Main groups Main groups 1A Periods 2A 13 3A Transition metal groups 14 4A 15 5A 16 6A 17 7A 3 3B 4B 5B 6B 7B 8B 10 11 1B 12 2B Lanthanides Actinides Elements are organized into 18 vertical columns, or groups, and horizontal rows, or periods The two groups on the left and the six on the right are the main groups; the ten in the middle are the transition metal groups The 14 elements beginning with lanthanum are the lanthanides, and the 14 elements beginning with actinium are the actinides Together, the lanthanides and actinides are known as the inner transition metal groups Two systems for numbering the groups are shown above the top row and are explained in the text 18 8A Those elements (except hydrogen) on the left side of the zigzag line running from boron (B) to astatine (At) are metals; those elements (plus hydrogen) to the right of the line are nonmetals; and seven of the nine elements abutting the line are metalloids, or semimetals Metals Semimetals Nonmetals CHEMISTRY SIXTH EDITION JOHN E M C MURRY Cornell University ROBERT C FAY Cornell University With Contributions by JORDAN FANTINI Denison University CIP data available upon request Editor in Chief: Adam Jaworski Acquisitions Editor: Terry Haugen Marketing Manager: Erin Gardner Assistant Editor: Carol DuPont VP/Director of Development: Carol Truehart Development Editor: Carol Pritchard-Martinez Editorial Assistant: Catherine Martinez Marketing Assistant: Nicola Houston Managing Editor: Chemistry and Geosciences: Gina M Cheselka Project Manager, Production: Wendy Perez Senior Technical Art Specialist: Connie Long Art Studio: Imagineering Photo Manager: Elaine Soares Photo Researcher: Eric Schrader Art Director: Mark Ong Interior/Cover Designer: Gary Hespenheide Senior Media Production Supervisor: Liz Winer Associate Media Project Manager: David Chavez Executive Producer, Science Media: Deb Greco Associate Media Producer: Lauren Layn Senior Manufacturing and Operations Manager: Nick Sklitsis Operations Specialist: Maura Zaldivar Composition/Full Service: Preparé Inc./Rebecca Dunn Cover Image Credit: Sandralise/iStockphoto.com © 2012, 2008, 2004, 2001 Pearson Education, Inc Pearson Prentice Hall Pearson Education, Inc Upper Saddle River, NJ 07458 All rights reserved No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher Pearson Prentice Hall™ is a trademark of Pearson Education, Inc Printed in the United States of America 10 ISBN-10: 0-321-70495-9/ISBN-13: 978-0-321-70495-5 (Student Edition) ISBN-10: 0-321-76582-6/ISBN-13: 978-0-321-76582-6 (Exam Copy) Brief Contents 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Preface xiii Supplements xvii Chemistry: Matter and Measurement Atoms, Molecules, and Ions 34 Mass Relationships in Chemical Reactions 74 Reactions in Aqueous Solution 112 Periodicity and the Electronic Structure of Atoms 150 Ionic Bonds and Some Main-Group Chemistry 186 Covalent Bonds and Molecular Structure 216 Thermochemistry: Chemical Energy 266 Gases: Their Properties and Behavior 308 Liquids, Solids, and Phase Changes 346 Solutions and Their Properties 392 Chemical Kinetics 432 Chemical Equilibrium 492 Aqueous Equilibria: Acids and Bases 538 Applications of Aqueous Equilibria 586 Thermodynamics: Entropy, Free Energy, and Equilibrium 640 Electrochemistry 680 Hydrogen, Oxygen, and Water 728 The Main-Group Elements 760 Transition Elements and Coordination Chemistry 802 Metals and Solid-State Materials 852 Nuclear Chemistry 888 Organic and Biological Chemistry 908 Appendix A Mathematical Operations A-1 Appendix B Thermodynamic Properties at 25 °C A-9 Appendix C Equilibrium Constants at 25 °C A-14 Appendix D Standard Reduction Potentials at 25 °C A-18 Appendix E Properties of Water A-20 Answers to Selected Problems A-21 Glossary G-1 Index I-1 Photo Credits C-1 iii Contents Preface xiii 2.3 2.4 2.5 2.6 2.7 Supplements xvii Chemistry: Matter and Measurement 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 Approaching Chemistry: Experimentation Chemistry and the Elements Elements and the Periodic Table Some Chemical Properties of the Elements Experimentation and Measurement 10 Mass and Its Measurement 11 Length and Its Measurement 12 Temperature and Its Measurement 13 Derived Units: Volume and Its Measurement 14 Derived Units: Density and Its Measurement 16 Derived Units: Energy and Its Measurement 17 Accuracy, Precision, and Significant Figures in Measurement 18 Rounding Numbers 20 Calculations: Converting from One Unit to Another 1.13 1.14 I N Q U I R Y What Are the Risks and Benefits of Chemicals? 2.8 2.9 2.10 2.11 2.12 I N Q U I R Y Where Do Chemical Elements Come From? Atoms, Molecules, and Ions 2.1 The Conservation of Mass and the Law of Definite Proportions 35 The Law of Multiple Proportions and Dalton’s Atomic Theory 37 2.2 iv 67 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems 22 26 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems Atomic Structure: Electrons 39 Atomic Structure: Protons and Neutrons 41 Atomic Numbers 43 Atomic Masses and the Mole 45 Nuclear Chemistry: The Change of One Element into Another 48 Radioactivity 49 Nuclear Stability 52 Mixtures and Chemical Compounds; Molecules and Covalent Bonds 54 Ions and Ionic Bonds 58 Naming Chemical Compounds 60 34 Mass Relationships in Chemical Reactions 74 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 Balancing Chemical Equations 75 Representing Chemistry on Different Levels 78 Chemical Arithmetic: Stoichiometry 79 Yields of Chemical Reactions 83 Reactions with Limiting Amounts of Reactants 85 Concentrations of Reactants in Solution: Molarity 88 Diluting Concentrated Solutions 90 Solution Stoichiometry 91 Titration 92 Percent Composition and Empirical Formulas 94 Determining Empirical Formulas: Elemental Analysis 97 Determining Molecular Masses: Mass Spectrometry 100 CONTENTS I N Q U I R Y Did Ben Franklin Have Avogadro’s Number? 102 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Reactions in Aqueous Solution 112 Some Ways that Chemical Reactions Occur 113 Electrolytes in Aqueous Solution 114 Aqueous Reactions and Net Ionic Equations 116 Precipitation Reactions and Solubility Guidelines 117 Acids, Bases, and Neutralization Reactions 120 Oxidation–Reduction (Redox) Reactions 124 Identifying Redox Reactions 127 The Activity Series of the Elements 129 Balancing Redox Reactions: The Half-Reaction Method 132 Redox Stoichiometry 136 Some Applications of Redox Reactions 139 I N Q U I R Y How Can Chemistry Be Green? 141 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems Periodicity and the Electronic Structure of Atoms 150 5.1 5.2 5.3 5.4 5.5 Light and the Electromagnetic Spectrum 151 Electromagnetic Energy and Atomic Line Spectra 154 Particlelike Properties of Electromagnetic Energy 157 Wavelike Properties of Matter 159 Quantum Mechanics and the Heisenberg Uncertainty Principle 160 Wave Functions and Quantum Numbers 161 The Shapes of Orbitals 164 Quantum Mechanics and Atomic Line Spectra 167 Electron Spin and the Pauli Exclusion Principle 169 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 v Orbital Energy Levels in Multielectron Atoms 170 Electron Configurations of Multielectron Atoms 171 Some Anomalous Electron Configurations 173 Electron Configurations and the Periodic Table 175 Electron Configurations and Periodic Properties: Atomic Radii 177 I N Q U I R Y What Do Compact Fluorescent Lights Have to Do with Atomic Line Spectra? 179 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Ionic Bonds and Some Main-Group Chemistry 186 Electron Configurations of Ions 187 Ionic Radii 188 Ionization Energy 190 Higher Ionization Energies 192 Electron Affinity 194 The Octet Rule 196 Ionic Bonds and the Formation of Ionic Solids 198 Lattice Energies in Ionic Solids 200 Some Chemistry of the Alkali Metals 203 Some Chemistry of the Alkaline-Earth Metals 205 Some Chemistry of the Halogens 206 Some Chemistry of the Noble Gases 208 I N Q U I R Y Is Eating Salt Unhealthy? 209 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems Covalent Bonds and Molecular Structure 216 7.1 7.2 Covalent Bonding in Molecules 217 Strengths of Covalent Bonds 218 vi 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 CONTENTS A Comparison of Ionic and Covalent Compounds 219 Polar Covalent Bonds: Electronegativity 220 Electron-Dot Structures 222 Electron-Dot Structures of Polyatomic Molecules 226 Electron-Dot Structures and Resonance 232 Formal Charges 234 Molecular Shapes: The VSEPR Model 236 Valence Bond Theory 243 Hybridization and sp3 Hybrid Orbitals 244 Other Kinds of Hybrid Orbitals 246 Molecular Orbital Theory: The Hydrogen Molecule 250 Molecular Orbital Theory: Other Diatomic Molecules 252 Combining Valence Bond Theory and Molecular Orbital Theory 255 I N Q U I R Y How Does Molecular Shape Lead to Handedness in Molecules? 256 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 8.12 8.13 An Introduction to Entropy 291 An Introduction to Free Energy 293 I N Q U I R Y What Are Biofuels? 297 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems Gases: Their Properties and Behavior 308 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Gases and Gas Pressure 309 The Gas Laws 313 The Ideal Gas Law 318 Stoichiometric Relationships with Gases 320 Partial Pressure and Dalton’s Law 324 The Kinetic–Molecular Theory of Gases 326 Graham’s Law: Diffusion and Effusion of Gases The Behavior of Real Gases 331 The Earth’s Atmosphere 332 I N Q U I R Y How Do Inhaled Anesthetics Work? Thermochemistry: Chemical Energy 266 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 Energy and Its Conservation 267 Internal Energy and State Functions 268 Expansion Work 270 Energy and Enthalpy 273 The Thermodynamic Standard State 274 Enthalpies of Physical and Chemical Change Calorimetry and Heat Capacity 278 Hess’s Law 281 Standard Heats of Formation 284 Bond Dissociation Energies 287 Fossil Fuels, Fuel Efficiency, and Heats of Combustion 289 329 336 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 10 Liquids, Solids, and Phase Changes 276 10.1 10.2 10.3 10.4 10.5 10.6 10.7 346 Polar Covalent Bonds and Dipole Moments 347 Intermolecular Forces 350 Some Properties of Liquids 357 Phase Changes 358 Evaporation, Vapor Pressure, and Boiling Point 362 Kinds of Solids 366 Probing the Structure of Solids: X-Ray Crystallography 368 CONTENTS 10.8 Unit Cells and the Packing of Spheres in Crystalline Solids 370 10.9 Structures of Some Ionic Solids 376 10.10 Structures of Some Covalent Network Solids 10.11 Phase Diagrams 380 I N Q U I R Y Liquids Made of Ions? 378 383 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 11 Solutions and Their Properties 392 11.1 11.2 11.3 11.4 11.5 Solutions 393 Energy Changes and the Solution Process 394 Units of Concentration 398 Some Factors Affecting Solubility 403 Physical Behavior of Solutions: Colligative Properties 406 11.6 Vapor-Pressure Lowering of Solutions: Raoult’s Law 407 11.7 Boiling-Point Elevation and Freezing-Point Depression of Solutions 413 11.8 Osmosis and Osmotic Pressure 417 11.9 Some Uses of Colligative Properties 419 11.10 Fractional Distillation of Liquid Mixtures 421 I N Q U I R Y How Does Hemodialysis Cleanse the Blood? 424 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 12 Chemical Kinetics 12.1 12.2 12.3 432 Reaction Rates 433 Rate Laws and Reaction Order 437 Experimental Determination of a Rate Law 439 vii 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 Integrated Rate Law for a First-Order Reaction 444 Half-Life of a First-Order Reaction 447 Radioactive Decay Rates 449 Second-Order Reactions 452 Zeroth-Order Reactions 455 Reaction Mechanisms 456 Rate Laws for Elementary Reactions 459 Rate Laws for Overall Reactions 461 Reaction Rates and Temperature: The Arrhenius Equation 465 12.13 Using the Arrhenius Equation 469 12.14 Catalysis 472 12.15 Homogeneous and Heterogeneous Catalysts 476 I N Q U I R Y How Do Enzymes Work? 479 Summary • Key Words • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems 13 Chemical Equilibrium 13.1 13.2 13.3 13.4 13.5 13.6 492 The Equilibrium State 493 The Equilibrium Constant Kc 495 The Equilibrium Constant Kp 499 Heterogeneous Equilibria 502 Using the Equilibrium Constant 503 Factors That Alter the Composition of an Equilibrium Mixture: Le Châtelier’s Principle 511 13.7 Altering an Equilibrium Mixture: Changes in Concentration 513 13.8 Altering an Equilibrium Mixture: Changes in Pressure and Volume 516 13.9 Altering an Equilibrium Mixture: Changes in Temperature 519 13.10 The Effect of a Catalyst on Equilibrium 521 13.11 The Link between Chemical Equilibrium and Chemical Kinetics 522 I-8 INDEX Humans, effects of radiation on, 900, 900t Hund’s rule, 171–172, 804 ¢Hvap See Enthalpy (heat) of vaporization Hybrid atomic orbitals, 244–249 of atoms with five and six charge clouds, 248–249 of coordination complexes, 834–837, 835t dsp 2, 834–836, 835f d 2sp3, 834, 834f, 836 and geometry, 249t sp3, 244–246 sp and sp2, 246–248 sp 3d2, 834, 834f, 836 Hydrated ions, 394, 644 Hydrated protons, 545–547 Hydrates, 750–751 Hydration reactions, 920 Hydrazine, 226, 780 Hydrides, 733–737, 734t Hydrocarbons, 909 See also Alkanes Hydrochloric acid in neutralization reactions, 587, 588 titrations with, 602–603, 603t, 607–608 Hydrogen, 729–737 in binary hydrides, 733–737 Bohr model of hydrogen atom, 158f covalent bonds of, 217f electron configuration of, 172 as fuel, 752 isotopes of, 730–731, 730t molecular orbitals of, 250–252, 250f, 251f, 861 in nuclear fusion reactions, 896 oxidation number of, 126 potential energy and internuclear distance of, 218f preparation and uses of, 731–732, 731f properties of, 729 reactivity of, 733 Hydrogenation reactions, 477f, 920 Hydrogen bonds, 354–356, 356t in alcohols, 925, 925f and boiling point, 356t defined, 746, 764 in DNA, 943, 943f in water, 355, 355f Hydrogen chloride, 219–221 Hydrogen cyanide, 227, 773 Hydrogen electrode, standard, 690, 690f, 691f Hydrogen fluoride, 63, 208 Hydrogen halides, 208 Hydrogen–oxygen fuel cells, 706f Hydrogen peroxide, 443f, 473f, 746–747, 747f Hydrogen sulfide, 788–789 Hydrolysis reactions, 876, 930, 931 Hydronium ions in acidic, basic, and neutral solutions, 546f from acids, 120 and Brønsted–Lowry acids, 540 and buffer solutions, 595–596, 596f in dissociation of water, 545–547 Hydrophilic side chains, of amino acids, 936 Hydrophobic side chains, of amino acids, 936 Hydroxide ions, 546f, 595, 596f Hydroxides, 550, 741 Hydroxyl group, 925 Hygroscopic compounds, 751 Hyponatremia, 26 Hypothesis, Ideal gases defined, 313 and entropy, 648–649 kinetic energy of, 648 Ideal gas law, 318–322 Imaging procedures nanoparticles in, 879–880 radioactivity in, 903 Incandescent lightbulb, 857f Indicators, 93, 549, 549f Industrial pollution, 576–577 Inhaled anesthetics, 336–337, 337t Initial rate, of reaction, 436, 439–443 Inner transition elements, 7, 803 Inorganic chemistry, 909 Instantaneous rate, 436 Insulators, 862, 864, 865f Integrated rate law, 444–446 Intensive properties, 7, 693 Interference, 368 Intermediate, reaction, 457 Intermolecular forces, 350–356 dipole-dipole forces, 352–353 hydrogen bonds, 354–356 ion-dipole forces, 350–351 London dispersion forces, 353–354 Internal energy, 268–270 International System of Units (SI), 10 International Union of Pure and Applied Chemistry (IUPAC), 821, 914 Internuclear axis, 247 Internuclear distance, potential energy and, 218f Interstitial hydrides (metallic hydrides), 734–735, 735f Invert sugars, 939 In vivo procedures, radioactivity in, 902 Iodide ion, 443f Iodine, 207, 792 Iodine-131, 903 Iodine number, 954 Ion-dipole forces, 350–351, 351f, 356t Ion exchange, 750 Ionic bonds, 58–60, 220f covalent vs., 219–220 and electron affinity, 194–196 and electron configurations of ions, 187–188 formation of, 350 and ionic radii, 188–190 in ionic solids, 198–202 and ionization energy, 190–194 and octet rule, 196–198 Ionic equations, 116–117 Ionic hydrides, 733–736 Ionic liquids, 383–384 Ionic radii, 188–190 Ionic solids, 198 bonds in, 59 characteristics of, 367, 367t formation of, 198–200 lattice energies of, 200–202, 201t structures of, 376–377 Ionization energy (Ei) defined, 183 and electronegativity, 221 higher, 192–194, 193t for single electron, 190–192, 191f of transition elements, 809 Ionization isomers, 825 Ion product (IP), 545, 623 Ions, 58–60, 00f See also specific ions atomic radii of, 189f electron configurations of, 187–188, 188t hydrated, 394, 644 of main-group elements, 188t monatomic, 125 negative, 684f of noble gases, 231 polyatomic, 59, 64–66, 125 separation of, 624–625 spectator, 116 of transition elements, 804–805, 810–811 IP (ion product), 545, 623 Iron, 814–815 corrosion of, 708f galvanized, 709f in redox reactions, 125, 127–128 in steel production, 858–859 Iron-58, 898 Iron(II) ions, 814 Iron(III) ions, 515f, 814 Iron ore, 858–859 Iron oxides, 740, 814–815 Iron(III) sulfate, 815f Isobutyl group, 916 Isoflurane, 336, 337t Isomers, 824–829 of alkenes and alkynes, 918–919 classification scheme for, 824f constitutional, 825 of organic molecules, 910, 911 stereoisomers, 825–832 Isopropyl alcohol, 926 Isopropyl group, 916 Isotope effects, 730 Isotopes, 44, 730–731, 00t See also Radioisotopes Isotopic mass, 46 IUPAC (International Union of Pure and Applied Chemistry), 821, 914 Jojoba wax, 953 Joule (J), 18, 157 Joule, James Prescott, 18 Ka See Acid-dissociation constant Kb See Base-dissociation constant; Molal boiling-point elevation constant Kc (equilibrium constant), 495–499, 503–511 K 3C60 (potassium fulleride), 873, 874f Kelvin (K), 13 Keratin, 934 Ketones, 928 Ketoses, 938 Kf See Formation constant; Molal freezingpoint depression constant kilo- (prefix), 10, 11 Kilogram (kg), 11, 12 Kinetic energy (EK), 17–18, 267, 363f, 648 Kinetic isotope effect, 730 INDEX Kinetic–molecular theory of gases and activation energy, 467–468 and evaporation/vapor pressure, 363 and gas laws, 326–328, 327f Kinetics See Chemical kinetics Kp (equilibrium constant), 499–501 Kroto, Harold, 771 Krypton, 208 Ksp See Solubility product l (angular-momentum quantum number), 162 Lanthanide contraction, 808 Lanthanides, 5, 803, 808f, 873 Lascaux cave, 902 Laser printers, 793–794, 793f Lasers, diode, 870 Lattice energy (U) defined, 200, 743 and ionic bonds, 219 of ionic solids, 200–202, 201t in solution process, 397 Laue, Max von, 368 Lavoisier, Antoine, 36, 120, 729 Law of definite proportions, 37 Law of energy conservation, 892 Law of mass conservation, 36, 36f, 75, 892 Law of multiple proportions, 37, 37f LD50 value, 26, 26t Lead storage batteries, 702–703, 703f League (unit), 33 Le Châtelier, Henri-Louis, 512 Le Châtelier’s principle, 511–521 and common-ion effect, 591 and concentration, 513–516 defined, 750 and pressure/volume, 516–518 and temperature, 519–521 Leclanché, George, 703 Leclanché cell, 703–704 LEDs (light-emitting diodes), 868–870, 869f Length, measurement of, 12 Levitation, of magnets, 873f Lewis, G N., 222, 573 Lewis acids, 573–575 Lewis bases, 573–575, 618 Lewis structures, 222 See also electron-dot structures Ligand donor atoms, 817, 818f Ligands, 819–821, 819f chelating, 821f defined, 817 and d orbitals, 838, 838f names of, 822t strong- and weak-field, 840 Light and color of metal complexes, 833 and electromagnetic spectrum, 151–153 plane-polarized, 830 separation of, 154f speed of, 890 Lightbulbs compact fluorescent, 179 incandescent, 857f Light-emitting diodes (LEDs), 868–870, 869f Lime, 550, 577 Limestone, in metallurgy of iron, 859 Limewater, 550 Limiting reactants, 85–87 Line-bond structures, 921 Line spectrum, 154 Linkage isomers, 825, 825f Lipids, 939–941, 940f Liquids and equilibrium equation, 502, 612 evaporation, vapor pressure, and boiling point, 362–366 interconversion of gases, solids, and, 644f intermolecular forces of, 350–356 ionic, 383–384 molecular kinetic energy of, 363f phase changes of, 358–366 on phase diagrams, 380–382 polar covalent bonds and dipole moments, 347–349 properties of, 357–358 solids and gases vs., 347f Liquid-vapor equilibrium, 463 Liter (L), 15 Lithium, 172, 204 Lithium batteries, 705 Lithium-ion batteries, 705 Lock-and-key model, 479 London dispersion forces, 353–354, 353f, 354f, 356t Lone pairs, 223 Long-chain methyl esters, 298 Loratadine (Claritin), 924 Lowry, Thomas, 539 Low-spin complexes, 836, 840, 842 Lungs, oxygen in, 525t M See Molarity m (molality), 400 MAC (minimum alveolar concentration), 336 Maglev train, 873f Magnesium as conductor, 862 electron configuration of, 173 in formation of ionic solids, 200 molecular orbital energy levels of, 862f production and reactions of, 206 and water, 465–466, 466f Magnesium chloride, 200 Magnesium fluoride, 616–617 Magnetic properties, of oxygen, 745t Magnetic quantum number (ml), 162 Magnetite, 391 Magnets, levitation of, 873f Main-group elements, 7, 760–795 See also specific groups alkali metals, 203–205 alkaline-earth metals, 205–206 electron configurations of, 175t, 804 group 3A elements, 766–769 group 4A elements, 769–777 group 5A elements, 777–786 group 6A elements, 786–790 halogens, 206–208, 791–792 hybridization for, 248–249, 249t ions of, 188t and laser printers, 793–794 noble gases, 208 octet rule for, 196–198, 229, 229f periodic trends of, 762–763, 762f properties of, 762–765 second-row elements, 764–765 sources and uses of, 761 I-9 Manganese, oxidation states of, 809–810 Manometer, 311–312, 312f, 362, 407 Mass See also Molecular mass atomic, 4, 45–48 charge-to-mass ratio, 40–41 critical, 894 defined, 11, 12 and energy of nuclear reactions, 890–892 formula, 79 isotopic, 46 measurement of, 11–12 molar, 47, 80, 322 Mass conservation, law of, 36, 36f, 75, 892 Mass defect, 891–893 Mass number (A), 44 Mass percent, 73, 399 Mass ratio, 79 Mass spectrometry, 100–101, 100f Matter classification of, 54f defined, 11 wavelike properties of, 159 Mean free path, 329 Measurements, 10–25 accuracy, precision, and significant figures, 18–20 calculations with, 22–25 density, 16–17, 16f derived units of, 14–18, 14t energy, 17–18 and experimentation, 10–11 length, 12 mass, 11–12 rounding numbers, 20–22 temperature, 13–14, 13f volume, 14–15, 15f Mechanisms, reaction and kinetics, 456–459 studies of, 463–464, 463f mega- (prefix), 11 Meissner effect, 873 Melting, 294f, 657 Melting point(s) and band theory, 863 of halogens, 354t normal, 381 of oxides, 743f and pressure, 382f of transition elements, 806–807, 807f Membranes, semipermeable, 417 Mendeleev, Dmitri, 4, Meniscus, 358 Menthene, 912f Mercury, 358, 871 Mesosphere, 332 Messenger RNA (mRNA), 945 Metabolism, 932 meta- (m-)disubstituted benzene, 924 Metal complexes (coordination compounds) aqueous solutions of, 832f color of, 832–833 coordination geometries of, 817–818 crystal field theory for, 837–842 defined, 804, 817 formulas of, 818 naming of, 821–824 types of, 817–818 valence bond theory for, 834–837 I-10 INDEX Metallate anions, 822t Metallic hydrides, 734–735, 735f Metallic properties, of transition elements, 806–807 Metallurgy concentration and chemical treatment of ores, 855–856 defined, 139 of iron, 858–859 reduction, 856–857 refining, 857–858 Metal oxides, 877, 880 Metals, See also Inner transition elements; Transition elements (transition metal groups) activity series of, 129–132 bonding in, 859–864 characteristics of, 367, 367t color of, 718 iron and steel, 858–859 and metallurgy, 855–858 mineral sources of, 855f ores of, 854, 854t oxidation states of, 818 properties of, 763t sources of, 853–855 Metal sulfides, 625t Metaperiodic acid, 792 Metarhodopsin II, 919 Meter (m), 12 Methanal (formaldehyde), 231, 237, 928 Methane, 236, 238, 245f Methanol, 290, 926 Menthene, 912 Method of initial rates, 439–443 2-Methylbutane, 911 Methylcyclohexane, 921 Methyl group, 915 Methylphenidate, 953 Mica, 776, 776f Microgram (mg), 11 Micrometer (mm), 12 Miles, nautical and statute, 33 Milk of magnesia, 550 milli- (prefix), 10, 11 Millicurie (mCi), 899 Milligram (mg), 11 Millikan, R A., 40 Milliliter (mL), 15 Millimeter (mm), 12 Millimeter of mercury (mm Hg), 311 Minerals, 853, 855f Minimum alveolar concentration (MAC), 336 Miscible, 404 Mixtures, 54–55 cell potentials and composition of, 695–698 fractional distillation of, 421–423 free-energy change and composition of, 662–664 and ideal gas law, 324 ml (magnetic quantum number), 162 Molal boiling-point elevation constant (Kb), 414, 414t Molal freezing-point depression constant (Kf), 414, 414t Molality (m), 400 Molar entropies, standard, 651–652, 651t Molar heat capacity, 279, 280t, 360 Molarity (M) defined, 88 of reactants in solution, 88–90, 88f in redox titration, 138 of solutions, 398, 400 in solution stoichiometry, 91–92, 91f and titration, 92–94 Molar mass, 47, 80, 322 Molar volume, 317, 319t Mole, 81f and atomic mass, 45–48 calculation of, 321 defined, 46–47, 80, 157 Molecular dipoles, 348 Molecular equations, 116 Molecular formulas, 95 Molecular handedness, 256–257, 830–832 Molecular kinetic energy, of liquids, 363f Molecular mass calculating, 100–101, 322 in chemical equations, 79–80 defined, 79 and dipole moment/boiling point, 353t Molecular models, 56f Molecular orbital energy levels of conductors, semiconductors, and insulators, 865f of doped semiconductors, 866f of hydrogen and helium, 251f of magnesium, 862f of nitrogen, oxygen, and, fluorine, 253f, 254f of semiconductors, 864–866, 865f of sodium, 861, 861f, 862f Molecular orbitals (MOs) antibonding, 251, 254f bonding, 251, 254f defined, 250, 861 of insulators and semiconductors, 864–865 Molecular orbital (MO) theory, 250–255 for diatomic molecules, 252–254 and electron-dot structures, 232 for hydrogen molecule, 250–252 for metals, 861–864 and properties of oxygen, 745 and valence bond theory, 255 Molecular randomness See entropy Molecular solids, 367, 367t Molecular structure electron-dot structures, 222–235 and formal charges, 234–235 and handedness, 256–257 hybridization, 244–249 molecular orbital theory, 250–255 valence bond theory, 243–244, 255 VSEPR model, 236–242 Molecularity, 457 Molecules covalent bonds in, 217–218 defined, 55 diatomic, 252–254 polyatomic, 226–231 Mole fraction (X), 324, 398–399 Monatomic ions, 125 Mond process, 857 Monodentate ligands, 819 Monoprotic acid, 121, 550 Monosaccharides, 937, 938 Morphine, 927 Morton, William, 336 MOs See Molecular orbitals MO theory See Molecular orbital theory MRNA (messenger RNA), 945 ms (spin quantum number), 170 Müller, K Alex, 871, 872 Mullite, 886 Multielectron atoms, 171–173 Multiple proportions, law of, 37, 37f Multistep reactions, rate laws for, 461–463 n (principal quantum number), 161 Naming of alkanes, 914–917, 914t of chemical compounds, 60–66, 64t, 65t of complex ions, 822 of coordination complexes, 821–824 of ligands, 822t Nanomaterials, 879–880 Nanometer (nm), 12 Nanoparticles, 853 Nanotechnology, 879–880 Nanotubes, 378 Naphthalene, 98 Natural gas, 289 Natural products, 947 Nautical miles, 33 Negative ions, 684f Neon, 172, 173, 208 Nernst, Walther, 695 Nernst equation, 695–697 Net ionic equations, 116–117 Neutral amino acids, 936 Neutral compounds, oxidation number of, 126 Neutralization reactions, 113, 123, 587–589 Neutral solutions of salts, 566, 587 Neutrinos, 67 Neutrons, 41–43 New Horizons (spacecraft), 906 Newton (N), 310 Nickel, refining of, 857 Nickel–cadmium batteries, 704 Nickel–metal hydride batteries, 704–705 [Ni(CN)4]2- complex, 835–836 Niedermayer, Scott, 752 [Ni(en)3]2+ ions, 833f [Ni(H 2O)6]2+ ions, 833f NiMH batteries, 704–705 [Ni(NH 3)6]2+ ions, 833f Nipride, 850 Nitrate ion, 233 Nitrates, 64 Nitric acid, 781–782 Nitric oxide, 780–781 and carbon monoxide, 457f and nitrogen dioxide, 781f proportions of nitrogen and oxygen in, 37 rate law for formation of, 440 reaction rate and concentration, 436f, 439t Nitrogen, 779–782 electron configuration of, 172 molecular orbital energy levels of, 253f, 254f and molecular orbital theory, 252–253 oxidation states of, 779t INDEX oxides of, 576, 780–781 See also specific compounds transmutation of, 897 Nitrogenase, 109, 843, 843f Nitrogen dioxide, 780 and dinitrogen tetroxide, 493–496, 494f, 495f proportion of nitrogen and oxygen in, 37 Nitrogen oxide, 576 Nitro group, 924 Nitrous acid, 781 Nitrous oxide, 336, 337t, 780 Noble gases, 208, 208t electron affinity of, 195 electron-dot structures of, 224 ionization energy of, 190–191 ions of, 231 and octet rule, 197 properties of, Node, 165, 250 Nonbonding pairs, 223 Nonelectrolytes, 115 Nonmetals, 9, 763t Nonoxide ceramics, 874 Nonpolar covalent bonds, 220, 220f Nonspontaneous process entropy of, 291–293 and Gibbs free-energy change (¢G), 293–296 Nonstoichiometric compounds, 735 Nonvolatile solutes, 407–411 Normal boiling point, 364 Normal melting point, 381 Novocaine, 951 N-terminal amino acids, 936 n-type semiconductors, 866–868 Nuclear chemistry, 888–904 applications of, 901–903 defined, 48 elements in, 48–49 energy changes in, 889–893 fission and fusion, 893–897 natural nuclear reactors, 904 nuclear stability, 52–54, 52f, 53f radioactivity, 49–51, 898–900 transmutation, 897–898 Nuclear decay, 889t Nuclear equation, 48 Nuclear fission, 893–896, 904 Nuclear fusion, 893, 896–897 Nuclear power, electricity from, 597f, 896 Nuclear power plants, 896f Nuclear reactors fission in, 895–896 natural, 904 in nuclear power plants, 896f Nuclear stability, 52–54, 52f, 53f, 889, 890f Nuclear transmutation, 897–898 Nucleic acids, 941–946 DNA and RNA structure, 941–944, 946 replication of, 944, 944f transcription of, 944–945, 945f translation of, 945 Nucleons, 50, 891 Nucleosides, 941–942, 942f Nucleotides, 941–943, 942f Nucleus, 42, 891 Nylon, 931 Octahedral complexes crystal field theory for, 837–841 diastereoisomers of, 826–828 and d orbitals, 838f energy-level diagrams for, 839f, 840–841 hybrid orbitals of, 834, 834f, 836 Octane rating, 72 Octet rule, 196–198, 229, 229f Oklo Fossil Reactors, 904 1-2-3 superconductor See Yttrium barium copper oxide (YBa 2Cu 3O7) Optical isomers, 830 Orbitals See Atomic orbitals; Molecular orbitals (MOs) Ores concentration and chemical treatment of, 855–856 defined, 853 of metals, 854, 854t reduction of, 856–857, 856t refining of, 857–858 Organic chemistry, 56, 909–931 alcohols, ethers, and amines, 925–927 alkanes, 909–911 alkenes and alkynes, 917–920 aromatic compounds, 923–924 and biological chemistry, 932–933 carbonyl compounds, 927–931 cyclic organic compounds, 921–922 functional groups, 909–931 naming of alkanes, 914–917 natural vs synthetic products, 947 ortho- (o-) disubstituted benzene, 924 Osmosis, 417, 417f, 419 Osmotic pressure, 417–420, 418f Ostwald process, 782 Overvoltage, 711 Oxidation, 125, 681, 718 Oxidation number, 125 See also Oxidation states Oxidation potentials, standard, 809, 809t Oxidation–reduction (redox) reactions, 129f, 131f and activity series of elements, 129–132 applications of, 139–140 defined, 113 described, 124–129 half-reaction method of balancing, 132–136 identifying, 127–129 redox reaction, 125 stoichiometry of, 136–139 Oxidation states, 125 of chromium, 812t of halogens, 791 of metals in coordination compounds, 818 of nitrogen, 779t of transition elements, 809–811, 810f Oxide ceramics, 874–876 Oxides, 741–744, 742f acidic, basic, and, amphoteric, 741 of alkali metals, 204 of alkaline-earth metals, 550 of carbon, 771–773 covalent, 740 melting points of, 743f metal, 877, 880 of nitrogen, 576, 780–781 peroxides, 204, 741, 744–746 I-11 of phosphorus, 785 of sulfur, 789 superoxides, 204, 741, 744–746 Oxidizing agents, 128, 681 Oxoacids, 122, 122t of halogens, 791, 791t of phosphorus, 785 strength of, 571–572 of sulfur, 789–790 Oxoacid salts, of halogens, 791–792 Oxoanions, 65 Oxygen, 738–748 in bloodstream, 525–526 bond and magnetic properties of, 745t electron configuration of, 173 in hydrogen peroxide, 746–747 molecular orbital energy levels of, 253f, 254f and molecular orbital theory, 252–253 oxidation number of, 126 in oxides, 741–744 in ozone, 748 partial pressure of, 525t in peroxides and superoxides, 744–746 preparation and uses of, 738–739 properties of, 738 reactions of, 741f reactivity of, 740–741 transmutation of, 897 Oxygen-carrying curve, of hemoglobin, 526f Ozone, 232, 255, 459, 748 Ozone layer, 334–335, 334f para- (p-) disubstituted benzene, 924 Paramagnetism, 253, 253f, 835, 836 Parent chain, of organic compounds, 914–915 Parhelion, 154 Partial pressure Dalton’s law of, 324–325 for gas-phase reactions, 499–500 of oxygen in lungs, 525t Parts per billion (ppb), 399 Parts per million (ppm), 399 Pascal (Pa), 310, 311 Passive safety designs, of nuclear reactors, 895 Pauli, Wolfgang, 170 Pauli exclusion principle, 169–170 Pauling, Linus, 244 p-block elements, 175, 766 See also specific groups of elements PEM (proton-exchange membrane) fuel cells, 706 Pentyl acetate, 930 Peptides, 934, 936–937 Percent composition, 94–97 Percent dissociation, 558, 558f, 592–593 Percent yield, 83–85 Perchlorate ion, 792 Periodicity and atomic line spectra, 154–156 of electromagnetic energy, 151–159 and electron configurations, 175–178 and light, 151–153 for main-group elements, 762–763, 762f and wavelike properties of matter, 159 I-12 INDEX Periodic table, 6f See also specific groups of elements defined, and electron configurations, 175–176, 175f electronegativity in, 221t of Dmitri Mendeleev, 3–5, 4f organization of, 5–7 transition elements in, 803f Periods, Peroxides, 204, 741, 744–746 PET (positron emission tomography), 51 Petroleum, 289–290, 290f, 297 pH See also related topics, e.g.: pH scale of buffer solutions, 599 and common ion effect, 592–593 electrochemical determination of, 698–699 and solubility, 617–618, 617f Phase changes, 358–361 evaporation, vapor pressure, and boiling point, 362–366 on phase diagrams, 380–382 and randomness, 359, 359f Phase diagrams, 380–382 of benzene and toluene, 422f of carbon dioxide, 381f of solutions, 413f of water, 380f Phases, of orbitals, 165–167, 243, 245 Phenol, 926 Phenyl group, 924 pH meter, 550f Phosphine, 225, 784 Phosphoric acid, 121, 785 Phosphorus, 782–786 bond angles of, 784f electron configuration of, 173 Phosphorus halides, 784, 784f Phosphorus pentachloride, 230 Photoconductors, 793 Photoelectric effect, 157, 158f Photoelectron spectroscopy, 185 Photons, 157 Photovoltaic cells, 870, 870f pH scale, 547–551, 548f described, 547–550 measuring pH, 549–550 of strong acids and bases, 550–551 pH titration curves, 601–611 described, 601 for polyprotic acids and strong bases, 608–611 for strong acids and strong bases, 602–603 for weak acids and strong bases, 604–606 for weak bases and strong acids, 607–608 Physical changes, enthalpy of, 276 Physical properties, 7, 7t Pi (p) bonds, 247, 740 Picometer (pm), 12 Pig iron, 859 Pipets, 90 Planck’s constant, 157, 160 Plane-polarized light, 830 Plastic sulfur, 788 Platinum, ammonia and, 456f Plato, 35 Plutonium-241, 898 p–n junction, 867–868, 871 Polar covalent bonds, 220–222, 220f, 347–349 Polarimeters, 831f Polarizability, 354 Pollution, 333, 576–577 Polyatomic ions, 59, 64–66, 125 Polyatomic molecules, electron-dot structures of, 226–231 Polydentate ligands, 819, 820 Polyprotic acids, 559–561 acid-dissociation constants for, 559t and strong bases, 608–611 Polysaccharides, 937, 938–939 Polyunsaturated fatty acids, 941 p orbitals, 166, 166f, 740f, 919 Porphyrin, 820, 821f Positron emission, 50–51, 54 Positron emission tomography (PET), 51 Potassium electron configuration of, 173 flame tests for, 627f reactivity with water, 204–205 Potassium-40, 901 Potassium fulleride K 3C60, 873, 874f Potassium hydroxide, 550 Potassium superoxide, 204 Potential energy (EP) defined, 18, 267 and internuclear distance, 218f potential energy profiles of reactions, 467f, 474f, 521f Power plants, nuclear, 896f Precipitation defined, 113 of ionic compounds, 623–624 separation of ions with, 624–625 and solubility, 117–119 Precision, 19 Pressure atmospheric, 310, 310f, 332f and equilibrium, 516–518, 517f of gases, 309–313, 362 and melting point, 382f osmotic, 417–420, 418f partial See Partial pressure and solubility, 404–405 standard temperature and pressure, 318–319, 736 units of, 311 vapor See Vapor pressure Pressure–volume work, 270–272, 271f Priestley, Joseph, 35, 738 Primitive-cubic unit cells, 372, 373f Principal quantum number (n), 161 Principal reaction, 554–556, 609 Probability, entropy and, 646–649 Propanone, 928 See also Acetone Propene, 918 Property, defined, Propylene, 918 Propyl group, 916 Proteins, 934–936, 945f Protium, 44, 730 Proton-exchange membrane (PEM) fuel cells, 706 Protons in atomic structure, 41–43 hydrated, 545–547 Proust, Joseph, 37 Pseudohalide ion, 773 Pt(NH 3)2Cl2 complex (cisplatin), 817, 825–826, 825f p-type semiconductors, 866–868 Purification, of drinking water, 749t Qc See Reaction quotient Qualitative analysis, 625–627, 626f Quantum, of energy, 158 Quantum dots, 879 Quantum mechanics and atomic line spectra, 167–169 electron spin and Pauli exclusion principle, 169–170 and Heisenberg uncertainty principle, 160–161 Quantum numbers and electron spin/Pauli exclusion principle, 169–170 types of, 161–163, 162t Quartz glass, 380 Racemic mixtures, 830 rad (radiation absorbed dose), 899 Radiation alpha, 49–50, 49f, 54 beta, 49f, 50, 54 biological effects of, 900, 900t as cancer treatment, 902–903 gamma, 49f properties of, 900t units of, 899–900, 899t Radiation absorbed dose (rad), 899 Radioactive decay in radiocarbon dating, 901 rates of, 449–452 types of, 51t Radioactivity, 49–51, 898–900 Radiocarbon dating, 489, 901–902 Radioisotopes defined, 49, 450, 889 half-lives of, 903t in radiocarbon dating, 901–902 studies of, 49 Randomness, 359, 00f See also Entropy Rankine temperature scale, 345 Raoult’s law for nonvolatile liquids, 407–408 for volatile liquids, 411, 412f Rate, of reaction See Reaction rates Rate constant, 437, 440 Rate-determining step, 461–462 Rate laws, 437–446, 459–465 chemical kinetics, 437–447 for elementary reactions, 459–461, 461t integrated rate law for first-order reaction, 444–446 method of initial rates for, 439–443 for overall reactions, 461–465 and reaction order, 437–439 Reactants concentrations of, 88–90 excess, 86 limiting, 85–87 Reaction intermediate, 457 Reaction mechanisms and kinetics, 456–459 studies of, 463–464, 463f INDEX Reaction order first-order reactions See First-order reactions and kinetics, 437–439 second-order reactions, 452–455, 453f zeroth-order reactions, 455–456, 455f Reaction quotient (Qc), 505, 623, 642, 695 Reaction rates and concentration, 434t, 435f, 436f, 438f, 439t, 460f described, 433–437 of enzyme-catalyzed reactions, 480f and equilibrium, 493–495 and temperature, 465–472 Reactivity of alkali metals, 204–205 of hydrogen, 733 of oxygen, 740–741 Real gases, 331–332 Rectifiers, 868 Red blood cells, 418f Redox reactions See Oxidation–reduction reactions Redox titrations, 136–137, 137f Red phosphorus, 783, 783f Reducing agents, 128, 131, 203 Reduction See also Oxidation–reduction (redox) reactions defined, 125, 681 in electroplating, 718 of ores, 856–857, 856t Reduction potentials, standard See Standard reduction potentials Refining distillation in, 290 electrorefining, 714–715, 715f of ores, 857–858 petroleum, 290f zone, 774 Relativity, special theory of, 890 rem (roentgen equivalent for man), 900 Replication, of DNA, 944, 944f Resonance hybrids, 232 Resonance structures for aromatic compounds, 924 electron-dot, 232–233 in ozone, 748 Respiration, 140 Reverse bias, 868 Reverse osmosis, 419, 419f Rhizobium bacteria, 843 Ribonucleic acid (RNA) structure of, 941, 943 translation by, 945 Ribonucleotides, 944 Ribose, 938 Ribosomes, 945 Ringer’s solution, 109 Rings, of carbon atoms, 921 RNA See Ribonucleic acid Roasting process, 856 Rock, dating of, 901 Roentgen equivalent for man (rem), 900 Rounding numbers, 20–22 Rubidium, 205 Rutherford, Ernest, 41–42, 41f, 49, 50, 897 Rutile, 854f Rydberg, Johannes, 155 Rydberg constant, 155 S° (standard molar entropies), 651–652, 651t ¢S° (standard entropies of reaction), 651–652 Sacrificial anode, 709 Salt bridge, 682, 683 Salts, 556f, 565–570 acid–base properties of, 570t acidic cations and anions in, 569 acidic solutions of, 566–568, 587 ammonium, 926–927 basic solutions of, 568–569, 587, 604, 610 as coordination compounds, 817, 821 neutralization reactions and, 123 neutral solutions of, 566, 587 oxoacid, 791–792 Saponification, 930 Saturated compounds, 917 Saturated solutions, 403 s-block elements, 175 See also Group 1A elements; Group 2A elements Scandium, 173 scCO2 (supercritical carbon dioxide), 772–773 Scheele, Karl Wilhelm, 738 Schrödinger, Erwin, 160, 161 Schrödinger wave equation, 243 Scientific notation, 10 Seawater, 419f, 749t Sec-butyl group, 916 Second law of thermodynamics, 653–655, 669 Second-order reactions, 452–455, 453f Second-row elements, 764–765 Selective precipitation, 624–625 Semiconductors, 853, 864–871 defined, in diode lasers, 870 in diodes, 867–868 doped, 865–867, 866f in light-emitting diodes, 868–870 molecular orbital energy levels of, 864–866, 865f n- and p-type, 866 in photovoltaic cells, 870 silicon for, 774f in transistors, 871 Semimetals, Semipermeable membranes, 417 Sevoflurane, 336, 337t S.H.E See Standard hydrogen electrode Shells, of orbitals, 161, 170 Shielding, of valence shell electrons, 178, 190–191, 807 Shroud of Turin, 902 SI (International System of Units), 10 Side chains, of amino acids, 936 Side reactions, 83 Sievert (Sv), 900 s2p orbital, 254f s*2p orbital, 254f Sigma (s) bonds, 243 Significant figures, 18–25 in calculations, 22–25 and precision/accuracy, 18–20 rounding numbers, 20–22 Silica, 379–380 Silica fibers, 876 Silicate ions, 775f I-13 Silicates, 774–777, 775f, 853 Silicon, 774–777 doping semiconductors with, 865–866 electron configuration of, 173 in photovoltaic cells, 871 for semiconductor devices, 774f Silicon carbide, 875, 875f, 877–878 Silver chloride and ammonia, 619f, 620f formation of, 618–619, 621 Simple cubic packing, 370, 371f Simple sugars (monosaccharides), 937, 938 Single bonds, 224 Sintering, 875 SI units, 10t, 11t Six charge clouds geometry of, 241t hybridization of, 248–249 and molecular structure, 240 Slag, 859 Slaked lime, 550 Smalley, Richard E., 771 Soap, 930, 951 Sodium body-centered cubic packing of, 860 electron configuration of, 173 flame tests for, 627f in formation of ionic solids, 198–199 manufacturing of, 712–713 molecular orbital energy levels of, 861, 861f, 862f reactivity with water, 204 Sodium acetate, 590–591 Sodium chloride, 59f aqueous solutions of, 114 dietary intake of, 209 dipole moment of, 348 dissolution of, 394, 395f, 644, 645f electrolysis of, 710–711, 710f ionic bond of, 221 as ionic solid, 198–199 properties of, 219–220 and Raoult’s law, 408 unit cell of, 376, 376f and van’t Hoff factor, 408 Sodium hydroxide and iron(III) sulfate, 815f manufacturing of, 713–714 neutralization reaction with acetic acid, 588 neutralization reaction with hydrochloric acid, 587 as strong base, 550 titration of acetic acid with, 604–605 titration of alanine (protonated) with, 608–610 titration of hydrochloric acid with, 602–603, 603t Sodium hypochlorite, 791 Sodium perchlorate, 792 Solar cells, 870, 870f Sol–gel method, 876 Solids covalent network, 378–380 and equilibrium equation, 502, 612 interconversion of gases, liquids, and, 644f intermolecular forces of, 350–356 ionic See Ionic solids I-14 INDEX Solids (cont.) liquids and gases vs., 347f phase changes of, 358–362 on phase diagrams, 380–382 polar covalent bonds and dipole moments, 347–349 types of, 366–367, 366f unit cells and crystalline solids, 370–375 x-ray crystallography of, 368–370 Solid-state materials, 853, 864–880 ceramics, 874–877 composites, 877–878 nanomaterials, 879–880 semiconductors, 864–871 superconductors, 871–874 Solubility of amines and ammonium salts, 927 and amphoterism, 622–623, 623f in aqueous solutions, 117–118 and common-ion effect, 616–617, 616f and formation of complex ions, 618–622 of lipids, 939–940 and pH, 617–618, 617f and pressure, 404–405 solubility equilibria, 611–613 and solubility product, 612–615 and temperature, 404, 404f, 405, 405f Solubility equilibria, 611–613 Solubility product (Ksp), 612–615, 613t, 625t Solutes, 88, 393, 407–411 Solute-solute interactions, 397 Solution enthalpy of, 394, 396–397, 396f, 396t, 397f entropy of, 394–396, 395f, 396t Solutions, 392–425 See also Aqueous solutions boiling-point elevation and freezingpoint depression, 413–416 buffer See Buffer solutions colligative properties of, 406–423 concentration of, 398–402, 401t diluting, 90–91, 91f energy changes in, 394–398 enthalpy and entropy of vaporization for, 409, 414–415 equilibrium vapor pressure of, 407f fractional distillation of, 421–423 hemodialysis, 424 hydronium and hydroxide ions in, 546f molarity of, 88–90, 398, 400 osmosis and osmotic pressure of, 417–420 phase diagrams for, 413f salts in, 566–569, 587, 604, 610 saturated and supersaturated, 403, 403f solubility of, 403–406 stoichiometry of, 91–92 titration, 92–94 types of, 393, 394t vapor-pressure lowering, 407–412 Solvated ions (hydrated ions), 394, 644 Solvents, 88, 393 Solvent–solute interactions, 397 Solvent–solvent interactions, 397 s orbitals, 164–165 Space-filling models, 55, 56f sp3d2 hybrid orbitals, 834, 834f, 836 Special theory of relativity, 890 Specific heat, 279, 280t Spectator ions, 116 Spectrochemical series, 839 Spectroscopy, photoelectron, 185 Speed of gas molecules, 328f, 328t of light, 890 Spermaceti, 952 Sphalerite, 856 Spheres, packing of, 370–373, 374t sp hybrid orbitals, 246–248, 248f sp2 hybrid orbitals, 246–248, 246f sp hybrid orbitals, 244–246, 245f Spin quantum number (ms), 170 Spontaneous processes enthalpy of, 642–646, 656t entropy of, 291–292, 642–646, 656t and equilibrium, 641–642 free energy of, 655–657, 656t Gibbs free-energy change for, 293–296 kinetics of, 642f Square planar complexes in crystal field theory, 842 diastereoisomers of, 826–828 energy-level diagrams for, 841f hybrid orbitals of, 834–836, 835f ¢Ssoln See Entropy of solution Stability constant, 619 See also Formation constant (Kf) Stainless steel, 859 Standard cell potential (E°), 688 Standard electrode potentials, 691 See also Standard reduction potentials Standard entropies of reaction (¢S°), 651–652 Standard free energies of formation (¢G ° f), 660–662 Standard free-energy change (¢G°), 658–660 and composition of mixtures, 662–664 and enthalpy, entropy, spontaneity, 656t and equilibrium constant, 666t and standard free energies of formation, 660–662 Standard heats of formation, 284–287 Standard hydrogen electrode (S.H.E.), 690, 690f, 691f Standard molar entropies (S°), 651–652, 651t Standard molar volume, 317 Standard oxidation potential, of transition elements, 809, 809t Standard reaction enthalpy (¢H°), 275, 286f Standard reduction potentials, 689–705, 692t and composition of reaction mixture, 695–698 defined, 690 and equilibrium constants, 700–702, 701f reactions in, 689–692 using, 692–695 Standard solution, 92 Standard state conditions, 274–276, 658 Standard temperature and pressure (STP), 318–319, 736 Standing waves, 165f Starch, 939 State, changes of, 358 See also Phase changes State functions, 269–270, 270f, 276f, 643 Statute miles, 33 Steam–hydrocarbon re-forming process, 732 Steel, 858–859 Stereoisomers, 80 diastereoisomers, 825–829 enantiomers, 830–832 Steric factor, 468 Stoichiometry and gases, 320–323 and molecular mass/formula mass, 79–83 of redox reactions, 136–139 of solutions, 91–92 STP (standard temperature and pressure), 318–319, 736 Straight-chain alkanes, 909, 914, 914t Stratosphere, 332, 334–335 Strength of, 542–544, 543t, 570–572, 571f, 813 Strong acids and buffers, 597f defined, 542 dissociation of, 120–121 pH of, 550–551 and strong bases, 587, 601f, 602–603, 603f in titrations, 601f, 602–603, 603f, 607–608, 607f and weak bases, 588–589, 607–608, 607f Strong bases dissociation of, 121 pH of, 550–551 reactions with weak acids, 587–588 and strong acids, 587, 601f, 602–603, 603f in titrations, 601f, 602–606, 603f, 605f, 606f and weak acids, 123, 587–588, 604–606, 605f, 606f Strong electrolytes, 115 Strong-field ligands, 840 Strontium, 206 Structural formula, 56 Sublimation, 199, 276 Subshells, of orbitals, 162, 170 Subsidiary reactions, 554 Substituents, of organic compounds, 915 Substitution reactions, 924, 929 Sucrose, 114, 938–939 Sugars, 937 invert, 939 simple, 937, 938 Sulfides, metal, 625t Sulfur, 173, 787–790, 788f Sulfur dioxide, 237, 576, 789 Sulfur hexafluoride, 240 Sulfuric acid, 121, 789–790, 790t Sulfur tetrafluoride, 228–230, 239 Sundog, 154 Superconducting transition temperature (Tc), 871, 871f Superconductors, 853, 871–874 Supercritical carbon dioxide (scCO2), 772–773 Supercritical fluids, 772 Supercritical point, 381 Supernovas, 67 Superoxides, 204, 741, 744–746 Supersaturated solutions, 403, 403f Surface tension, 357–358, 358f, 359t INDEX Surroundings and entropy, 653–655 and systems, 268–269, 269f Suspensions, 393 ¢Svap (entropy of vaporization), 409, 414–415 Sverdrups (sv), 32 Symmetry plane, 830, 830f Synthesis gas, 732 Synthetic products, 947 System, 268–269, 269f t1>2 See Half-life Table salt, dietary intake of, 209 Tassaert, B M., 823 Tc (superconducting transition temperature), 871, 871f Technetium-99m, 903, 903f Temperature and altitude, 332f and conductivity of semiconductors, 865 and energy of collisions, 467–469, 467f and entropy, 649–651, 650f and equilibrium, 519–521, 519f and kinetics, 465–472 and Le Châtelier’s principle, 519–521 measurement of, 13–14, 13f and properties of sulfur, 788f Rankine scale, 345 and solubility, 404, 404f, 405, 405f standard temperature and pressure, 318–319, 736 in stratosphere, 332 superconducting transition, 871, 871f and thermal energy, 268 and vapor pressure, 364f Termolecular reaction, 458 Tert-butyl group, 916 Tetrachloromethane, 348 Tetracycline, 927 Tetrahedral complexes in crystal field theory, 841, 842 hybridization of, 835 Tetrahedral geometry, 237f Therapeutic procedures, radioactivity in, 902–903 Thermal energy, 268 Thermistors, 766 Thermochemistry, 266–299 biofuels, 297–298 bond dissociation energies, 287–288 calorimetry and heat capacity, 278–281 conservation of energy law, 267–268 energy, 267–270, 273–274 enthalpy, 273–290 entropy, 291–293 expansion work, 270–272 fossil fuels, fuel efficiency, and heat of combustion, 289–290 Gibbs free-energy change, 293–296 Hess’s law, 281–284 internal energy and state functions, 268–270 standard heats of formation, 284–287 and thermodynamic standard state, 274–275 Thermodynamics, 640–670 chemical equilibrium, 665–668 enthalpy, 643 entropy, 643–655, 669 and evolution, 669 first law of thermodynamics, 267–268, 267f, 653 free energy, 655–668 probability, 646–649 second law of thermodynamics, 653–655 spontaneous processes, 641–646 standard free energies of formation, 660–662 standard free-energy changes for reactions, 658–660, 662–664 standard molar entropies and standard entropies of reaction, 651–652 temperature, 649–651 third law of thermodynamics, 650 Thermodynamic standard state, 274–275, 496 Thermosphere, 332 Thiocyanate ions, 515f Thiols, 108 Third law of thermodynamics, 650 Thomson, J J., 39, 40 Three-center, two-electron bonds, 768 Three charge clouds, 237, 241t Three-dimensional array, extended, 743 3-5 semiconductors, 869 [TiF6]3- complex, 837, 837f [Ti(H 2O)6]3+ ions, 833, 833f, 838–839 Titania, 876, 876f Titanium, anodizing of, 718 Titanium ethoxide, 876 Titration curves See pH titration curves Titrations, 92–94, 93f of polyprotic acids and strong bases, 608–611 procedure, 601 redox, 136–138, 137f of strong acids and strong bases, 601f, 602–603, 603f, 603t of weak acids and strong bases, 604–606, 605f, 606f of weak bases and strong acids, 607–608, 607f TNT (trinitrotoluene), 924 Toluene, 924 fractional distillation of, 421–422, 421f phase diagram for, 422f vapor pressure of, 411–412 Torr, 311 Torricelli, Evangelista, 311 Transcription, of DNA, 944–945, 945f Transfer RNA (tRNA), 945 Trans isomers, 825–826, 829, 918–919 Transistors, 871 Transition elements (transition metal groups), 7, 803–816 atomic radii of, 807–808, 807f, 808f bonding in, 862–863 chemistry of, 811–816 complexes of, 832–833 densities of, 808, 808f electron configurations of, 804–806 ionization energies and oxidation potentials of, 809, 809t melting point of, 806–807, 807f metallic properties of, 806–807 nitrogen fixation, 843 oxidation states of, 809–811 in periodic table, 803f properties of, 805t, 806–809 sources and uses of, 803–804 Transition metal complexes, 832–833 Transition state, 466 Translation, of nucleic acids, 945 Transmutation, nuclear, 897–898 Transuranium elements, 53 Triacylglycerols, 940 Triads, Triboluminescent, 184 Triglycerides, 940 Triiodide ions, 239 Trinitrotoluene (TNT), 924 Tripeptides, 934 Triphosphor mixture, 179, 179f Triple bonds, 224, 248f Triple point, 380 Triprotic acid, 121 Trisenox, 26 Tritium, 44, 730 TRNA (transfer RNA), 945 Troposphere, 332–334 Trouton’s rule, 677 Tungsten, 857 Turnover number, 479 Two charge clouds, 236, 241t Tyrian purple dye, 947 U See Lattice energy Unimolecular reaction, 457–459 Unit cells, 372–375 of copper(I) chloride and barium chloride, 377f of silicon carbide, 875f of sodium chloride, 376f of superconductors, 872f, 874f Universal indicator, 550, 556f Unsaturated compounds, 917 Uranium-235, 893 Uranium-238, 898, 901, 904 Uranium, in nuclear reactors, 895 Vacuum, gases in, 641–642, 641f Valence band, of semiconductors, 864 Valence bond theory for coordination complexes, 834–837 and molecular orbital theory, 255 and molecular shape, 243–244 Valence-shell electron-pair repulsion (VSEPR) model, 236–242, 748, 911 Valence shell electrons defined, 175 and ionization energy, 193 and octet rule, 197 shielding of, 178, 190–191, 807 van der Waals, Johannes, 350 van der Waals equation, 331–332 van der Waals forces, 350 van’t Hoff factor, 408 Vaporization enthalpy of See Enthalpy (heat) of vaporization [¢Hvap] entropy of, 409, 414–415 I-15 I-16 INDEX Vapor pressure, 362f of benzene and toluene, 411–412, 421f and boiling point, 363–366 defined, 362 equilibrium, of solutions, 407f and evaporation, 362–363 and temperature, 364f of water, 364t Vapor-pressure lowering, 407–412, 409f Vegetable oils, 920, 941 Velocity, 161 Victoria, 336 Viscosity, 357, 358t Vitamin C, 947 Volatile liquids, Raoult’s law for, 411–413, 412f Volta, Alessandro, 681 Voltaic cells, 681 Voltmeter, 688 Volume calculation of, 321 and equilibrium, 516–518, 517f measurement of, 14–15, 15f molar, 317, 319t of real gas, 331f Volumetric flask, 88 VSEPR model See Valence-shell electronpair repulsion model Water, 749–751 and alkali metals, 204–205 desalination of seawater, 419f dipole moment of, 348 dissociation of, 545–547 electrolysis of, 711–712 hard, 750 heating curve of, 360, 360f in hydrates, 750–751 hydrogen bonds of, 355, 355f ionic constituents of seawater, 749t ion-product constant for, 545 and magnesium, 465–466, 466f molecular structure of, 236, 238 phase diagram for, 380f purification of drinking water, 749t vapor pressure of, 364t water treatment and sources of, 749–750 Water-gas shift reaction, 732 Water treatment, 749–750 Watson–Crick model of DNA, 943–944 Wave functions, 161 See also Atomic orbitals Wavelength (l), 152–153 Weak acids defined, 542 dissociation of, 121, 558 equilibria for, 552–553, 604, 607 equilibrium concentrations of, 554–557 of second-row elements, 764 solving problems with, 556f and strong bases, 123, 587–588, 604–606, 605f, 606f titrations of, 604–606, 605f, 606f and weak bases, 589 Weak bases ammonia as, 121 aqueous equilibria for, 562–563 dissociation constants for, 562, 562t and strong acids, 588–589, 607–608, 607f titrations of, 607–608, 607f and weak acids, 589 Weak electrolytes, 115 Weak-field ligands, 840 Weight, 12 Werner, Alfred, 817 Whiskers, of silicon carbide, 877–878 White phosphorus, 783, 783f, 784f White tin, 770 Whole-blood volume, determination of, 902 Wood alcohol (methanol), 290, 926 Work, 270–272, 271f X See Mole fraction Xenon, 208 Xenon tetrafluoride, 240 X-ray crystallography, 368–370 X-ray diffraction, 368, 368f, 369f X rays, 900 Yields, of chemical reactions, 83–85 Yttrium barium copper oxide (YBa 2Cu 3O7) crystal structure of, 872, 872f levitation of magnets with, 873f synthesis of, 877 Z See Atomic number Zeff See Effective nuclear charge Zeolites, 776 Zeroth-order reactions, 455–456, 455f Zinc and copper ions, 682f electron configuration of, 173 reduction of, 857 Zinc chromite, 887 Zirconium, 857 Zone refining, 774 Photo Credits (T) = (top); (C) = (center); (L) = (left); (R) = (right); (B) = (bottom) Chapter 1: 1, Austin Evan, used under a Creative Commons license http://www.flickr.com/photos/austinevan/3316195479/; (T), US Department of Energy Joint Genome Institute; (L), Sylvain Grandadam/AGE Fotostock; (R), Holger Mette/iStockphoto; 2, McCracken Photographer, Pearson Education; 4, Sciencephotos/Alamy; (L-R), Richard Megna/Fundamental Photographs; 7, McCracken Photographers, Pearson Education; (L-R), Richard Megna/Fundamental Photographs; (TL), McCracken Photographers, Pearson Education; (TR), REUTERS/China Newsphoto HAN/JJ; (BL-BR), Richard Megna/Fundamental Photographs; 11, Tom Krueger/iStockphoto; 12 (L), Mettler Toledo; 12 (R), OHAUS Corporation.; 12 (B), Dr Tony Brain/Science Photo Library/Photo Researchers, Inc.; 14, Richard Megna/Fundamental Photographs; 15 (L-R), McCracken Photographers, Pearson Education; 16 (T), Richard Megna/Fundamental Photographs; 16 (B), Christian Wilkinson /Shutterstock; 17, iStockphoto; 18, Dex Images/Corbis; 19, McCracken Photographers, Pearson Education; 21, Texas Instruments Inc.; 22, Andy Lyons / Getty Images; 23, Susumu Nishinaga/Photo Researchers, Inc.; 24, Jeff Richt/Koenigsegg; 26, Cephalon Corp Chapter 2: 34, Armand Photo CGI/Alamy; 35, Richard Megna/Fundamental Photographs; 36 (L-R), Richard Megna/Fundamental Photographs; 37, Richard Megna/Fundamental Photographs; 38 (T-B), Richard Megna/Fundamental Photographs; 39 (L-R), Richard Megna/Fundamental Photographs; 42, James Montgomery/JAI/AGE Fotostock; 45, Vladimir Chistyakov/AP Wide World Photos; 47, Richard Megna/Fundamental Photographs; 51, National Cancer Institute; 55 (T), Tom Till/Alamy; 55 (B), Bettmann/Corbis; 59 (T), Richard Megna/Fundamental Photographs; 59 (B), Eric Schrader, Pearson Science; 60, Karel Gallas/Shutterstock; 62, Richard Megna/Fundamental Photographs; 67 (T), NASA/Marshall Space Flight Center; 67 (B), NASA/Space Telescope Science Institute/ESA Chapter 3: 74, John Gillmoure/Corbis; 76, Gregg Adams Photography; 77, Corbis Royalty Free; 79, AP Photo/Anja Niedringhaus; 82, Sergio Piumatti; 88 (L-R), Richard Megna/Fundamental Photographs; 90, Paul Silverman/Fundamental Photographs; 91 (L-R), Richard Megna/Fundamental Photographs; 92, Paul Silverman/Fundamental Photographs; 93 (L-R), Richard Megna/Fundamental Photographs; 102 (T), Library of Congress; 102 (B), Science Photo Library/Photo Researchers, Inc Chapter 4: 112, Bildagentur RM/Tips Italia/Photolibrary; 113, McCracken Photographers, Pearson Education; 114 (L-R), Richard Megna/Fundamental Photographs; 117, Richard Megna/Fundamental Photographs; 118, McCracken Photographers, Pearson Education; 121, McCracken Photographers, Pearson Education; 124 (L), McCracken Photographers, Pearson Education; 124 (C), Richard Megna/Fundamental Photographs; 124 (R), McCracken Photographers, Pearson Education; 127, Picture Desk, Inc./Kobal Collection; 129 (L-R), McCracken Photographers, Pearson Education; 131 (L-R), Kip Peticolas & Richard Megna/Fundamental Photographs; 133 (L-R), Richard Megna/Fundamental Photographs; 137 (L-R), McCracken Photographers, Pearson Education; 138, Paul Silverman/Fundamental Photographs; 139, Jeff Gentner/Stringer/Getty Images; 141, iStockphoto Chapter 5: 150, Pfeiffer; J/ARCO/AGE Fotostock; 152, Phillip Long/Getty Images - Stone Allstock; 153, Richard Cummins/Corbis; 154 (CL), Pictor/ ImageState Media Partners Limited; 154 (CR), Karin Lau/Shutterstock; 154 (BL-BR), Debra Crowe; 157, Jens Johnson; 158, iStockphoto; 161, Alan Sailer/Flickr RM/Getty Images; 165, Richard Megna/Fundamental Photographs; 179 (T), Andre Thijssen/Photolibrary; 179 (B), General Electric Corporate Research & Development Center Chapter 6: 186, Travel Ink/Getty Images; 203, Richard Megna/Fundamental Photographs; 204 (L-R), Richard Megna/Fundamental Photographs; 205 (L-R), Richard Megna/Fundamental Photographs; 206, Richard Megna/ Fundamental Photographs; 207, iStockphoto; 208, Llinos Mair Pritchard/ Alamy; 209, AP Photo/Sakchai Lalit Chapter 7: 216, FA/COLOR CHINA PHOTO/SIPA Press; 219, McCracken Photographers, Pearson Education; 253, McCracken Photographers, Pearson Education; 256, Jaimie D Travis/iStockphoto; 257 (L), iStockphoto; 257 (R), pixelman/Shutterstock Chapter 8: 266, Frank Lane Picture Agency; 270, iStockphoto; 270, Dorian Hanner; 273, mtr/Shutterstock; 276 (T), Mikko Pitkanen/Shutterstock; 276 (C), luchschen/Shutterstock; 276 (B), Ezio Geneletti/Stone/Getty Images; 277, Richard Megna/Fundamental Photographs; 280, John McMurry; 281, McCracken Photographers, Pearson Education; 285, Fred Lyon/Fred Lyon Pictures; 287, iStockphoto; 289, Rob Belknap/iStockphoto; 290, iStockphoto; 291, World Pictures/Alamy; 292 (L), Mikko Pitkanen/Shutterstock; 292 (C), luchschen/Shutterstock; 292 (R), Ezio Geneletti/ Stone/Getty Images; 294 (L-R), iStockphoto; 297, iStockphoto Chapter 9: 308, Chuck Pelfley/Photolibrary; 309, Shutterstock; 310, NASA; 312, Pichugin Dmitry/Shutterstock; 314, Leapingllamas via Flickr, used under a Creative Commons license http://creativecommons.org/licenses/by/2.0/ deed.en; 316, iStockphoto; 320, Paulo Resende/Shutterstock; 321, Donald Johnston/Getty Images - Stone Allstock; 323, Eric Schrader, Pearson Science; 325, David B Fleetman/SeaPics.com; 330, U.S Department of Energy/Photo Researchers, Inc.; 333 (T), Niilo Tippler/iStockphoto; 333 (B), Richard Megna/Fundamental Photographs; 334 (B), NASA; 336, Charlotte Zeepvat Chapter 10: 346, Jeff Foott/Discovery Channel Images/Getty Images; 351, David Taylor/Science Photo Library/Photo Researchers, Inc.; 355, Bronwyn Photo/Shutterstock; 357 (R), Alexel Zaycev/iStockphoto; 357 (L), Harry Taylor, © Dorling Kindersley, Natural History Museum, London; 359, Alamy Images Royalty Free; 360, AP Photo; 362, Richard Megna/Fundamental Photographs; 364, Richard Megna/Fundamental Photographs; 366 (L), Jeffrey A Scovil Photography; 366 (R), Ryan McVay/Getty Images - Photodisc./Royalty Free; 368, Pearson Education/PH College; 371, Yenwen Lu/iStockphoto; 372, iStockphoto; 378, General Electric Corporate Research & Development Center; 380 (T), Linda Whitwam, © Dorling Kindersley; 380 (B), Richard Megna/Fundamental Photographs; 382, Paul Silverman/Fundamental Photographs; 383, BASF/Fundamental Photographs Chapter 11: 392, Kevin Schafer/Corbis; 393, © Judith Miller/Dorling Kindersley/Lyon and Turnbull Ltd.; 394, Frontpage/Shutterstock; 396 (L-R), Richard Megna/Fundamental Photographs; 399, Invisible/Shutterstock; 403 (L-R), Charles D Winters/Photo Researchers, Inc.; 405, US Navy; 418 (L), Janice Carr/Centers for Disease Control; 418 (R), Custom Medical Stock Photography; 419, Jaime Reina/Agence France Presse/Getty Images; 421, GSPhotography /Shutterstock; 424, AJPhoto/Photo Researchers, Inc Chapter 12: 432, Richard Carson/Reuters; 433 (L), Richard Megna/Fundamental Photographs; 433 (R), Tom Meyers/Photo Researchers, Inc.; 439 (L-R), McCracken Photographers, Pearson Education; 443 (L-R), McCracken Photographers, Pearson Education; 447, Richard Megna/Fundamental Photographs; 449, Library of Congress; 451, Nagy Melinda/ Shutterstock; 458, iStockphoto; 461, DPAphotos/NewsCom; 466, McCracken Photographers, Pearson Education; 472, Richard Megna/Fundamental Photographs; 473 (L-R), McCracken Photographers, Pearson Education Chapter 13: 492, Stefan Wermuth/Reuters; 493 (T), Richard Megna/Fundamental Photographs; 493 (C-B), AP Photo; 495, AP Photo/The Oklahoman, Michael Downes; 498, Eric Schrader, Pearson Science; 502, Dirk Wiersma/ Photo Researchers, Inc.; 510, Keith Dannemiller/Corbis; 515 (B), Shutterstock; 515 (L-R), Richard Megna/Fundamental Photographs; 519, Charles D Winters/Photo Researchers, Inc.; 520, Renn Sminkey, Pearson Science; 524, Supersonic Aerospace International; 526, Jon Burbank/The Image Works; 532, Richard Megna/Fundamental Photographs Chapter 14: 538, Stuart Pearce/AGE Fotostock; 550 (T), Richard Megna/Fundamental Photographs; 550 (B), Charles D Winters/Photo Researchers; 553, Richard Megna/Fundamental Photographs; 559, Paul Sakuma/AP Photo; 561, NASA; 562, Eric Schrader, Pearson Science; 566, Richard Megna/Fundamental Photographs; 574, Richard Megna/Fundamental Photographs; 576 (T), Ben Osborne/Getty Images - Stone Allstock; 576 (B), Getty Images Chapter 15: 586, Vlad61/Shutterstock; 588, Richard Megna/Fundamental Photographs; 589, Richard Megna/Fundamental Photographs; 591, Richard Megna/Fundamental Photographs; 597 (L-R), Richard Megna/Fundamental C-1 C-2 PHOTO CREDITS Photographs; 599, Donald Clegg and Roxy Wilson, Pearson Education; 601, Richard Megna/Fundamental Photographs; 611, CMSP/NewsCom; 612, Richard Megna/Fundamental Photographs; 614, Richard Megna/Fundamental Photographs; 615, Photo Researchers, Inc.; 618, Michael J Thompson/Shutterstock; 619 (L-R), Richard Megna/Fundamental Photographs; 622 (L-R), Richard Megna/Fundamental Photographs; 624, Richard Megna/Fundamental Photographs; 625, Richard Megna/Fundamental Photographs; 626, Richard Megna/Fundamental Photographs; 627 (L-R), Richard Megna/Fundamental Photographs; 628 (T), Mediscan; 628 (C), Mark Miller/Photo Researchers, Inc Chapter 16: 640, Gail Shumway/Photographer’s Choice/Getty Images; 642, iStockphoto; 643, Tatiana Popova/Shutterstock; 646, Paul Silverman/ Fundamental Photographs; 654 (T), James H Karales/Photolibrary/Peter Arnold; 654 (B), Taiga/Shutterstock; 667, Richard Megna/Fundamental Photographs; 669, NASA/NOAO/ESA/the Hubble SM4 ERO Team Chapter 17: 680, Drive Images/NewsCom; 682 (T-B), Richard Megna/Fundamental Photographs; 683, Richard Megna/Fundamental Photographs; 684, Eric Schrader, Pearson Science; 703 (T), Liz Strenk/SuperStock; 703 (B), Tony Freeman/PhotoEdit; 704, Photos.com; 707, Porter Gifford; 708 (T), Courtesy of Seven Cycles, www.sevencycles.com; 708 (B), Tobias Helbig/ iStockphoto; 715 (C), Photos.com; 715 (T), Axel Seidemann/AP Photo; 718 (T), Radius Images/Alamy Images Royalty Free; 718 (B), Chis DeRuggiero, Anodic Process Tech.; 722, Eric Schrader, Pearson Science; 724, Amy Walters/Shutterstock; 725, iStockphoto Chapter 18: 728, Biophoto Associates/Photo Researchers, Inc.; 729, National Optical Astronomy Observatory/Association of Universities for Research in Astronomy/National Science Foundation (NOAO/AURA/NSF); 731, Charles Winters/Photo Researchers, Inc.; 733, SuperStock; 734, Richard Megna/Fundamental Photographs; 738, Richard Megna/Fundamental Photographs; 739, Shutterstock; 741 (L), McCracken Photographers, Pearson Education; 741 (C), Richard Megna/Fundamental Photographs; 741 (R), McCracken Photographers, Pearson Education; 743, Joanne Harris and Daniel Bubnich/Shutterstock; 745, Richard Megna/Fundamental Photographs; 747 (TL-TR), Richard Megna/Fundamental Photographs; 747 (BL-BR), Richard Megna/Fundamental Photographs; 748, Paul Silverman/Fundamental Photographs; 750, Sheila Terry/Photo Researchers, Inc.; 751, Richard Megna/Fundamental Photographs; 752, Honda Media/American Honda Motor Co Chapter 19: 760, Richard Megna/Fundamental Photographs; 766, Richard Megna/Fundamental Photographs; 767, U.S Borax Inc.; 769, Richard Megna/Fundamental Photographs; 770 (C), Russell Lappa/Photo Researchers, Inc.; 770 (R), Charles D Winters/Photo Researchers, Inc.; 770 (L), Richard Megna/Fundamental Photographs; 771, Michael J Bronikowski, California Institute of Technology/Jet Propulsion Laboratory; 772, Martyn F Chillmaid/Photo Researchers, Inc.; 773, Robert Semeniuk; 774, Texas Instruments Inc.; 775 (T-B), Jeffrey A Scovil Photography; 776 (T), Gontar/Shutterstock; 776 (B), ephotocorp/Alamy Images Royalty Free; 776 (L), Charles D Winters/Photo Researchers, Inc.; 776 (R), Charles D Winters/Photo Researchers, Inc.; 778 (T), Harry Taylor, © Dorling Kindersley; 778 (B), Russ Lappa/Science Source/Photo Researchers, Inc.; 778 (R), Paul Silverman/Fundamental Photographs; 781 (L), Donald Clegg and Roxy Wilson, Pearson Education; 781 (C), Donald Clegg and Roxy Wilson, Pearson Education; 781 (R), Richard Megna/Fundamental Photographs; 782, Kristen Brochmann/Fundamental Photographs; 783, Tom Bochsler, Pearson Education; 784 (L-R), Richard Megna/Fundamental Photographs; 785, Richard Megna/Fundamental Photographs; 786 (L), Charles D Winters/Photo Researchers, Inc.; 786 (R), Russ Lappa/Photo Researchers, Inc.; 787 (T), Jan Greune/Getty Images - Look; 787 (C), Marvin Dembinsky Photo Associates/ Alamy; 787 (B), iStockphoto; 788 (L-R), Richard Megna/Fundamental Photographs Chapter 20: 802, Chip Clark, Smithsonian Institute; 806, iStockphoto; 810, Richard Megna/Fundamental Photographs; 811, Jason Seley (1919– 1983), Herakles in Ithaka I, 1980-81 Sculpture, welded steel, 342.9 cm Gift of the Artist, the Herbert F Johnson Museum of Art, Cornell University Photo by Robert Barker, Director, Cornell University Photography; 812, Donald Clegg and Roxy Wilson, Pearson Education; 813 (L-R), Richard Megna/ Fundamental Photographs; 814 (L-R), Richard Megna/Fundamental Photographs; 815 (B), Allison Cornford-Matheson/iStockphoto; 815 (T), Richard Megna/Fundamental Photographs; 816, Paul Silverman/Fundamental Photographs; 822, Richard Megna/Fundamental Photographs; 823, Richard Megna/Fundamental Photographs; 825 (L-R), Richard Megna/Fundamental Photographs; 832, Richard Megna/Fundamental Photographs; 833 (T-B), Richard Megna/Fundamental Photographs; 843, Howard Ande/AGE Fotostock; 848, Richard Megna/Fundamental Photographs; 849, Richard Megna/ Fundamental Photographs Chapter 21: 852, ImageChina/AP Photo; 853, Philippe Psaila/SPL/Photo Researchers, Inc.; 854 (L), Linda Burgess, © Dorling Kindersley; 854 (C-R), Paul Silverman/Fundamental Photographs; 855, Photos.com; 857 (T), Erich Hartmann/Magnum Photos; 857 (B), ThePropShoppe/iStockphoto; 859, Courtesy Bethlehem Steel/AFP Photo/NewsCom; 860, Peter Poulides/ Getty Images - Stone Allstock; 870, PhotoLink/Getty Images - PhotodiscRoyalty Free; 871, Intel Corporation; 872, Chemical Design Ltd./SPL/Photo Researchers, Inc.; 873 (T), Richard Megna/Fundamental Photographs; 873 (B), AP Photo; 875, Hua-Tay Lin/Oak Ridge National Laboratory; 876 (L-R), Corning Incorporated; 878, Northrop Grumman/Military Aircraft Systems Division; 879, Photos.com; 879 (T), Mathias Brust; 879 (B), From S Asokan, K.M Krueger, A Alkhawaldeh, A.R Carreon, Z Mu, V.L Colvin, N.V Mantzaris, and M.S Wong, “The Use of Heat Transfer Fluids in the Synthesis of Highquality CdSe Quantum Dots, Core/Shell Quantum Dots, and Quantum Rods,” Nanotechnology 16, 2000-2011 (2005) Subashini Asokan and Michael Wong/Rice University.; 880, Raoul Kopelman Chapter 22: 888, David Howells/Corbis; 894, Los Alamos National Laboratory; 896, Shutterstock; 898, Fermilab Visual Media Services; 899, Thinkstock; 901, C Gascoigne/Robert Harding World Imagery; 902 (T), Peter Buckley, Pearson Education; 902 (B), Keith Brofsky/Getty Images - PhotoDisc; 903 (T), Martin Dohrn/Science Photo Library/Photo Researchers, Inc.; 903 (L), Australian Nuclear Science and Technology Organisation; 903 (R), Roger Tully/ Getty Images - Stone Allstock; 904, Nagra Corp Chapter 23: 908, Ron Koeberer /Getty Images - Aurora; 923, Jill Chen/iStockphoto; 924, Shutterstock; 927, Grant Faith/Photographers Choice/Getty Images; 930, Richard Weiss/Silver Burdett Ginn; 934, George D Lepp/Corbis; 936, Shutterstock; 947, Laura Clay-Ballard/iStockphoto List of the Elements with Their Atomic Symbols and Atomic Masses Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Symbol Ac Al Am Sb Ar As At Ba Bk Be Bi Bh B Br Cd Ca Cf C Ce Cs Cl Cr Co Cn Cu Cm Ds Db Dy Es Er Eu Fm F Fr Gd Ga Ge Au Hf Hs He Ho H In I Ir Fe Kr La Lr Pb Li Lu Mg Mn Atomic Number 89 13 95 51 18 33 85 56 97 83 107 35 48 20 98 58 55 17 24 27 112 29 96 110 105 66 99 68 63 100 87 64 31 32 79 72 108 67 49 53 77 26 36 57 103 82 71 12 25 Atomic Mass (227)* 26.981538 (243) 121.760 39.948 74.92160 (210) 137.327 (247) 9.012182 208.98038 (272) 10.811 79.904 112.411 40.078 (251) 12.0107 140.116 132.90545 35.453 51.9961 58.933200 (285) 63.546 (247 ) (281) (268) 162.500 (252) 167.259 151.964 (257) 18.998403 (223) 157.25 69.723 72.64 196.96655 178.49 (270) a 4.002602 164.93032 1.00794 114.818 126.90447 192.217 55.845 83.798 138.9055 (262) 207.2 6.941 174.9668 24.3050 54.938049 Name Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium Symbol Mt Md Hg Mo Nd Ne Np Ni Nb N No Os O Pd P Pt Pu Po K Pr Pm Pa Ra Rn Re Rh Rg Rb Ru Rf Sm Sc Sg Se Si Ag Na Sr S Ta Tc Te Tb Tl Th Tm Sn Ti W U V Xe Yb Y Zn Zr Atomic Number 109 101 80 42 60 10 93 28 41 102 76 46 15 78 94 84 19 59 61 91 88 86 75 45 111 37 44 104 62 21 106 34 14 47 11 38 16 73 43 52 65 81 90 69 50 22 74 92 23 54 70 39 30 40 Atomic Mass (276) (258) 200.59 95.96 144.24 20.1797 (237) 58.6934 92.90638 14.0067 (259) 190.23 15.9994 106.42 30.973761 195.078 (244) (209) 39.0983 140.90765 (145) 231.03588 (226) (222) a 186.207 102.90550 (280) 85.4678 101.07 (267) 150.36 44.955910 (271) 78.96 28.0855 107.8682 22.989770 87.62 32.065 180.9479 (98) 127.60 158.92534 204.3833 232.0381 168.93421 118.710 47.867 183.84 238.02891 50.9415 131.293 173.054 88.90585 65.38 91.224 *Values in parentheses are the mass numbers of the most common or longest lived isotopes of radioactive elements Periodic Table of the Elements Main groups Main groups 1A 18 8A H He 1.00794 2A 13 3A 14 4A 15 5A 16 6A 17 7A 4.002602 Li Be B C N O F 10 Ne 6.941 9.012182 10.811 12.0107 14.0067 11 Na 12 Mg 13 Al 14 Si 15 P 22.989770 19 K Transition metals 16 S 17 Cl 18 Ar 32.065 35.453 39.948 34 Se 35 Br 36 Kr 74.92160 78.96 79.904 83.798 51 Sb 52 Te 53 I 54 Xe 118.710 121.760 127.60 82 Pb 83 Bi 84 Po 85 At 86 Rn 4B 5B 6B 7B 8B 10 24.3050 3B 11 1B 12 2B 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 39.0983 40.078 44.955910 47.867 50.9415 63.546 65.38 69.723 72.64 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 85.4678 87.62 88.90585 91.224 92.90638 95.94 (98) 101.07 102.90550 106.42 107.8682 112.411 114.818 55 Cs 56 Ba 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 132.90545 137.327 51.9961 54.938049 55.845 58.933200 58.6934 15.9994 18.998403 20.1797 26.981538 28.0855 30.973761 126.90447 131.293 174.9668 178.49 180.9479 183.84 186.207 190.23 192.217 200.59 204.3833 207.2 208.98038 (209) (210) (222) 87 Fr 88 Ra 103 Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg 112 Cn 113 114 115 116 117 118 (223) (226) (262) (267) (268) (271) (272) (270) (276) (281) (280) (285) (284) (289) (288) (293) (293) (294) Lanthanide series 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 144.24 (145) 150.36 151.964 157.25 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) 138.9055 Actinide series 89 Ac (227) 140.116 140.90765 90 Th 91 Pa 232.0381 231.03588 238.02891 195.078 196.96655 158.92534 162.500 164.93032 167.259 168.93421 173.054 Useful Conversion Factors and Relationships Energy (derived) SI unit: joule (J) J = (kg m2)/s2 = 0.239 01 cal Length SI unit: meter (m) km = 103 m = 0.621 37 mi mi = 5280 ft = 1760 yd = 1.6093 km m = 102 cm = 1.0936 yd in = 2.54 cm (exactly) cm = 0.393 70 in Å = 10–10 m = 100 pm =1Cϫ1V cal = 4.184 J (exactly) eV = 1.602 176 ϫ 10–19 J MeV = 1.602 176 ϫ 10–13 J kWh = 3.600 ϫ 106 J Btu = 1055 J Mass SI unit: kilogram (kg) kg = 103 g = 2.2046 lb lb = 16 oz = 453.59 g oz = 28.35 g ton = 2000 lb = 907.185 kg metric ton = 103 kg = 1.102 tons Pressure (derived) SI unit: pascal (Pa) Pa = N/m2 = kg/(m s2) atm = 101,325 Pa = 1.013 25 bar = 760 mm Hg (torr) = 14.70 lb/in.2 amu = 1.660 54 ϫ 10–27 kg bar = 105 Pa Temperature SI unit: kelvin (K) K = Ϫ273.15 °C = Ϫ459.67 °F K = °C + 273.15 °C = °F = 9 Volume (derived) SI unit: cubic meter (m3) L = 10–3 m3 = dm3 = 103 cm3 = 1.0567 qt gal = qt = 3.7854 L cm3 = mL in.3 = 16.4 cm3 (°F Ϫ 32) (°C) ϩ 32 Fundamental Constants amu = 1.660 539 ϫ 10–27 kg 1g = 6.022 142 ϫ 1023 amu NA = 6.022 142 ϫ 1023/mol Boltzmann’s constant k = 1.380 650 ϫ 10–23 J/K Electron charge –e = –1.602 176 ϫ 10–19 C Atomic mass unit Avogadro’s number Electron charge-to-mass ratio Electron mass –e/me me = –1.758 820 ϫ 1011 C/kg = 5.485 799 ϫ 10–4 amu = 9.109 382 ϫ 10–31 kg Elementary charge e = 1.602 176 ϫ 10–19 C Faraday’s constant F = 9.648 534 ϫ 104 C/mol Gas constant R = 8.314 472 J/(mol K) Neutron mass mn = 1.008 665 amu = 0.082 0582 (L atm)/(mol K) = 1.674 927 ϫ 10–27 kg Pi π Planck’s constant h Proton mass mp = 3.141 592 6536 = 6.626 069 ϫ 10–34 J s = 1.007 276 amu = 1.672 622 ϫ 10–27 kg Rydberg constant Speed of light Rq c = 1.097 373 ϫ 107/m = 2.997 924 58 ϫ 108 m/s Index of Important Information Subject Table/Figure Page Acid-dissociation constants for hydrated metal cations Acid-dissociation constants for weak acids Activity series of the elements Air composition Amino acid structures Atomic radii Base-dissociation constants Binary hydrides of main-group elements Bond dissociation energies Density of water at different temperatures Dissociation constants for polyprotic acids Electron affinities Electron configurations Electronegativities Elemental abundances Formation constants for complex ions Functional groups in organic molecules Ionization energies Ionization energies (higher) Lattice energies Main-group anions and cations Mineral sources of metals Molecular geometry and VSEPR Oxides of main-group elements pH values for some common substances Polyatomic ions Prefixes for multiples of SI units Properties of water Radioactive decay processes Seawater constituents Separation of metal cations in qualitative analysis Solubility product constants (Ksp) Solubility product constants in acid (Kspa) Standard reduction potentials Stereoisomer classification scheme Thermodynamic properties of inorganic substances Thermodynamic properties of organic substances Top 10 chemicals (2009 U.S production) Transition metal ions Vapor pressure of water at various temperatures Table C.2 Table C.1 Table 4.5 Table 9.1 Figure 23.8 Figure 5.18 Table C.3 Figure 18.2 Table 7.1 Figure 1.8 Table 14.3 Figure 6.5 Figure 5.16 Figure 7.4 Figure 19.1 Table C.6 Table 23.1 Figure 6.3 Table 6.2 Table 6.3 Figure 2.14 Figure 21.2 Table 7.4 Figure 18.6 Figure 14.3 Table 2.4 Table 1.5 Appendix E Table 2.2 Table 18.3 Figure 15.18 Table C.4 Table C.5 Appendix D Figure 20.16 Table B.1 Table B.2 Table 19.1 Figure 2.15 Table 10.8 A-15 A-14 130 309 935 177 A-15 734 219 16 559 195 174 221 761 A-17 913 191 193 201 61 855 241 742 548 65 11 A-20 51 749 626 A-16 A-17 A-18–A-19 824 A-9–A-12 A-13 761 61 364 ... Acquisitions Editor: Terry Haugen Marketing Manager: Erin Gardner Assistant Editor: Carol DuPont VP/Director of Development: Carol Truehart Development Editor: Carol Pritchard-Martinez Editorial Assistant:... Long Art Studio: Imagineering Photo Manager: Elaine Soares Photo Researcher: Eric Schrader Art Director: Mark Ong Interior/Cover Designer: Gary Hespenheide Senior Media Production Supervisor: Liz... 12.12 Integrated Rate Law for a First-Order Reaction 444 Half-Life of a First-Order Reaction 447 Radioactive Decay Rates 449 Second-Order Reactions 452 Zeroth-Order Reactions 455 Reaction Mechanisms