1. Trang chủ
  2. » Giáo án - Bài giảng

Loi giai de thi HSG quoc gia nam 2008.doc

1 638 6
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 55 KB

Nội dung

LỜI GIẢI ĐỀ THI HỌC SINH GIỎI QUỐC GIA NĂM 2008 Bài 1. Hãy xác định tất cả các nghiệm của hệ phương trình (ẩn x, y) sau: 2 3 3 2 29 (1) log .log 1 (2) x y x y  + =  =  (I) Lời giải: Dễ thấy, nếu (x, y) là các nghiệm của hệ (I) thì x > 1, y > 1 (3) Đặt 3 log , 0x t t= > (do (3)). Ki đó, 3 t x = và từ phương trình (PT) (2) có 1 2 t y = . Vì thế. từ PT (1) ta có PT (ẩn t) sau: 1 9 8 29 t t + = (4) Dễ thấy số nghiệm của hệ (I) bằng số nghiệm dương của PT (4). Xét hàm số 1 29 ( ) 9 8 t t f t − = + trên (0; +∞). Ta có 1 2 8 .ln8 '( ) 9 .ln9 . t t f t t = − Trên (0; +∞), 1 8 .ln8 t y = và 2 1 y t = là các hàm nghịch biến và chỉ nhận giá trị dương. Vì thế, trên khoảng đó, 1 2 8 .ln8 t y t = là hàm đồng biến. Suy ra, f’(t) là hàm số đồng biến trên khoảng (0; +∞). Hơn nữa, do 256 1 ' . '(1) 18(ln9 ln 2 )(ln 27 ln16) 0 2 f f   = − − <  ÷   nên ∃t 0 ∈ (0; 1) sao cho f’(t 0 ) = 0. Do đó, ta có bảng biến thiên của hàm số f(t) trên (0: +∞): t 0 t 0 1 +∞ f’(t) - 0 + f(t) +∞ +∞ -12 f(t 0 ) Từ bảng biến thiên ta thấy phương trình (4) có đúng hai nghiệm dương. Vì vậy, hệ (I) có tất cả hai nghiệm. Nhận xét: - Bài toán trên là trường hợp riêng của bài toán sau: Bài 1*. Cho số thực a ≥ 17. Hãy xác định tất cả các nghiệm của hệ phương trình (ẩn x, y) sau: 2 3 3 2 (1) log .log 1 (2) x y a x y  + =  =  Cách giải bài toán này tương tự như trên. Trường hợp a = 17 hệ phương trình có nghiệm (x; y) = (3; 2) và (x; y) = ( 3 2 2; 9 ) (Trích từ báo Toán học và tuổi trẻ số 12/2008) . LỜI GIẢI ĐỀ THI HỌC SINH GIỎI QUỐC GIA NĂM 2008 Bài 1. Hãy xác định tất cả các nghiệm của hệ phương trình. = 0. Do đó, ta có bảng biến thi n của hàm số f(t) trên (0: +∞): t 0 t 0 1 +∞ f’(t) - 0 + f(t) +∞ +∞ -12 f(t 0 ) Từ bảng biến thi n ta thấy phương trình

Ngày đăng: 30/08/2013, 22:10

TỪ KHÓA LIÊN QUAN

w