LÊ VĂN QUYNH – GV TOÁN TRƯỜNG THCS YÊN PHONG - HUYỆN YÊN PHONG - TỈNH BẮC NINH SĐT: 0982956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) GIẢI ĐỀTHIĐẠIHỌCKHỐIA BẰNG KIẾNTHỨCLỚP8 Thưa các quý đồng nghiệp, và các em hs. Bất đẳng thức - Cực trị đại số là mảng kiếnthức khó, bài toán dạng này thường xuất hiện trong các kì thi vào trường chuyên và thiđại học.Kì trước tôi đã đưa ra gợi ý giảiđề chuyên ĐHKHTN – ĐHQG Hà nội. Hôm nay tôi tiếp tục đưa ra lời giải bài toán khó trong đề thiđạihọckhốiA ngày 04/07/2009. Khi quý vị đọc có thể sẽ thắc mắc tại sao tôi nghĩ ra được cách giải như vậy . Nếu còn băn khoăn điều gì thì hãy lien hệ với tôi theo địa chỉ: LÊ VĂN QUYNH – GV TOÁN TRƯỜNG THCS YÊN PHONG - HUYỆN YÊN PHONG - TỈNH BẮC NINH SĐT: 0982956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) Bài toán: Cho x,y,z > 0 thoả mãn điều kiện: x( x + y + z ) = 3yz. CMR: (x + y) 3 + (z + x) 3 + (x + y)(y+z)(z+x) ≤ (y + z) 3 HD Đặt ẩn phụ: a = x + y; b = y + z; c = z + x ( a,b,c > 0). ⇒ x + y + z = 2 a b c+ + ; x = 2 a c b+ − ; y = 2 a b c+ − ; z = 2 c b a+ − . Mà: x( x + y + z ) = 3yz ⇔ 2 a b c+ + . 2 a c b+ − = 2 a b c+ − . 2 c b a+ − ⇔ …… ⇔ a 2 + c 2 – b 2 = ac (1) Do đó bài toán cần chứng minh tương đương với: ‘’ Cho a,b,c > 0 và a 2 + c 2 – b 2 = ac (1). Chứng minh rằng: a 3 + c 3 + 3abc ≤ 5 b 3 (2)” Bài giải: Ta có (2) ⇔ a 3 + b 3 + c 3 - 3abc ≤ 6b 3 – 6abc ⇔ (a + b + c)( a 2 + b 2 + c 2 – ab – bc - ca) ≤ 6b 3 – 6abc ⇔ (a + b + c)(2b 2 – ab – cb) ≤ 6b 3 – 6abc ( vì a 2 + c 2 – b 2 = ac (1).) ⇔ (a + b + c)(2b – a – c) ≤ 6b 2 – 6ac ⇔ ……………. ⇔ 4b 2 + a 2 + c 2 ≥ ab + bc + 4ac Mặt khác: b 2 + a 2 + c 2 ≥ ab + bc + ac (3) ∀ a,b,c (Đây là BĐT quen thuộc ở lớp 8) Từ a 2 + c 2 – b 2 = ac (1) ⇒ a 2 + c 2 - ac = b 2 ⇒ b 2 = ( a - c ) 2 + ac ≥ ac; ∀ a,c (4) Từ (3) và (4) suy ra : 4b 2 + a 2 + c 2 ≥ ab + bc + 4ac. Dấu ‘’ xảy ra ⇔ a = b = c > 0 ⇔ x = y = z > 0 Vậy: Bài toán được chứng minh. LÊ VĂN QUYNH – GV TOÁN TRƯỜNG THCS YÊN PHONG - HUYỆN YÊN PHONG - TỈNH BẮC NINH SĐT: 0982956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) LÊ VĂN QUYNH – GV TOÁN TRƯỜNG THCS YÊN PHONG - HUYỆN YÊN PHONG - TỈNH BẮC NINH SĐT: 0982956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) LÊ VĂN QUYNH – GV TOÁN TRƯỜNG THCS YÊN PHONG - HUYỆN YÊN PHONG - TỈNH BẮC NINH SĐT: 0982956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) . - TỈNH BẮC NINH SĐT: 0 982 956469 ( Gặp thầy Quynh - Cựu SV K22B toán – SPHN II) GIẢI ĐỀ THI ĐẠI HỌC KHỐI A BẰNG KIẾN THỨC LỚP 8 Th a các quý đồng nghiệp,. trước tôi đã đ a ra gợi ý giải đề chuyên ĐHKHTN – ĐHQG Hà nội. Hôm nay tôi tiếp tục đ a ra lời giải bài toán khó trong đề thi đại học khối A ngày 04/07/2009.