1. Trang chủ
  2. » Đề thi

Đề khảo sát Toán THPT Quốc gia 2019 lần 3 trường Thiệu Hóa – Thanh Hóa

18 57 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 681,24 KB

Nội dung

SỞ GIÁO DỤC & ĐÀO TẠO THANH HÓA TRƯỜNG THPT THIỆU HÓA Mã đề thi: 132 THI KHẢO SÁT THPT QUỐC GIA LẦN NĂM HỌC: 2018-2019 Mơn: Tốn Thời gian làm bài: 90 phút; (50 câu trắc nghiệm) Họ, tên thí sinh: Số báo danh: Câu 1: Cho hàm số y = f ( x ) xác định, liên tục  có bảng biến thiên sau: Tìm tất giá trị thực tham số m để phương trình f ( x ) − =m có hai nghiệm A −2 < m < −1 B m = −2 , m ≥ −1 Câu 2: Đồ thị sau hàm số nào? A y = x+2 x +1 B y = Câu 3: Tính giá trị a log a x+3 1− x C m > , m = −1 C y = 2x +1 x +1 D y = A y logπ ( x + 1) = x −1 x +1 với a > 0, a ≠ A C 16 B Câu 4: Trong hàm số đây, hàm số nghịch biến tập số thực  ? D m = −2 , m > −1 x π  B y =   3 D x 2 D y =   e C y = log x mx + với tham số m ≠ Giao điểm hai đường tiệm cận đồ thị hàm số x − 2m thuộc đường thẳng có phương trình đây? 0 A x + y = B x − y = C y = x D x + y = Câu 5: Cho hàm số y = Câu 6: Tìm hệ số góc tiếp tuyến đồ thị hàm số y = A B − 4x điểm có tung độ y = − x−2 D − C −10 1  Câu 7: Giá trị nhỏ nhất, lớn hàm số y= x − ln x đoạn  ; e  theo thứ tự là: 2  A e B + ln C e − D + ln e − Trang 1/6 - Mã đề thi 132 - https://toanmath.com/ có hai Câu 8: Giá trị tham số m thuộc khoảng sau để phương trình x − m.2 x +1 + 2m = nghiệm x1 , x2 thoả mãn x1 + x2 = A m ∈ (1;3) 9 2   C m ∈ ( 3;5 ) B m ∈  ;5  Câu 9: Rút gọn biểu thức A = a 11 a với a > ta kết A = a a −5 phân số tối giản Khẳng định sau đúng? D m ∈ ( −2; −1) m an m,n ∈ * m n A m + n = B m − n = C m − n = D m + n = 312 543 −312 409 Câu 10: Cho hàm số y = f ( x ) có đồ thị hình bên Tìm số điểm cực trị hàm số y = f ( x ) A B C D Câu 11: Một chất điểm chuyển động theo quy luật s ( t ) =−t + 6t với t thời gian tính từ lúc bắt đầu chuyển động, s ( t ) quãng đường khoảng thời gian t Tính thời điểm t vận tốc đạt giá trị lớn A t = B t = D t = C t = Câu 12: Gọi T tổng nghiệm phương trình log x − 5log x + = Tính T A T = 84 Câu 13: Hàm số f ( x ) = A −1 D T = −5 C T = B T = + x + − x − x + x đạt giá trị lớn x bằng: D C B Một giá trị khác Câu 14: Gọi m M giá trị nhỏ giá trị lớn hàm số y =x − − x Tính tổng M + m A M + m =2 − ( ) B M + m = − ( ) C M + m = + D M + m = Câu 15: Cho hình lăng trụ tam giác ABC A ' B ' C ' có AB  2a , A ' A  a Tính thể tích V khối lăng trụ ABC A ' B ' C ' theo a A V  3a B V  a C V  3a D V  a3 Câu 16: Cho hình chóp tứ giác S ABCD có cạnh đáy a chiều cao a Tính khoảng cách d từ tâm O đáy ABCD đến mặt bên theo a A d = a B d = a C d = a D d = 2a Câu 17: Cho hình lập phương ABCD A′B′C ′D′ có đường chéo a Tính thể tích khối chóp A′ ABCD A 2a B a3 C a D 2a Trang 2/6 - Mã đề thi 132 - https://toanmath.com/ Câu 18: Tìm họ nguyên hàm hàm số y = x − 3x + x3 − 3x + + C , C ∈  x x x − − ln x + C , C ∈  C ln x x 3x − − + C, C ∈  ln x x 3x − + ln x + C , C ∈  D ln A B 0 Câu 19: Cho tích= phân I ∫= f ( x ) dx 32 Tính tích phân J = ∫ f ( x ) dx A J = 64 B J = Câu 20: Tìm nguyên hàm hàm số f ( x) = C J = 32 4x − 3 +C 2 D ∫ = dx ln(2 x − ) + C 4x − 2 ln x − + C C ∫ = dx ln x − + C 4x − 2 A D J = 16 dx ∫ x − 3= B dx ∫ x − 3= 2ln x − cos x − khoảng ( 0; π ) Biết sin x Chọn mệnh đề mệnh đề sau Câu 21: Cho hàm số F ( x ) nguyên hàm hàm số f ( x ) = giá trị lớn F ( x ) khoảng ( 0; π )  2π A F   3  =   5π  B F  = −   π  C F  =  3−4 6 π  D F   = − 3 Câu 22: Một hình trụ có thiết diện qua trục hình vng, diện tích xung quanh 36π a Tính thể tích V lăng trụ lục giác nội tiếp hình trụ A V = 27 3a B V = 24 3a C V = 36 3a D V = 81 3a Câu 23: Cho hình lập phương tích 64a Thể tích khối cầu nội tiếp hình lập phương A V = 8π a B V = 16π a C V = 64π a D V = 32π a Câu 24: Cho khối nón có bán kính đáy r = 3, chiều cao h = Tính thể tích V khối nón A V = 9π C V = 3π B V = 3π 11 D V = π Câu 25: Trong không gian với hệ toạ độ Oxyz , gọi (α ) mặt phẳng song song với mặt phẳng ( β ) : x − y + z + =0 cách điểm A ( 2; −3; ) khoảng k = Phương trình mặt phẳng (α ) là: A x − y + z − = x − y + z − 13 = C x − y + z − = B x − y + z − 25 = D x − y + z − 25 = x − y + z − = 0 phương Câu 26: Điều kiện cần đủ để phương trình x + y + z + 2x + 4y − 6z + m − 9m + =là trình mặt cầu A −1 ≤ m ≤ 10 B m < −1 m > 10 C m > D −1 < m < 10 Câu 27: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu ( S ) có phương trình x + y + z = điểm A ( 0; − 1; ) Gọi ( P ) mặt phẳng qua A cắt mặt cầu ( S ) theo đường tròn có chu vi nhỏ Phương trình ( P ) A y − z + = B x − y + z − = C − y + z + = D y − z − = Câu 28: Trong không gian Oxyz , cho điểm A ( 2; −1;6 ) , B ( −3; −1; −4 ) , C ( 5; −1;0 ) , D (1; 2;1) Tính thể tích V tứ diện ABCD Trang 3/6 - Mã đề thi 132 - https://toanmath.com/ A 40 B 60 C 50 D 30 Câu 29: Trong không gian Oxyz , cho bốn điểm A ( 6; −2;3) , B ( 0;1;6 ) , C ( 2;0; −1) , D ( 4;1;0 ) Gọi (S) mặt cầu qua điểm A, B, C, D Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) điểm A A 4x − y − = B 4x − y − 26 = C x + 4y + 3z − =0 D x + 4y + 3z + =0 0 Câu 30: Trong không gian với hệ trục tọa độ Oxyz , cho điểm G (1;4;3) Viết phương trình mặt phẳng cắt trục Ox, Oy, Oz A, B, C cho G trọng tâm tứ diện OABC ? A x y z + + = 16 12 B x y z + + = 16 12 C x y z + + = 12 D x y z + + = 12 18  x 4 Câu 31: Tìm hệ số số hạx − 5log x + = Vậy T = 84 ⇔ log 32 x − 5log x + = 0⇔ ⇔ log x 4=  x 81 = Câu 13: Chọn C Điều kiện x ∈ [ −3;5] Đặt t= + x + − x , x ∈ [ −3;5] t2 = + ( + x )( − x ) ≥ ⇒ t ≥ (1 2 ,= t + x + − x ≤ + 12 ) ( + x + − x= )  t −    t2 −  f = t + − 15 Suy t ∈  2;  − x = Khi   , t ∈  2;  15 + 2x  −         f ' = + 6t ( t − ) > 0, ∀t ∈  2;  ⇒ f max = f (4) Với t = ⇒ x = − x2 + x Câu 14: Chọn B Điều kiện: − x ≥ ⇔ −2 ≤ x ≤ y′ = ( ) ( − x2 − ; y ( 2) = ; 0⇔ x= ; y′ = ) −2 Vậy M + m =2 − 2 =2 − y ( −2 ) = −2 ; y − = AB  a2 Thể tích V khối lăng trụ ABC A ' B ' C ' là: V= AA' = S ABC 3a ABC A' B' C' Câu 15: Chọn C Diện tích tam giác ABC là: S ABC  Câu 16: Chọn A S H A D M O C B Gọi M trung điểm AB , H hình chiếu O lên OM ta có: OH ⊥ ( SAB ) Xét tam giác SHO ta có: 1 a = + = + = ⇒ OH = 2 OH OM OS a 2a 2a Câu 17: Chọn B Áp dụng định lí Pitago, ta có: AC ′2 = AA′2 + AC = AA′2 + AB + AD = AB ⇔ 3a = AB ⇔ AB = a VA= ′ ABCD a3 1 AA′.= S ABCD = a.a 3 Câu 18: Chọn B ∫ 1 x 3x  x − − + C, C ∈   x − + dx = x ln x  Câu 19: Chọn D Đặt t = x ⇒ Khi đó: J = dt = dx Đổi cận x = ⇒ t = ; x = ⇒ t = 4 1 = 32 16 f ( t )= dt 2 ∫0 Câu 20: Chọn C Có dx ∫ ∫ x − 3= 2x − = dx ln x − + C 2 cos x = dx − ∫ dx x sin x cos x − = − + cot x + C F ′ ( x ) = f ( x ) = sin x sin x Câu 21: Chọn C.Ta có: F ( x ) = = ∫ f ( x ) dx ∫ sin ∫ sin x d ( sin x ) − ∫ dx sin x π Trên khoảng ( 0; π ) , F ′ ( x ) = ⇔ cos x − =0 ⇔ x = Giá trị lớn F ( x ) khoảng ( 0; π ) nên ta có: 3 π  +C = ⇔ C = F = ⇔− − + cot x + Vậy F ( x ) = sin x 3 π  Do F  =  3−4 6 Câu 22: Chọn D Thiết diện qua trục hình hình trụ hình vng ADD′A′ Gọi O , O′ hai tâm đường tròn đáy S xq 2= π rl 36π a ⇔ 2π r.2r = (hình vẽ) ⇒ l = 36π a ⇒ r = 2r ; Theo giả thiết ta có: = 6a 3a ⇒ l = Lăng trụ lục giác nội tiếp hình trụ ABCDEF A′B′C ′D′E ′F ′ có chiều cao h = 6a ( 3a ) 6.= S ABCDEF= = SOAB = VABCDEF A′B′C ′D ′E ′F ′ Câu 23: Chọn D 27 a (vì OAB đều, cạnh 3a ) 2 27 a = 6a 81a 3 Khối lập phương tích 64a nên cạnh 4a Khối cầu nội tiếp hình lập phương có bán kính = R = V 4a = 2a nên thể tích khối cầu 4 32π a 3 = π R3 π (= 2a ) 3 9π 2 = πr h π = 3 Câu 25: Chọn D Vì (α ) / / ( β ) ⇒ (α ) : x − y + z + m = ( m ≠ 3) Câu 24: Chọn C Thể tích khối nón: = V Giả thiết có d ( A, (α ) ) = ⇔ 32 + m  m = −14 3⇔ =  m = −50 Vậy (α ) : x − y + z − = , (α ) : x − y + z − 25 = Câu 26: Chọn D x + y + z + 2x + 4y − 6z + m − 9m + = ⇔ ( x + 1) + ( y + ) + ( z − 3) = −m + 9m + 10 2 Do điều kiện cần đủ để phương trình cho phương trình mặt cầu −m + 9m + 10 > ⇔ −1 < m < 10 Câu 27: Chọn A Mặt cầu ( S ) có tâm O ( 0; 0; ) bán kính R = A ( 0; − 1; ) điểm nằm bên mặt cầu ( S ) ( P ) mặt phẳng qua A cắt mặt cầu ( S ) theo đường tròn có bán kính r Gọi H hình chiếu O lên ( P ) Ta có r= R − OH rmin ⇔ OH max ⇔ H ≡ A  Khi ( P ) nhận OA = ( 0; − 1; ) vectơ pháp tuyến Vậy phương trình ( P ) : y − z + = Câu 28: Chọn D   AB = ( −5;0; −10 )      ⇒ AB ∧ AC =( 0; −60;0 )     V AB ∧ AC AD = 30 AC ( 3;0; −6 )  =  ⇒=   AD = ( −1;3; −5)  Câu 29: Chọn B   Gọi tâm mặt cầu I ( x; y; z ) AI = ( x − 6; y + 2; z − 3) , BI = ( x; y − 1; z − ) ,   CI =( x − 2; y; z + 1) , DI =( x − 4; y − 1; z ) Ta có: IA = IB = IC = ID suy ( ) ( x − )2 + ( y + )2 + ( z − 3)2 = ( x − )2 + ( y − 1)2 + z  2 2  IA = IB2 = IC2 = ID ⇔  x + ( y − 1) + ( z − ) = ( x − ) + ( y − 1) + z ⇒ I(2;-1;3)  2 2 2 ( x − ) + y + ( z + 1) =( x − ) + ( y − 1) + z Vậy mặt phẳng cần tìm qua A vng góc với IA x − y − 26 = Câu 30: Chọn A +) Do A, B, C thuộc trục Ox, Oy, Oz nên A(a;0;0), B(0; b;0), C (0;0; c) +) Do G trọng tâm tứ diện OABC nên suy ra= a 4,= b 16,= c 12 +) Vậy phương trình đoạn chắn mặt phẳng ( ABC ) là: 18k 18 18  x 4  x Câu 31: Chọn A Ta có:      C18k    x    k 0 x y z + + = 16 12 k 18       23k 18 C18k x182 k  x  k 0 x182 k  x  18  2k   k  18  x 4 Hệ số số hạng không chứa x khai triển    là: 23.918 C189  29 C189  x  Câu 32: Chọn A Số phần tử không gian mẫu: n ( Ω ) =300 Số số tự nhiên nhỏ 300 mà chia hết cho là: ( ) ⇒P A = ( ) =100 =1 ⇒ P ( A) =1 − =2 297 − + 1= 100 ⇒ n A = 100 ( ) n A n (Ω) 300 Câu 33: Chọn B Điều kiện: cos x ≠ 3 (*) Khi x x π sin  −  tan x − cos = 2 4 1 π   sin x  − cos  x −   = (1 + cos x) ⇔ (1 − sin x ) sin x = (1 + cos x) cos x  2   cos x  ⇔ (1 − sin x ) (1 − cos x)(1 + cos x) = (1 + cos x)(1 − sin x)(1 + sin x) ⇔ (1 − sin x)(1 + cos x)(sin x + cos x) = ⇔ sin x = π π ⇔ cos x = −1 ⇔ x = + k 2π , x = π + k 2π , x = − + kπ ( k ∈ Z )  tan x = −1 π Kết hợp với điều kiện (*) ta có tập nghiệm PT là: x= π + k 2π , x =− + kπ (k ∈ Z )  x= m − Câu 34: Chọn A Ta có y ′ =3x − 6mx + ( m − 1) y ′= ⇔   x= m + Vì hàm số bậc ba với hệ số a= > nên điểm cực tiểu hàm số A ( m + 1; −3m − ) −3x + , hệ Lại có −3m − =−3 ( m + 1) + nên điểm cực tiểu hàm số thuộc đường thẳng d : y = số góc k = −3 ) f '( x) − 2(1 − x) Câu 35: Chọn D Trên [ −4;3] Ta có : g '( x=  x = −4 g '( x) =0 ⇔ f '( x) =− x ⇔  x =−1  x = Bảng biến thiên x −4 g '( x) −1 − + g ( x) Hàm số g ( x) đạt GTNN điểm x0 = −1 (1) Câu 36: Chọn D Đặt = t e x (t > 0) Phương trình cho trở thành: t − 2mt + m − m = Phương trình cho có hai nghiệm phân biệt nhỏ < t1 < t2 < e loge ⇔ (1) có hai nghiệm phân biệt log e ∆' > m > m − m + m >    21 − 41 21 + 41 af (10 ) >  100 − 20m + m − m > m < ∨m> ⇔ ⇔ = 10 ⇔  2 S 0 < m < 10 0 < m < 10 0 < < 10 m − m >    m < ∨ m >  P > { Mà m ∈  nên m ∈ 2; 3; 4; 5; 6; 7} Vậy tổng T = + + + + + = 27 Câu 37: Chọn C.Ta có y x ( e x ) ≥ x y ( e y ) ⇔ x ln y + xe y ≥ y ln x + ye x ⇔ ey ex ln y + e y ln x + e x ≥ y x 1 t  t  + e  t − e − ln t et ( t − 1) + − ln t g ( t ) ln t + et t  Xét hàm= số f ( t ) , t= > ta có f ′ ( t )  = = t t2 t2 t2 Hàm số g ( t= ) et ( t − 1) + − ln t có g ′ ( t=) et ( t − 1) + et − > 0∀t > Suy g ( t ) > g (1) > t Suy f ′ ( t ) > 0∀t > Hàm số f ( t ) đồng biến (1; +∞ ) f ( y ) ≥ f ( x ) ⇔ y ≥ x 1 P= log x xy + log y x = (1 + log x y ) + Đặt log x y = u với y ≥ x ⇒ u ≥ log x y 1 u 1 1+ 2 (1 + u ) + = + + ≥ + Vậy GTNN P u 2 u 2 Câu 38: Chọn A x 3  Do y  đường tiệm cận ngang đồ thị hàm số Ta có: lim y  lim x x x  x  m Suy P = x 3 có hai đường tiệm cận phương trình x  x  m  x  xm nghiệm kép x  có hai nghiệm phân biệt x1  3; x2  TH1:   4m   m   (loại)  x1  3. x2  3  Để đồ thị hàm số y  TH2:   4m   m   có  x1 x2  3 x1  x2     m  3.1    m  12 Số giá trị m thỏa mãn là: 2019  12   2008 Câu 39: Chọn A Ta có: y=′ f ′ ( x + x − m ) = ( x + 3) f ′ ( x + x − m )  x ≤ −3 Ta có: f ′ ( x ) = f ′ ( x ) < ⇔ −3 < x < ( x − 1)( x + 3) suy f ′ ( x ) ≥ ⇔  x ≥ Hàm số đồng biến khoảng ( 0; ) y′ ≥ ⇔ ( x + 3) f ′ ( x + x − m ) ≥ Do x ∈ ( 0; ) nên x + > Do đó, ta có:  m ≥ max ( x + x + 3) 2   x x m + − ≤ − 3 m ≥ x + x + ( 0;2 ) ⇔ y′ ≥ ⇔ f ′ ( x + 3x − m ) ≥ ⇔  ⇔  m ≤ x + x − ( )  x + 3x − m ≥  m ≤ x + 3x − ( 0;2 )   m ≥ 13 ⇔  m ≤ −1 Do m ∈ [ −10; 20] nên giá trị nguyên m thỏa yêu cầu đề là: −10, −9, −8, −7, −6, −5, −4, −3, −2, −1,13,14,15,16,17,18,19, 20 Vậy có 18 giá trị nguyên m thỏa yêu cầu đề Câu 40: Chọn B Đặt ∫= ex f(x)dx +) Ta = có k f "(x)dx ∫ e= k x 1 '(x)) e f '(x) − ∫ ex f '(x)dx = ex f '(x) − k ⇒ = 2k (ef '(1) − f'(0)) ∫ e d(f= 1 x = ∫ e f '(x)dx +) Vậy ex f '(x)dx ∫= = ∫ e f "(x)dx x +) Ta có = k 1 x x 0 0 1 x = ex f(x) − ∫ ex f(x)dx = ex f(x) − k ⇒= 2k (ef(1) − f(0)) ∫ e d(f(x)) 0 0 ef '(1) − f '(0) =1 ef(1) − f(0) Câu 41: Chọn D Ta có: f ( x= ) ∫ f ′ ( x ) dx= ∫ x − dx= ln x − + C Khi đó: f ( −1)= ln + C1 ; f ( 0= 3) ln + C4 ) C=2 2018 ; f ( 2=) C=3 2019 ; f (=  ∫ f ′ ( x ) dx = ∫ x − dx ⇔ f ( 3) − f ( 2=) ln ⇔ ln + C4 − C3 = ln ⇒ C3 = C4 − ln ⇒ C1 = C2 dx ⇔ f ( ) − f ( −1) = − ln ⇔ C2 − C1 − ln = x − −1  ∫ f ′ ( x ) dx =∫ −1 Vậy S = f ( 3) − f ( −1) = C4 − C1 = 2019 − 2018 = Câu 42: Chọn B A' Q C' B' M P A N C B = VA′ ABC V2 ⇒ V= V= V2 A′ BCC ′B′ M BCC ′B′ 3 7 S BCC' B' , SC' PQ S BCC' B' , S BCPN S BCC' B' = = 15 40 24 11 Suy S NPQ = S BCC' B' − S B' NQ − SC' PQ − S BCPN = S BCC' B' 30 V 11 11 11 Do = V1 V= VM= V2 hay = BCC ′B′ M NPQ V2 45 30 45 Mà S B' NQ = Câu 43: Chọn D Gọi I  DM  AB K  MN  SB Ta có: B, N trung điểm MC , SC nên K trọng tâm tam giác SMC Và BI đường trung bình tam giác MCD V MB MK MI 1 Khi MBKI         VMBKI  VMCND  VBKICND  5VMBKI VMCND MC MN MD +) Ta tính thể tích khối SABCD :   60 a, a ABCD  BAD hình thoi cạnh góc đều, cạnh BAD 2 a a   45  SA  OA  a Mặt khác  SBD  ,  ABCD   SOA  S ABCD  S ABD   2 1 a a a  VSBCD   SA  S ABCD     3 2 +) Tính thể tích khối KMIB 1 1 1 a a a3   VKMIB   d  K ,  MIB  S MIB   d  S ,  MIB  S MIB   SA   S ABD   3 18 48 3 3 5a a 5a 7a V Do đó: V2  V1     1 48 48 48 V2 Câu 44: Chọn A Gọi thể tích khối trụ V , diện tích tồn phần hình trụ S Ta có: S = S2 day + S xq = 2π R + 2π Rh Từ suy ra: V2  S  S3 S S V V V Cauchy V hay 27 ≤ ⇔ V ≤ = R + Rh ⇔ = R2 + = R2 + +   4π  2π  54π 2π 2π πR 2π R 2π R ≥ 4π Vậy Vmax = V π R h Rh S3 Dấu “=” xảy ⇔= hay h = R R2 = = 2π R 2π R 54π Khi = S 6π R ⇒ = R S S và= h 2= R 6π 6π Câu 45: Chọn B B′ A M ( xOy ) B Phương trình ( xOy ) : z = Vì z A z B = ( −3) < nên A , B nằm khác phía so với ( xOy ) Gọi B′ điểm đối xứng B qua ( xOy ) Khi đó: MA − MB = MA − MB′ ≤ AB′ Suy MA − MB lớn M , A , B′ thẳng hàng hay M giao điểm đường thẳng AB′ ( xOy ) Mà B′ ( −1;4;3) Suy tọa độ M ( 5;1;0 )    Câu 46: Chọn C Ta có DA = ( 6;0;0 ) , DB = ( 0; 2;0 ) , DC = ( 0;0;3) nên tứ diện ABCD tứ diện ( x − 6) vuông đỉnh D Giả sử M ( x + 1; y + 2; z + 3) Ta có MA = MB = = 3MD x + ( y − ) + z ≥ y − ≥ − y MC = 3( x2 + y + z ) ≥ ( x + y + z) 2 + y2 + z2 ≥ x − ≥ − x , x + y + ( z − 3) ≥ z − ≥ − z , ≥ x+ y+z Do P ≥ ( − x ) + ( − y ) + ( − z ) + ( x + y + z ) = 11  x= y= z= 6 − x ≥  Vậy P đạt giá trị nhỏ 11 , 2 − y ≥ ⇔ x = y = z =0 3 − z ≥   x + y + z ≥ Khi M (1; 2;3) suy OM = 12 + 22 + 32 = 14 Câu 47: Chọn A Gọi Ω không gian mẫu, A biến cố “gieo súc sắc năm lần liên tiếp có tích số chấm xuất năm lần gieo số tự nhiên có tận ” Gieo súc sắc năm lần liên tiếp nên nΩ = 65 Để tích số chấm xuất năm lần gieo số tự nhiên có tận mặt xuất phải có số chấm lẻ xuất mặt chấm lần nên nA = 35 − 25 = 221 nA 221 = nΩ 7776 Suy ra: P ( A = ) Câu 48: Chọn C Gọi q cơng bội cấp số nhân ( bn ) Vì b2 > b1 ≥ nên q > f ( log 2= + log q ) f ( log ( b1 ) ) ( b2 ) ) + f ( log ( b1 ) ) ⇔ f ( log ( b1)= ⇔ ( log ( b1 ) + log q ) − ( log ( b1 ) + log= q) + ( log ( b ) ) − 3log ( b1 ) ⇔ ( log ( b1 ) ) log q + 3log ( b1 ) ( log q ) + ( log q ) − 3log q + = 2 ⇔ 3log ( b1 ) log q log ( b1 ) + log q  + ( log q + )( log q − 1) = (*) log ( b ) ≥ Theo giả thiết  Do để (*) nghiệm log q > ( ) b = log ( b1 ) = ⇔  q = log q = Vậy nên bn= 2n −1 > 5100 ⇔ n > log 5100 + Vậy giá trị nhỏ n 234 Câu 49: : Chọn B (Điều kiện: x ≥ ) x − + m x += x − x + (*) Ta có với x ≥ Chia hai vế phương trình (*) cho x + ta có: x −1 x −1 + m =4 (1) Đặt=t x +1 x +1 4 x −1 x −1 t4 ⇒= x +1 x +1 Với x ≥ hàm số ≤ x −1 =1− < 1⇒ ≤ t4 < ⇔ ≤ t < x +1 x +1 (1): 3t − 2t + m = ( ) Phương trình (*) có nghiệm ⇔ phương trình (2) có nghiệm: ≤ t < Xét hàm= y f (= t ) 3t − 2t [ 0;1) ta có: t f ' ( t ) = 6t − = ⇔ t = ∈ [ 0;1) Từ bảng biến thiên ta thấy để phương trình 3t − 2t + m = có nghiệm [ 0;1) đường thẳng y = −m phải cắt đồ thị hàm số f '(t ) f (t ) - 0 = y f (= t ) 3t − 2t điểm Do + − 1 − ≤ −m < ⇔ −1 < m ≤ Vậy −1 < m ≤ phương trình cho 3 có nghiệm Câu 50: Chọn D A M O N B D P C  MN = ( 2; −2 ) ⇒ Phương trình MN : x + y − =  P ∈ AC : x − y − =0 5 3 ⇒ P ;   2 2  P ∈ MN : x + y − = =  )Lại có, tứ giác AMBN nội tiếp nên BAN  = BMN  ABCD nội tiếp Có: BAN ADB (cùng phụ NAD   ⇒ ∆MPC cân P Lại có tam giác AMC vuông M nên  = BCP ADB =  ACB Từ suy BMP 5 3 P  ;  , M ( 0; ) ⇒ PM = = PA 2 2   5 Do A ∈ AC : x − y − = ⇒ A ( a; a − 1) ⇒ PA =  a − ; a −  2  nên = PA PM = PC a = 5 25  suy A ( 0; −1) x A < PA = ⇔ 2 a −  = ⇔  2  a =   A ( 0; −1) , M ( 0; ) , N ( 2; ) ⇒ AM AN ( 2;3) suy phương trình đường thẳng = ( 0;5 ) , = BC = : y 4, BD : x + y= − 10 B ∈ BC : y =  ⇒ B ( −1; ) Do   B ∈ BD : x + y − 10 = 10 ... A 2a B a3 C a D 2a Trang 2/6 - Mã đề thi 132 - https://toanmath.com/ Câu 18: Tìm họ nguyên hàm hàm số y = x − 3x + x3 − 3x + + C , C ∈  x x x − − ln x + C , C ∈  C ln x x 3x − − + C,... trụ A V = 27 3a B V = 24 3a C V = 36 3a D V = 81 3a Câu 23: Cho hình lập phương tích 64a Thể tích khối cầu nội tiếp hình lập phương A V = 8π a B V = 16π a C V = 64π a D V = 32 π a Câu 24:... không gian Oxyz , cho điểm A ( 2; −1;6 ) , B ( 3; −1; −4 ) , C ( 5; −1;0 ) , D (1; 2;1) Tính thể tích V tứ diện ABCD Trang 3/ 6 - Mã đề thi 132 - https://toanmath.com/ A 40 B 60 C 50 D 30 Câu

Ngày đăng: 16/07/2019, 08:52

TỪ KHÓA LIÊN QUAN

w