1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TS247 DT de thi thu thpt qg mon toan thpt chuyen hoang van thu hoa binh lan 1 nam 2019 co loi giai chi tiet 27603 1548834510

24 68 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,55 MB

Nội dung

www.facebook.com/groups/TaiLieuOnThiDaiHoc01 SỞ GIÁO DỤC VÀ ĐÀO TẠO HỊA BÌNH TRƯỜNG THPT HOÀNG VĂN THỤ ĐỀ THI THỬ THPT QG LẦN NĂM HỌC 2018 - 2019 TRẮC NGHIỆM MƠN TỐN 12 (Thời gian làm 90 phút, không kể thời gian phát đề) Mã đề : 205 Mục tiêu: Đề thi thử THPTQG Hồng Văn Thụ - Hòa Bình, tỉnh Hòa Bình lần thứ mơn Tốn bám sát đề thi thử THPTQG BGD&ĐT Phần kiến thức trọng tâm rơi vào lớp 12, bên cạnh khối lượng không nhỏ kiến thức lớp 11 Với đề thi này, mức độ khá, HS dễ dàng điểm Tuy nhiên, câu hỏi cuối hóc búa gặp, nhằm phân loại HS mức độ cao Đề thi giúp em HS định hướng lượng kiến thức chương trình ơn tập hợp lí cho giai đoạn nước rút Câu [NB]: Họ nguyên hàm hàm số f  x   x  là: A x3  3x  C B x3  3x  C Câu [TH]: Tích phân C x3  3x  C D x   C  x  dx 4 ln B ln C D log 35 Câu [NB]: Cho số phức z   5i Điểm biểu diễn số phức z mặt phẳng Oxy tọa độ là: A  5;  B  2;5  C  2;5  D  2; 5  A Câu [NB]: Một bạn học sinh quần khác áo khác Hỏi bạn học sinh cách lựa chọn quần áo A B C D Câu [NB]: Trong không gian Oxyz, phương trình tham số đường thẳng qua điểm M  2;0; 1 vectơ phương u   2; 3;1 là:  x  2  2t  A  y  3t  z  1  t   x   2t  B  y  3 z  1 t   x  2  2t  C  y  3t z  1 t   x   2t  D  y  3t  z  1  t  Câu [NB]: Trong không gian Oxyz, cho a  1; 2;3 , b   4;5;6  Tọa độ a  b là: A  3;3;3 B  2;5;9  C  5;7;9  D  4;10;18  Câu [NB]: Trong không gian Oxyz, cho mặt phẳng  P  : x  y  z   Một vectơ pháp tuyến mặt phẳng (P) là: A n  1;1; 2  B n  1;0; 2  Câu [NB]: Cho hàm số y  f  x  liên tục C n  1; 2;  D n  1; 1;  bảng biến thiên hình vẽ Khẳng định sau đúng? A Hàm số giá trị cực tiểu -1 C Hàm số đạt cực đại x  B Hàm số đạt cực tiểu x  D Hàm số hai điểm cực trị Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu [NB]: Cho hàm số f  x  đồ thị hàm số hình vẽ Khẳng định sai? A Hàm số nghịch biến khoảng  1;1 B Hàm số đồng biến khoảng  1;1 C Hàm số đồng biến khoảng 1;   D Hàm số đồng biến khoảng  ; 1 1;   Câu 10 [TH]: Phương trình log  x  1  nghiệm là: A x  3 B x  C x  Câu 11 [NB]: Đồ thị hàm số qua điểm M 1;  : A y  2 x  x2 C y  B y  x3  x  Câu 12 [TH]: Cho cấp số cộng  un  u1  D x  x2  x  x2 , u2  Khi cơng sai d bằng: 2 B C Câu 13 [NB]: Trong hàm số sau đây, hàm số đồng biến A   A y    3 x D y   x  x  x   B y     3 x 2 C y    e D x   D y     2 Câu 14 [NB]: Thể tích V khối trụ bán kính đáy r  chiều cao h  là: A V  32 B V  32 2 C V  64 2 D V  128 Câu 15 [NB]: Thể tích khối lăng trụ đường cao 3a, diện tích mặt đáy 4a là: A 12a3 B 4a3 C 4a D 12a Câu 16 [TH]: Cho hình chóp S.ABCD đáy ABCD hình chữ nhật với AB = a, BC  a Cạnh bên SA vng góc với đáy đường thẳng SD tạo với mặt phẳng (ABCD) góc 300 Thể tích khối chóp S.ABCD bằng: A 3a 2a B C  Câu 17 [TH]: Đạo hàm hàm số y  x3  x  3a 6a D bằng: A x5  20 x  x3 B x5  20 x  16 x3 C x5  16 x3 D x5  20 x  16 x3 Câu 18: Gọi M N giao điểm đồ thị hai hàm số y  x  x  y   x  Tọa độ trung điểm I đoạn thẳng MN là: A 1;0  B  0;  C  2;0  D  0;1 Câu 19 [TH]: Diện tích S hình phẳng (H) giới hạn hai đường cong y   x3  12 x y   x là: 397 937 343 793 A S  B S  C S  D S  12 12 Câu 20 [TH]: Trong không gian Oxyz, cho hai điểm A  2;1;1 , B  0; 1;1 Phương trình mặt cầu đường kính AB là: Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 A  x  1  y   z  1  B  x  1  y   z  1  C  x  1  y   z  1  D  x  1  y   z  1  2 2 2 2 Câu 21 [TH]: Cho hàm số y   x  x  giá trị cực đại giá trị cực tiểu y1 , y2 Khi đó: y1  y2 A B C D –1 Câu 22 [TH]: Cho hình chóp S.ABCD đáy ABCD hình chữ nhật với AB  a, BC  a , cạnh SA  2a , SA vng góc với mặt phẳng (ABCD) Gọi  góc đường thẳng SC mặt phẳng (ABCD) Giá trị tan  bằng: A tan   B tan   C tan   D tan   Câu 23 [TH]: Thể tích khối nón đường sinh 10 bán kính đáy là: A 196 B 48 C 96 D 60 Câu 24 [TH]: Cho số phức z thỏa mãn 1  2i  z   3i Phần thực số phức z là: A -3 B C Câu 25 [TH]: Tập nghiệm S bất phương trình log  x  x    1 là: A S   0;3 B S   0;    3;7  C S   0;1   2;3 D -3i D S  1;   Câu 26 [NB]: Trong không gian Oxyz, cho hai mặt phẳng  P  : x  y  z   ,  Q  : x  y   Góc hai mặt phẳng  P  ,  Q  bằng: A 900 B 300 C 450 D 600 Câu 27 [TH]: Gọi z1 , z2 hai nghiệm phức phương trình z  z  2018  Khi đó, giá trị biểu thức A  z1  z2  z1 z2 bằng: A 2017 B 2019 D 2016 3x  Câu 28 [NB]: Tọa độ giao điểm hai đường tiệm cận đồ thị hàm số y  là: x2 A  2; 3  B  2;3  C  3; 2  D  3;  Câu 29 [TH]: Giá trị nhỏ hàm số y  C 2018 x3 đoạn  2;5 bằng: 2x  B C Câu 30 [TH]: Cho a  log 2; b  log Khi log 60 bằng: A A 2a  b  ab B 2a  b  ab C 2a  b  ab D D 2a  b  ab Câu 31 [VD]: Cho hình chóp S.ABC đáy ABC tam giác vuông A, ABC  300 SBC tam giác cạnh a mặt bên SBC vng góc với đáy Khoảng cách từ điểm C đến mặt phẳng (SAB) là: A 5a B a C 39a 13 D a 13 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu 32 [VD]: Cho hình chóp S.ABCD đáy ABCD hình thoi tâm O, AC  3a, BD  2a , hai mặt phẳng  SAC   SBD  vng góc với mặt phẳng (ABCD) Biết khoảng cách từ điểm O đến (SAB) a Thể tích khối chóp S.ABCD là: a3 A 12 a3 B a3 C 18 a3 D 16 20 x  30 x  3  Câu 33 [VD]: Biết khoảng  ;   , hàm số f  x   nguyên hàm 2x  2  F  x    ax  bx  c  x  3,  a, b, c   Tổng S  a  b  c bằng: A B C Câu 34 [VD]: Cho hàm số f  x  liên tục D f    16 ,  f  x  dx  Tính tích phân I   x f   x  dx A I  13 B I  12 C I  20 D I  Câu 35 [TH]: Cho hàm số y  ax  bx  cx  d đồ thị hình vẽ bên Mệnh đề sau đúng? A a  0, b  0, c  0, d  B a  0, b  0, c  0, d  C a  0, b  0, c  0, d  D a  0, b  0, c  0, d  Câu 36 [TH]: Số nghiệm phương trình  log x   3.log 2 x   là: A B C D Câu 37 [TH]: Cho hàm số y   x3  mx   3m   x  Tập hợp tất giá trị tham số m để hàm số nghịch biến  ;    a; b  Khi a  3b A B C D -1 Câu 38 [TH]: Ba người A, B, C săn độc lập với nhau, nổ súng bắn vào mục tiêu Biết xác suất bắn trúng mục tiêu A, B, C tương ứng 0,7; 0,6; 0,5 Xác suất để người bắn trúng là: A 0,94 B 0,8 C 0,45 D 0,75 Câu 39 [TH]: số phức z thỏa mãn z  2i  z số ảo? A D x  y 1 z  x 1 y 1 z  Câu 40 [VD]: Trong không gian Oxyz, cho hai đường thẳng d1 : , d2 :     1 1 1 Đường thẳng  qua điểm A 1; 2;3 vuông góc với d1 cắt đường thẳng d phương trình là: A B C x 1 y  z  x 1 y  z  x 1 y  z  x 1 y  z  B C D         1 1 3 3 1 3 5 1 4 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu 41 [VD]: Cho hình phẳng (H) giới hạn đồ thị hàm số sau y  x , y  đường thẳng x  (tham khảo hình vẽ) Thể tích khối tròn xoay sinh hình (H) quay quanh đường thẳng y  A  B 119  C  D 21  2 BB ' N trung điểm DD’ Mặt phẳng (AMN) chia hình hộp thành hai phần, thể tích phần chứa điểm A’ Câu 42 [VDC]: Cho hình hộp ABCD A ' B ' C ' D ' tích Gọi M điểm thỏa mãn BM  181 67 B C D 432 144 Câu 43 [VD]: Cho hàm số bậc ba y  ax3  bx  cx  d đồ thị hình vẽ bên Hỏi A đồ thị hàm số g  x  x   4x  4 x 1 x  f  x   f  x   A B C D đường tiệm cận đứng? Câu 44 [TH]: Cho hàm số y  f  x  , biết hàm số f  x  đạo hàm f   x  hàm số y  f   x  đồ thị hình vẽ Đặt g  x   f  x  1 Kết luận sau đúng? A Hàm số g  x  đồng biến khoảng  3;  B Hàm số g  x  đồng biến khoảng  0;1 C Hàm số g  x  nghịch biến khoảng  4;6  D Hàm số g  x  nghịch biến khoảng  2;   Câu 45 [VD]: Cho hình chóp S.ABCD đáy ABCD hình thang vng A B Biết AB  BC  a , 3a , SA   ABCD  Gọi M, N theo thứ tự trung điểm SB, SA Khoảng cách từ N đến mặt phẳng (MCD) bằng: 3a a a 4a A B C D 4 AD  2a, SA  Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu 46 [VDC]: Trong không gian Oxyz, cho mặt cầu  S  :  x  1   y  1   z    16 điểm A 1; 2;3 Ba 2 mặt phẳng thay đổi qua A đôi vng góc với cắt mặt cầu theo ba đường tròn Gọi S tổng diện tích ba hình tròn Khi S bằng: A 32 B 36 C 38 D 16 Câu 47: Cho hàm số f  x   mx  3mx   3m   x   m với m tham số thực giá trị nguyên tham số m   10;10 để hàm số g  x   f  x  điểm cực trị? A B C 10 D 11  x   4t  Câu 48 [VDC]: Trong không gian Oxyz, cho hai điểm A 1; 1;  , B  3; 4; 2  đường thẳng d :  y  6t  z  1  8t  Điểm I  a; b; c  thuộc d điểm thỏa mãn IA  IB đạt giá trị nhỏ Khi T  a  b  c bằng: 23 43 65 B  C 58 58 29 Câu 49 [VDC]: Cho hai số phức z1 z2 thỏa mãn A z z1  a  bi,  a, b  z2  Khi 21 58 z1  3, z2  4, z1  z2  41 Xét số phức D  b bằng: 3 B 8 Câu 50 [VD]: Cho hàm số f  x  liên tục A D 4 đạo hàm thỏa mãn f '  x   f  x   1, x  C f    Tích phân  f  x  dx bằng: A  e2 B  4e2 C 1  4e2 1 D   e HƯỚNG DẪN GIẢI CHI TIẾT THỰC HIỆN: BAN CHUYÊN MÔN TUYENSINH247.COM A 11 B 21 A 31 C 41 C A 12 D 22 C 32 B 42 D B 13 A 23 C 33 C 43 B D 14 C 24 C 34 D 44 B D 15 A 25 C 35 D 45 B C 16 A 26 C 36 C 46 C A 17 D 27 D 37 B 47 C C 18 B 28 B 38 A 48 D B 19 B 29 B 39 C 49 D 10 C 20 B 30 B 40 B 50 B Câu 1: Phương pháp: x n1 n x dx   C ,  n  1  n 1 Cách giải: Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01   x  3 dx  x3  3x  C Chọn: A Câu 2: Phương pháp:  x dx  ln x  C Cách giải: 1 1 d  x  5 1 1 0 x  dx  0 x   ln x   ln  ln  ln Chọn: A Câu 3: Phương pháp: Số phức z  a  bi,  a, b   điểm biểu diễn số phức mặt phẳng Oxy  a; b  Cách giải: Điểm biểu diễn số phức z mặt phẳng Oxy tọa độ là:  2;5  Chọn: B Câu 4: Phương pháp: Sử dụng quy tắc nhân Cách giải: Học sinh 3.2 = cách lựa chọn quần áo Chọn: D Câu 5: Phương pháp: Phương trình tham số đường thẳng qua điểm M  x0 ; y0 ; z0   x  x0  at  VTCP u   a; b; c  là:  y  y0  bt  z  z  ct  Cách giải:  x   2t  Phương trình tham số đường thẳng qua điểm M  2;0; 1 VTCP u   2; 3;1 là:  y  3t  z  1  t  Chọn: D Câu 6: Phương pháp:  u   x1 ; y1 ; z1   u  v   x1  x2 ; y1  y2 ; z1  z2    v   x2 ; y2 ; z2  Cách giải: Tọa độ a  b là:  5;7;9  Chọn: C Câu 7: Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Phương pháp: Mặt phẳng  P  : Ax  By  Cz  D  nhận n   A; B; C  VTPT Cách giải: Một vectơ pháp tuyến mặt phẳng (P) là: n  1;1; 2  Chọn: A Câu 8: Phương pháp: Đánh giá dấu f '( x) cực đại, cực tiểu hàm số y f ( x) : - Cực tiểu điểm mà f '( x) đổi dấu từ âm sang dương - Cực đại điểm mà f '( x) đổi dấu từ dương sang âm Cách giải: Hàm số đạt cực đại x  Chọn: C Câu 9: Phương pháp: Dựa vào đồ thị hàm số xác định khoảng đơn điệu hàm số Cách giải: Hàm số đồng biến khoảng  1;1 : khẳng định sai Chọn: B Câu 10: Phương pháp: log a b  c  b  ac Cách giải: log  x  1   x   22  x    x  Chọn: C Câu 11: Phương pháp: Thay tọa độ điểm M vào hàm số Cách giải: Ta có:  2.13    M 1;  thuộc đồ thị hàm số y  x3  x  Chọn: B Câu 12: Phương pháp: Số hạng tổng quát CSC số hạng đầu u1 công sai d là: un  u1   n  1 d Cách giải: Ta có: u2  u1  d    d  d  2 Chọn: D Câu 13: Phương pháp: Hàm số y  a x  a  0, a  1 : +) Nếu a  hàm số y  a x đồng biến Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 +) Nếu  a  hàm số y  a x nghịch biến Cách giải:    Ta có:    Hàm số y    đồng biến 3 Chọn: A Câu 14: Phương pháp: Thể tích V khối trụ bán kính đáy r chiều cao h là: V   r h Cách giải: Thể tích V khối trụ bán kính đáy r  chiều cao h  là: V   r 2h   42.4  64 2 Chọn: C Câu 15: Phương pháp: Thể tích khối lăng trụ diện tích đáy S chiều cao h là: V  Sh Cách giải: Thể tích khối lăng trụ là: V  Sh  4a 3a  12a3 Chọn: A Câu 16: Phương pháp: +) Gọi a’ hình chiếu vng góc a mặt phẳng (P) x Góc đường thẳng a mặt phẳng (P) góc đường thẳng a a’ +) Thể tích khối chóp diện tích đáy S chiều cao h V  Sh Cách giải: Ta có: SA   ABCD    SD;  ABCD    SDA  300 SAD vuông A  SA  AD.tan SDA  a 3.tan 300  a Diện tích hình chữ nhật ABCD: S ABCD  a.a  a 1 3 a Thể tích khối chóp S.ABCD là: V  S ABCD SA  a 3.a  3 Chọn: A Câu 17: Phương pháp: Đạo hàm hàm hợp:  f  u  x    f   u  x   u  x  Cách giải: y   x3  x   y   x3  x   3x  x    3x5  x  x  x    3x5  10 x  x3   x5  20 x  16 x3 Chọn: D Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu 18: Phương pháp: Giải phương trình hồnh độ giao điểm hai đồ thị hàm số Tìm tọa độ giao điểm M N Tìm tọa độ trung điểm I MN Cách giải: Phương trình hồnh độ giao điểm đồ thị hai hàm số y  x  x  y   x  là:  x  1  x  x4  x2    x2   x4  x2      x   x    x   y 2 M  2;   x    y   N  2;  Tọa độ trung điểm I MN là:  0;  Chọn: B Câu 19: Phương pháp: Diện tích hình phẳng (H) giới hạn đồ thị hàm số y  f ( x), y  g ( x) , trục hoành hai đường thẳng b x  a; x  b tính theo công thức : S   f ( x)  g ( x) dx a Cách giải: x  Giải phương trình:  x  12 x   x  x  x  12 x    x    x  3 3 Diện tích S hình phẳng (H) là: S     x3  12 x     x2  dx  3   x 3   x 3  x  12 x  x dx 3  12 x  x dx    x  12 x  x dx  12 x  x  dx     x3  12 x  x  dx 0   1    x  x  x3     x  x  x3   3  0 4   1  1    34  6.32  33     44  6.42  43      4 937  12 Chọn: B Câu 20: Phương pháp: Phương trình mặt cầu tâm I  a; b; c  bán kính R là:  x  a   y  b   z  c   R2 2 Cách giải: 10 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Tâm mặt cầu trung điểm AB, tọa độ là: I  1;0;1 Bán kính mặt cầu: R  IA  12  12   Phương trình mặt cầu đường kính AB là:  x  1  y   z  1  Chọn: B Câu 21: Phương pháp: Lập bảng biến thiên hàm số Cách giải: x  y   x  x   y  4 x  x, y    x   x  1 Bảng biến thiên: Hàm số y   x  x  giá trị cực đại giá trị cực tiểu y1  4, y2   y1  y2 = Chọn: A Chú ý: Cần phân biệt điểm cực đại giá trị cực đại điểm cực tiểu giá trị cực tiểu hàm số Câu 22: Phương pháp: Gọi a’ hình chiếu vng góc a mặt phẳng (P) Góc đường thẳng a mặt phẳng (P) góc đường thẳng a a’ Cách giải: ABCD hình chữ nhật  AC  AB  AD  a  3a  2a   SA   ABCD   SC;  ABCD   SCA    SCA SA 2a  tan     AC 2a Chọn: C Câu 23: Phương pháp: Thể tích khối nón đường cao h bán kính đáy r là: V   r h Cách giải: Độ dài đường cao khối nón: h  l  r  102  62  11 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 1 Thể tích khối nón là: V   r h   62.8  96 3 Chọn: C Câu 24: Phương pháp: Giải phương trình phức tìm số phức z Cách giải:   3i 1  2i   z   12i  3i   z  3i  3i Ta có: 1  2i  z   3i  z  z  2i 1 1  2i 1  2i  Phần thực số phức z là: Chọn: C Câu 25: Phương pháp:  0  a  log a f  x   b   b  0  f  x   a Cách giải:  x  3x    x    1 Ta có: log  x  3x    1        x   x   0;1   2;3  x  3x      2 0  x   Tập nghiệm bất phương trình là: S   0;1   2;3 Chọn: C Chú ý: HS cần ý ĐKXĐ hàm số logarit Câu 26: Phương pháp:   n1 , n2 VTPT  P  ,  Q  , đó: cos  P  ,  Q   n1.n2 n1 n2 Cách giải:  P  : x  y  z   VTPT n1  2; 1; 2  Q  : x  y   VTPT   cos  P  ,  Q   n1.n2 n1 n2  n2 1; 1;0  2.1   1  1  1  1  2 2    P  , Q   45 Chọn: C Câu 27: Phương pháp: Sử dụng định lí Vi – ét Cách giải:  z1  z2  z1 , z2 hai nghiệm phức phương trình z  z  2018     z1 z2  2018 A  z1  z2  z1 z2   2018  2016 12 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Chọn: D Câu 28: Phương pháp: Tọa độ giao điểm hai đường tiệm cận đồ thị hàm số y  ax  b  d a ,  ad  bc  0, c   là:   ;  cx  d  c c Cách giải: Tọa độ giao điểm hai đường tiệm cận đồ thị hàm số y  3x  là:  2;3  x2 Chọn: B Câu 29: Phương pháp: Để tìm GTNN, GTLN hàm số f đoạn  a; b  , ta làm sau: - Tìm điểm x1 ; x2 ; ; xn thuộc khoảng  a; b  mà hàm số f đạo hàm khơng đạo hàm - Tính f  x1  ; f  x2  ; ; f  xn  ; f  a  ; f  b  - So sánh giá trị vừa tìm Số lớn giá trị GTLN f  a; b  ; số nhỏ giá trị GTNN f  a; b  Cách giải: x3 x3 nghịch biến  2;5 y  y'    0, x   2;5  Hàm số y  2x  2x   x  3  y  y  5  2;5 Chọn: B Câu 30: Phương pháp: log c b log a b  , log a bc  c log a b (các biểu thức xác định) log c a Cách giải: log 60 log 22  log 3  log log   log 2a  b  log 60     log 10 log  log log  log ab Chọn: B Câu 31: Phương pháp: Đưa dựng khoảng cách từ M đến  SAB  với M trung điểm BC Cách giải: 13 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Gọi M, N trung điểm BC, AB Kẻ MH  SN , H  SN Tam giác SBC SM  BC Mà  SBC    ABC  ,  SBC    ABC   BC  SM   ABC   SM  AB Ta có: MN / / AC (do MN đường trung bình tam giác ABC) mà AB  AC  MN  AB  AB   SMN   AB  MH Mà MH  SN  MH   SAB   d  M ;  SAB    MH  d  C ;  SAB    2MH (do M trung điểm BC) 0 ABC vng A ABC  30  AC  BC sin 30  a a  MN  a SMN vuông M, MH  SN 1 1 16 52          MH  a 2 2 MH SM MN 3a a 3a 52 a 3 a   4     SBC đều, cạnh a  SM   d  C;  SAB    3 39 a a a 52 13 13 Chọn: C Câu 32: Phương pháp:  P       d     Q       P    Q   d Cách giải:  SAC    ABCD   Ta có:  SBD    ABCD   SO   ABCD    SAC    SBD   SO 14 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01  AB  OH  AB   SOH   AB  OK Dựng OH  AB, H  AB; OK  SH , K  SH Ta có:   AB  SO Mà OK  SH  OK   SAB   d  O;  SAB    OK  a 3a 1 1       OH  2 2 OH OA OB 3a a 3a 1 1 1    SO  a SOH vuông O, OK  SH       2 2 OS a 3a OK OS OH OS a 16 1 Diện tích hình thoi ABCD: S ABCD  AC.BD  3a.2a  3a 2 1 3a Thể tích khối chóp S.ABCD là: VS ABCD  S ABCD SO  3a a  3 Chọn: B Câu 33: Phương pháp: OAB vuông O, OH  AB  f  x  nguyên hàm F  x    F  x    f  x  Cách giải: F  x    ax  bx  c  x  ax  bx  c   F  x     2ax  b  x   2x   2ax  b  x  3  ax  bx  c  2x  5ax   3b  6a  x  3b  c  2x  5a  20 a     f  x  nguyên hàm F  x    F  x    f  x  , đó: 3b  6a  30  b  2  S  a  b  c  3b  c  c    Chọn: D Câu 34: Phương pháp: b Sử dụng công thức phần:  udv  u v a b b a   vdu a Cách giải: 15 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 I   x f   x  dx  1 x.d  f  x   0 1 1  x f  x    f  x  dx 20  1 f  2   f  2x  d  2x  40 1  f     f  t  dt (đặt t  x ) 40  1 1 f     f  x  dx  16     40 Chọn: D Câu 35: Nhận biết dạng đồ thị hàm số bậc ba Cách giải: Quan sát đồ thị hàm số, ta thấy: +) Khi x   y    a  : Loại phương án C +) Đồ thị hàm số cắt Oy điểm tung độ âm  d  : Loại phương án B +) y  ax3  bx  cx  d  y '  3ax  2bx  c Hàm số cực trị trái dấu  ac   c  (do a < 0): Loại phương án A Chọn phương án D Chọn: D Câu 36: Phương pháp: log a b  log a c  log a  bc  , log ac b  log a b c Cách giải: ĐKXĐ: x  Ta có:  log x   3.log x      log x   6log x   2  log x  1  x   log x  2log x       log x  x  Phương trình cho nghiệm x  , x  Chọn: C Câu 37: Phương pháp: 2 a  Hàm số bậc ba nghịch biến  ;      Cách giải: 16 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 y   x3  mx2   3m  2 x   y '   x  2mx  3m  1   m2  3m    2  m  1 Hàm số cho nghịch biến  ;        a  2, b  1  a  3b  Chọn: B Câu 38: Phương pháp: Áp dụng quy tắc cộng nhân xác suất Cách giải: Xác suất để người bắn trúng là:  1  0, 1  0, 1  0,5    0,3.0, 4.0,5  0,94 Chọn: A Câu 39: Phương pháp: Gọi số phức z  a  bi,  a, b   Tìm điều kiện a, b Cách giải: Gọi số phức z  a  bi,  a, b   , ta có: z  2i   a  bi  2i   a   b    (1) a  b z   a  bi    a  b2   2abi số ảo  a  b     a  b +) a  b Thay vào (1): a   a     2a  4a    a   a  b   z   i +) a  b Thay vào (1): a   a     2a  4a    a  1  a  1, b   z  1  i Vậy, số phức z thỏa mãn yêu cầu đề Chọn: C Câu 40: Phương pháp: +) Gọi B    d  Tham số hóa tọa độ điểm B +) Đường thẳng  vng góc với d1  AB.ud1   Tọa độ điểm B +) Viết phương trình  Cách giải: x  1 t x 1 y 1 z   PTTS  y   2t d2 :   1 1  z  1  t  Gọi giao điểm  d B 1  t ;1  2t; 1  t   AB   t; 2t  1; t   Đường thẳng  vng góc với d1  AB.ud1   t.3   2t  1   t    1   2t    t  1  AB  1; 3; 3 : VTCP đường thẳng  Phương trình đường thẳng  : x 1 y  z    3 3 Chọn: B 17 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Câu 41: Phương pháp: Gắn hệ trục tọa độ Cho hai hàm số y  f  x  y  g  x  liên tục [a; b] Khi thể tích vật thể tròn xoay giới hạn hai đồ thị số y  f  x  , y  g  x  hai đường thẳng x  a; y  b quay quanh trục Ox là: b V  f ( x)  g ( x) dx a Cách giải:  X  x 1 Đặt  Ta hệ trục tọa độ OXY hình vẽ: Y  y  Ta có: y  x  Y   X   Y  X   Thể tích cần tìm là: V       X   dX   X   X  dX 3 1     X  X   X  1 X   2 0 1     X  X   X  1 X   2 0  32     7                 Chọn: C Câu 42: Phương pháp: x  z  y  t AM BN CP DQ   x,  y,  z,  t   VABCD.MNPQ x y  z t  AA ' BB ' CC ' DD ' V  ABCD A ' B 'C ' D ' Cách giải: 18 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Gọi O, O’ tâm hình bình hành ABCD, A’B’C’D’ Trong (BDD’B’), gọi I giao điểm OO’ MN Trong (ACC’A’), gọi K giao điểm AI CC’ Trong (CDD’C’), gọi Q giao điểm NK C’D’ Trong (CBB’C’), gọi P giao điểm MK C’B’  Thiết diện hình hộp cắt mặt phẳng (AMN) ngũ giác AMPQN x  z  y  t AA ' BM CK DN  Đặt  x  0, y ,  z,  t    VABCD AMKN x y  z t  AA ' BB ' CC ' DD '  VABCD A' B ' C ' D ' 0 z    z  VABCD AMKN x y z t   VABCD A ' B 'C ' D ' 7 0   7   V VABCD A ' B 'C ' D '   (1) ABCD AMKN  4 12 12 12 12 VK CQP  d K ; A' B 'C ' D ' SCQP CK 1 Mà d K ; A' B 'C ' D '  dC ; A' B 'C ' D ' (do z   ) SCQP  SC ' B ' D '  S A' B 'C ' D ' CC ' 24 1 CQ C ' K C 'Q C ' P C ' K C'P      ;      ) (do D ' Q ND ' C ' D ' PB ' MB ' B 'C ' 3 1 1 1  VK CQP  dC '; A' B 'C ' D ' S A' B 'C ' D '  dC '; A' B 'C ' D ' S A' B 'C ' D '  VABCD A' B 'C ' D '  (2) 24 432 432 432 251  Từ (1), (2) suy ra: VABCD.MPCQN   12 432 432 251 181   Thể tích cần tìm là:  432 432 Chọn: D Câu 43: Phương pháp: * Định nghĩa tiệm cận đứng đồ thị hàm số y f ( x) 19 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Nếu lim f ( x) x lim f ( x) a x lim f ( x) a x lim f ( x) a x x a TCĐ a đồ thị hàm số Cách giải: f 1  2, f  x   f    0, f  x1   f  x2   f  x3   x  x  x   x  x  x2  x  4 x 1    x  x0     x  x2 ,  x2   x3 Xét hàm số g  x   , ĐKXĐ:  x  f  x   f  x    f  x   x  x1 x  x   f  x   x  x2    x  x3 lim g ( x) x x2 lim x x2 x2 4x x f2 x đồ thị hàm số g  x  x f x x  , lim g ( x) x  4x  4 x 1 x  f  x   f  x   x3 lim x x3 x2 4x x f2 x x f x đường tiệm cận đứng Chọn: B Câu 44: Phương pháp: Xét dấu g '  x  dựa vào dấu f '  x  Cách giải: g  x   f  x  1  g '  x   f '  x  1 Với x   0;1 x   1;  , f '  x  1  0, x   0;1  g '  x   0, x   0;1  Hàm số g  x  đồng biến khoảng  0;1 Chọn: B Câu 45: Phương pháp: Gắn hệ trục tọa độ Cách giải: 20 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Gắn hệ trục tọa độ: A  O  0;0;0  , B 1;0;0  , C 1;1;0  , D  0; 2;0  ,  1   2 2 S  0;0;   M  ;0;  , N  0;0;      2  1 2  MC   ;1;   , lấy a  4MC  2;4; 3  2 CD   1;1;0  , lấy b   1;1;0   Mặt phẳng (MCD) VTPT n      a; b   1;1; , qua C 1;1;0    phương trình là: 1 x  1  1 y  1   z     x  y  z   0    d N ; MNC   2 11 1 2 Vây, khoảng cách từ N đến mặt phẳng (MCD) bằng: a Chọn: B Câu 46: Cách giải:  S  :  x  1   y  1   z    16 tâm I 1; 1;  bán kính R  2 Gọi M, N, P hình chiếu vng góc I lên mặt phẳng; r1 ; r2 ; r3 bán kính đường tròn giao tuyến tương ứng Khi đó, A, I, P, N đỉnh hình hộp chữ nhật, ta có: IM  IP  IN  IA2  02  32  12  10  R  r12  R  r22  R  r32  10  3.16   r12  r22  r32   10  r12  r22  r32  38 Tổng diện tích ba hình tròn là: S    r12  r22  r32   38 Chọn: C Câu 47: Phương pháp: Hàm số g  x   f  x  điểm cực trị  f  x   nghiệm phân biệt Cách giải: 21 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hàm số g  x   f  x  điểm cực trị  f  x   nghiệm phân biệt x  Xét mx3  3mx   3m   x   m    x  1  mx  2mx  m       mx  2mx  m   (1) f  x   nghiệm phân biệt  (1) nghiệm phân biệt khác m  m     m  m  m      2m   m    2  m.1  2m.1  m   Mà m   10;10 , m   m  1; 2;3; ;10 : 10 giá trị m thỏa mãn Chọn: C Câu 48: Cách giải:  x   4t  d :  y   6t VTCP u  4; 6; 8  z  1  8t  A 1; 1;  , B  3; 4; 2   AB   2; 3; 4  Ta có: AB   2; 3; 4  phương với u  4; 6; 8 Mà A 1; 1;   d  AB / / d  A, B, d đồng phẳng * Xét mặt phẳng chứa AB d : Gọi A điểm đối xứng A qua  ;   mặt phẳng qua A , vng góc với d Khi đó, giao điểm H  với   trung điểm AA   VTPT n  2; 3; 4  , qua A 1; 1;  , phương trình:  x  1   y  1   z     x  y  z    x   4t  H  d :  y   6t  Giả sử H   4t; 6t; 1  8t   z  1  8t  22 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 H       4t    6t    1  8t     58t  11   t   11  36 33 15  H ; ;  58  29 29 29  Ta có: IA  IB  IA  IB  AB   IA  IB min  AB I trùng với I giao điểm AB  36 65    xI0  29  2  xI0  29   33 21     3    y I  HI đường trung bình tam giác A ' AB  HI  AB   yI0  29 58   15 43    z I0  29   4   z I0   29    65 21 43   I0  ;  ;    29 58 29  65 21 43 21  65 21 43     Vậy, để IA  IB đạt giá trị nhỏ I  ;  ;    a  b  c  29 58 29 58  29 58 29  Chọn: D Câu 49: Phương pháp: +) Biểu diễn lượng giác số phức z z +)  , z2  z2 z2 Cách giải: Cách 1: Gọi A, B điểm biểu diễn số phức z1 z2 Theo đề bài, ta có: OA  3, OB  4, AB  41  cos AOB  32  42  41  2.3.4     Đặt z1   cos   i sin    z2  cos   AOB  i sin   AOB    cos      i sin     ,   AOB   cos   i sin   z1    cos   i sin    cos      i sin      z2  cos      i sin        cos .cos      sin .sin       i  sin .cos      cos .sin      3  cos     i.sin      cos   i sin   4 3  2  b   sin   b       4  3 Cách 2: 23 Truy cập trang http://Tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01   z1     z2  Ta có: z1  3, z2  4, z1  z2  41     z1  z2  41   z    z1  z2 z1 41 1  z2  3   a  b     a  b2  b   a2      z   16 16  z   a  bi,  a, b       z2  41    a  12  b  41  a  12   a  41 a   b           16 16 16        5  b  b  16   a   a     Vậy b  Chọn: D Câu 50: Phương pháp:  f g   f .g  f g  Cách giải: Ta f '  x   f  x    e2 x f '  x   e x f  x   e x   e x f  x    e x có:  e2 x f  x    e2 x dx  e2 x f  x   e2 x  C 2x e2 x  1 2x f  Mà      C  C   e f  x  e   f  x  2 2e2 x 2 e2 x  1 2 x   1 2 x  1 1   1 0 f  x  dx  0 2e2 x dx  0   e  dx   x  e     4e2        4e2 Chọn: B 1 24 Truy cập trang http://Tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử Địa – GDCD tốt nhất! www.facebook.com/groups/TaiLieuOnThiDaiHoc01

Ngày đăng: 15/06/2019, 00:40