Transformers ID PrimkV SeckV TerkV PrmMVA SecMVA TerMVA PS PT ST T 220 110 33 150 150 50 12.67 26.88 12.8 T22 525 13.8 13.8 282 141 141 24.62 24.56 49.3 T23 525 13.8 13.8 282 141 141 24.62 24.56 T24 525 13.8 13.8 282 141 141 24.62 T25 525 13.8 13.8 282 141 141 T26 525 13.8 13.8 282 141 T27 220 11 11 86 T28 220 11 11 T29 220 11 T30 220 MRK TR1 500 PrmBus SecRegBus TergBus Bus1 Bus1 Bus4 49.3 Bus7 Bus7 Bus8 24.56 49.3 Bus10 Bus10 Bus9 24.62 24.56 49.3 Bus11 Bus11 Bus12 141 24.62 24.56 49.3 Bus13 Bus13 Bus14 43 43 17.9 17.9 34.3 Bus16 Bus16 Bus15 86 43 43 17.9 17.9 34.3 Bus18 Bus18 Bus17 11 86 43 43 17.9 17.9 34.3 Bus20 Bus20 Bus19 11 11 86 43 43 17.9 17.9 34.3 Bus22 Bus22 Bus21 220 33 300 300 75 16.97 43.36 24.6 Merkhiat Merkhiat MRK 33 220 220 MHDT2,3 110 33 11 70 50 20 24.54 20.48 15.5 MHD110 Bus25 Bus24 T35 110 33 11 70 50 20 24.54 20.48 15.5 Bus25 Bus25 Bus24 MUG TR1 110 33 11 100 50 20 11.6 21.8 Bus25 MUG11 T36 110 33 11 70 50 20 24.54 20.48 15.5 Bus25 MUG11 MUG TR3 110 33 11 100 100 30 11.6 21.8 Bus28 Bus29 T37 110 33 11 100 50 20 11.6 21.8 Bus25 MUG11 OMD TR 110 33 11 200 200 60 12.1 22.14 7.89 Bus32 Bus33 SHG TR 110 33 11 140 100 40 20.6 25.6 14.2 Bus32 Bus33 GAM TR1 220 110 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 T39 220 115 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 GAM TR2 220 110 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 T40 220 115 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 T41 220 115 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 T43 220 115 34.5 100 100 50 13 24.5 10 GAM 110 GAM 110 GAM 33 JAS TR1 220 110 34.5 150 150 50 13.3 24.5 9.64 Gebel Gebel Bus34 Bus25 03 Aulia 110 JAS TR2 220 110 34.5 150 150 50 13.3 24.5 9.64 Gebel Aulia 110 T46 110 33 11 70 50 20 24.54 20.48 15.5 IZG TR 110 33 11 70 50 20 20.75 26.01 14.5 T47 220 115 34.5 100 100 50 13 24.5 10 Bus25 Gebel Aulia 110 T48 220 115 34.5 100 100 50 13 24.5 10 Gebel Aulia 110 60 Aulia 110 Gebel Bus34 Aulia 110 Bus25 Bus24 IZG 33 IZG 11 Gebel Bus34 Aulia 110 Gebel Aulia 110 Bus34 Appendix C Transformers Data MHD TR4 220 110 33 150 150 50 12.67 26.88 12.8 MHD110 MHD110 Bus37 MHD TR5 220 110 33 150 150 50 12.67 26.88 12.8 MHD110 MHD110 Bus37 LOM TR 110 33 11 200 200 80 13.41 22.89 6.8 Bus37 LOM 11 T50 220 115 34.5 100 100 50 13 24.5 10 Bus37 T51 220 115 34.5 100 100 50 13 24.5 10 Bus37 T52 110 33 11 200 200 80 13.41 22.89 6.8 KHE TR 110 33 11 200 200 80 13.41 22.89 6.8 Bus40 FAR TR 110 33 11 120 80 40 18.2 24.5 9.64 FAR 33 T55 110 33 11 70 50 20 20.75 26.01 14.5 IBA TR4,5 110 33 11 70 50 20 20 24.3 14.5 T56 110 33 11 70 50 20 20.75 26.01 14.5 KLX 110 33 11 70 50 20 20 26.01 14.5 220 110 11 150 150 22.5 9.69 37.5 26.7 Bus37 LOM 11 Bus40 Bus41 FAR 33 FAR 11 IZG 33 IZG 11 Bus47 Bus47 Bus48 Bus47 Bus47 Bus48 Bus49 Bus50 Eid Babikir Bus3 TR1,2 IBA TR3 Eid Babikir 110 110 PrimkV SeckV TerkV PrmMVA SecMVA TerMVA PS PT ST PrmBus IBA TR2 220 110 11 150 150 22.5 9.69 37.5 26.7 Bus25 T44 220 110 11 150 150 22.5 9.69 37.5 26.7 Eid ID Babikir SecRegBus TergBus Bus25 Eid Babikir Eid Babikir Bus3 110 110 KLX T4 220 110 11 100 100 15 6.02 16.6 9.6 Bus2 Bus2 Bus41 KLX T6 220 110 11 100 100 15 5.96 16.23 9.52 Bus2 Bus2 Bus43 KLX T8 220 110 11 100 100 15 31.6 20 Bus2 Bus2 Bus55 T57 215 110 11 100 100 15 6.02 16.6 9.6 Bus2 Bus2 Bus41 MAR T1 220 110 11 80 80 15 14.1 23.6 7.9 Bus5 Bus5 Bus57 MAR T2 220 110 11 80 80 15 14.1 23.6 7.9 Bus5 Bus5 Bus58 T59 220 110 34.5 150 150 50 13.3 24.5 9.64 Gebel Gebel Bus34 Aulia 110 T61 220 110 34.5 150 150 50 13.3 24.5 9.64 Gebel Aulia 110 Gebel Bus34 Aulia 110 Aulia 110 Giad110 Bus61 Atbara 220 Atbara 220 Atbara 220 Atbara 220 Merkhiat Bus62 GAD T1 220 110 33 60 60 30 12.06 40.6 25.4 Giad110 ATB T3 500 220 33 300 300 75 16.8 42.8 24.3 Atbara 220 T34 500 220 33 300 300 75 16.8 42.8 24.3 Atbara 220 MRK T2 500 220 33 300 300 75 16.97 43.36 24.6 Merkhiat 220 KBA T1 500 220 33 300 300 75 16.8 42.8 24.3 Kabashi 220 61 220 Kabashi 220 Bus63 Appendix C KBA T2 500 220 33 Transformers Data 300 300 75 16.8 42.8 24.3 Kabashi 220 MRK T1 500 220 33 300 300 75 16.97 43.36 24.6 Merkhiat Kabashi Bus64 220 Merkhiat 220 220 Bus65 T62 220 110 11 80 80 15 14.1 23.6 7.9 Bus5 Bus5 Bus57 SNJ T2 220 110 33 55 55 30 39.9 30.6 Bus6 Bus6 Bus67 T64 220 110 11 80 80 15 14.1 23.6 7.9 Bus6 Bus6 Bus67 SNJ T1 220 110 11 55 55 17.5 7.7 25.9 16.9 Bus6 Bus6 Bus69 T82 500 220 33 300 300 75 16.97 43.36 24.6 62 Appendix D Generators Data Appendix D Generators data (voltage rating, active power, power factor and required data in load flow) Name Nom.Volt App.Pow Active Pow.Fact Pmin Qmax Qmin Pow Garri G1 KV MVA MW MVAR MVAR 11 41.3 37.17 0.9 20 27 -20 11 41.3 37.17 0.9 20 27 -20 11 41.3 37.17 0.9 20 27 -20 11 41.3 37.17 0.9 20 27 -20 11 41.3 37.17 0.9 20 27 -20 11 41.3 37.17 0.9 15 27 -20 11 41.3 37.17 0.9 15 27 -20 11 41.3 37.17 0.85 20 27 -20 11 41.3 37.17 0.85 15 27 -20 11 41.3 37.17 0.85 15 27 -20 11 41.3 37.17 0.85 20 27 -20 11 41.3 37.17 0.85 20 27 -20 11 70 60 0.85 30 27 -15 11 70 60 0.85 30 27 -15 (GAS1) Garri G2 (GAS2) Garri G3 (ST01) Garri G4 (GAS3) Garri G5 (GAS4) Garri G6 (ST02) Garri G7 (GAS5) Garri G8 (GAS6) Garri G9 (ST03) Garri G10 (GAS7) Garri G11 (GAS8) Garri G12 (ST04) Garri G13 (ST09) Garri G14 (ST10) 62 Appendix D Name Generators Data Nom.Volt App.Pow Active Pow.Fact Pmin Qmax Qmin Pow 11 41.25 Merowe G1 13.8 140 127.3 0.9 67 60 -60 Merowe 13.8 140 127.3 0.9 67 60 -60 Merowe G2 13.8 140 127.3 0.9 67 60 -60 Merowe G3 13.8 140 127.3 0.9 67 60 -60 Merowe G4 13.8 140 127.3 0.9 67 60 -60 Merowe G5 13.8 140 127.3 0.9 67 60 -60 Merowe G6 13.8 140 127.3 0.9 67 60 -60 Merowe G7 13.8 140 127.3 0.9 67 60 -60 Merowe G8 13.8 140 127.3 0.9 67 60 -60 Merowe G9 13.8 140 127.3 0.9 67 60 -60 Roseires G1 11 44.5 40 0.9 16 -16 Roseires G2 11 44.5 40 0.9 16 -16 Roseires G3 11 44.5 40 0.9 16 -16 Roseires G4 11 43 40 0.9 16 -16 Roseires G5 11 43 40 0.9 16 -16 Roseires G6 11 43 40 0.9 16 -16 Roseires G7 11 43 40 0.9 16 -16 Sennar G1 11 9.4 7.5 0.8 5.6 Sennar G2 11 9.4 7.5 0.8 5.6 Khartoum 11 41.25 30 0.8 15 17 -7 11 41.25 30 0.8 15 17 -7 11 75 60 0.8 30 45 -15 11 75 60 0.8 30 45 -15 11 137.5 110 0.85 45 105 -75 11 137.5 110 0.85 45 105 -75 Jebel Aulia 0.8 G1 G10 North G1 Khartoum North G2 Khartoum North G3 Khartoum North G4 Khartoum North G5 Khartoum North G6 63 Appendix D Name Generators Data Nom.Volt App.Pow Active Pow.Fact Pmin Qmax Pow Khartoum 11 23.5 17 0.8 10.6 11 25 17 0.8 10.6 11 25 17 0.8 10.6 6.6 4.5 2.5 0.8 1.9 6.6 3.5 0.8 1.5 North Gas Khartoum North Gas Khartoum North Gas GBA disel GT1 GBA disel GT2 64 Qmin Appendix E Capacitors and Reactors Data Appendix E Capacitors and reactors data (MVA rating) Station name capacitor capacitor type name rated reactive power (MVar) ATB CAP parallel_capacitance IBAB CAP parallel_capacitance 2.5 IZGB CAP1 parallel_capacitance 5.0 KHN CAP1 parallel_capacitance 5.3 KHN CAP2 parallel_capacitance 5.3 HAS CAP parallel_capacitance 2.5 KUKU CAP1 parallel_capacitance 5.3 KUKU CAP2 parallel_capacitance 5.3 KUKU CAP3 parallel_capacitance 5.3 KUKU CAP4 parallel_capacitance 5.3 KLX RC1 parallel_reactance 15.0 KLX RC2 parallel_reactance 15.0 MAR CAP parallel_capacitance 5.0 MAR RC1 parallel_reactance 15.0 MAR RC2 parallel_reactance 15.0 SHN CAP parallel_capacitance 5.0 ROS RC1 parallel_reactance 15.0 ROS RC2 parallel_reactance 15.0 SHG CAP parallel_capacitance 2.5 MRW RC1 parallel_reactance 125 MRW RC2 parallel_reactance 125 MRK RC1 parallel_reactance 125 MRK RC2 parallel_reactance 125 ATB RC1 parallel_reactance 125 BAGIR CAP parallel_capacitance 2.5 DEB RC parallel_reactance 20 KHE CAP1 parallel_capacitance KHE CAP2 parallel_capacitance 65 Appendix E Capacitors and Reactors Data Capacitor capacitor rated reactive power name type (MVar) Local_Market CAP1 parallel_capacitance Local_Market CAP2 parallel_capacitance MHD1 CAP parallel_capacitance MSH RC1 parallel_reactance 15 MSH RC2 parallel_reactance 15 RBK RC1 parallel_reactance 15 RBK RC2 parallel_reactance 15 OMD CAP parallel_capacitance 2.5 SENJ CAP parallel_capacitance 2.5 SENJ RC1 parallel_reactance 15 SENJ RC2 parallel_reactance 15 MWP RC1 parallel_reactance 125 MWP RC2 parallel_reactance 125 Station name 66 Appendix F Peak Loading Data Appendix F Loading data on main bus-bars (110,220) JUNE 15 2010 / Morning Peak / Max Values (Generation=1292 MW) no S/S P Q no S/S P Q KLX 36.4 20 25 GAD 39.5 24.7 SHG 64.3 34.7 26 SNJ 16.3 4.7 MUG 123.9 53.8 27 MAR 46.7 33.4 FAR 65.7 27.5 28 ROS 7.5 4.7 KHE 131.8 63.4 29 HAG 4.2 1.7 LOM 52 31.5 30 HAS 36.3 24.9 BAG 19.6 13.1 31 MIN 14.9 6.2 JAS 17.4 7.2 32 SNJ/RBK 21.3 5.5 511.1 251.2 33 MAN 12.3 3.3 199 109.1 OMD 85.9 46.3 10 MHD 79.7 46.1 34 POR 35.8 17.2 165.6 92.4 35 KSL 16 10 36 FAO 2.5 11 IZG 56.2 31.9 37 HAF 4.3 12 KUK 64.9 27.1 38 GRB 2.4 13 IBA 47.8 27.2 39 GDF 14 FRZ 10.3 7.2 73.8 41.4 179.2 93.4 15 SHN 13.4 7.1 40 MSH 0 16 ATB 36.7 10.2 41 GAM 0 17 MWT 10 42 HWT 0 18 DBA 2.2 43 JAP 0 19 DON 10.6 44 KAB 0 75.7 27.5 45 KHN 0 20 TND 0.6 47 MWP 0 21 OBD 14.2 10 48 SNG 0 67 Appendix F Peak Loading Data no S/S P Q no S/S P Q 22 UMR 2.4 1.9 49 GAR 0 23 RBK 9.4 6.4 24 RNK 0.2 0.1 Total Load (MW) 27.2 19 Total Generation (MW) 68 1231.6 1292 Appendix G AC Load Flow Summary (ETAP) Appendix G AC Load Flow Summary, ETAP Report 69 Appendix H DC Load Flow Summary (ETAP) Appendix H DC Load Flow Summary, ETAP report 70 ... LAYOUT Chapter 2.1 INTRODUCTION 2.2 HISTORY OF HVDC TRANSMISSION 2.3 HVDC CONFIGURATION 2.3.1 MONOPOLE AND EARTH RETURN 2.3.2 BIPOLAR... transmission network The backbone of this network could be HVDC Chapter Introduction 1.3 Project objective The objective of this project is to develop HVDC transmission system upon Sudan national electrical... stability of the associated ac power system, since HVDC system has the ability to rapidly control the transmitted power Instate a basic of HVDC transmission that may be developed at the future