Sở giáo dục và đào tạo Hng yênđề chính thức kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2009 2010 Môn thi: Toán (Dành cho thí sinh thi vào các lớp chuyên Toán, Tin) Thời gian làm bài: 150 phút Bài 1: (1,5 điểm) Cho 1 1 a 2 : 7 1 1 7 1 1 = ữ ữ + + + Hãy lập một phơng trình bậc hai có hệ số nguyên nhận a - 1 là một nghiệm. Bài 2: (2,5 điểm) a) Giải hệ phơng trình: x 16 xy y 3 y 9 xy x 2 = = b) Tìm m để phơng trình ( ) 2 2 2 x 2x 3x 6x m 0 + + = có 4 nghiệm phân biệt. Bài 3: (2,0 điểm) a) Chứng minh rằng nếu số nguyên k lớn hơn 1 thoả mãn 2 k 4+ và 2 k 16+ là các số nguyên tố thì k chia hết cho 5. b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì p a p b p c 3p + + Bài 4: (3,0 điểm) Cho đờng tròn tâm O và dây AB không đi qua O. Gọi M là điểm chính giữa của cung AB nhỏ. D là một điểm thay đổi trên cung AB lớn (D khác A và B). DM cắt AB tại C. Chứng minh rằng: a) MB.BD MD.BC= b) MB là tiếp tuyến của đờng tròn ngoại tiếp tam giác BCD. c) Tổng bán kính các đờng tròn ngoại tiếp tam giác BCD và ACD không đổi. Bài 5: (1,0 điểm) Cho hình chữ nhật ABCD. Lấy E, F thuộc cạnh AB; G, H thuộc cạnh BC; I, J thuộc cạnh CD; K, M thuộc cạnh DA sao cho hình 8 - giác EFGHIJKM có các góc bằng nhau. Chứng minh rằng nếu độ dài các cạnh của hình 8 - giác EFGHIJKM là các số hữu tỉ thì EF = IJ. ------------ Hết ------------ Họ và tên thí sinh: . Chữ ký của giám thị . Số báo danh: Phòng thi số: Hớng dẫn chấm thi (Bản Hớng dẫn chấm thi gồm 04 trang) I. Hớng dẫn chung 1) Hớng dẫn chấm thi này chỉ trình bày các bớc chính của lời giải hoặc nêu kết quả. Trong bài làm, thí sinh phải trình bày lập luận đầy đủ. 2) Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm từng phần nh hớng dẫn quy định. 3) Việc chi tiết hoá thang điểm (nếu có) so với thang điểm trong hớng dẫn phải đảm bảo không sai lệch với hớng dẫn chấm và đợc thống nhất thực hiện trong Hội đồng chấm thi. 4) Các điểm thành phần và điểm cộng toàn bài phải giữ nguyên không đợc làm tròn. II. Đáp án và thang điểm Bài 1: (1,5 điểm) 1 1 7 1 1 7 1 1 a 2 : 2 : 7 7 1 1 7 1 1 + + + + = = ữ ữ + + + 0,5 đ a = 2 2 : 7 7 = 0,25 đ Đặt 2 x a 1 x 7 1 x 1 7 x 2x 1 7= = + = + + = 0,5 đ 2 x 2x 6 0 + = Vậy phơng trình 2 x 2x 6 0+ = nhận 7 1 làm nghiệm 0,25 đ Bài 2: (2,5 điểm) a) x 16 x 16 xy (1) xy y 3 y 3 y x 5 y 9 (2) xy x y 6 x 2 = = = = ĐK: x,y 0 0,25 đ Giải (2) 2 2 6y 6x 5xy (2x 3y)(3x 2y) 0 = + = 0,25 đ * Nếu 3y 2x 3y 0 x 2 + = = . Thay vào (1) ta đợc 3y 3 16 y. 2 2 3 + = 0,25 đ 2 3y 23 2 6 = (phơng trình vô nghiệm) 0,25 đ * Nếu 2y 3x 2y 0 x 3 = = . Thay vào (1) ta đợc 2 y 9 y 3= = 0,25 đ - Với y 3 x 2= = (thoả mãn điều kiện) - Với y 3 x 2= = (thoả mãn điều kiện) Vậy hệ phơng trình có hai nghiệm: (x; y) = (2; 3); (x; y) = (-2; -3) 0,25 đ b) Đặt ( ) 2 2 x 2x 1 y x 1 y x 1 y (y 0) + = = = (*) Phơng trình đã cho trở thành: ( ) ( ) 2 y 1 3 y 1 m 0 + = 2 y 5y m 4 0 + + = (1) 0,25 đ Từ (*) ta thấy, để phơng trình đã cho có 4 nghiệm phân biệt thì phơng trình (1) có 2 nghiệm dơng phân biệt 0,25 đ 0 9 4m 0 S 0 5 0 P 0 m 4 0 > > > > > + > 0,25 đ 9 m 9 4 m 4 4 m 4 < < < > Vậy với 9 4 m 4 < < thì phơng trình có 4 nghiệm phân biệt. 0,25 đ Bài 3: (2,0 điểm) a) Vì k > 1 suy ra 2 2 k 4 5; k 16 5+ > + > - Xét 2 2 2 k 5n 1 (với n ) k 25n 10n 1 k 4 5= + = + + +Â M 2 k 4 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 2 (với n ) k 25n 20n 4 k 16 5= + = + + +Â M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 3 (với n ) k 25n 30n 9 k 16 5= + = + + +Â M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 4 (với n ) k 25n 40n 16 k 4 5= + = + + +Â M 2 k 4 + không là số nguyên tố. Do vậy k 5M 0,25 đ b) Ta chứng minh: Với a,b,c thì ( ) ( ) 2 2 2 2 a b c 3 a b c+ + + + (*) Thật vậy 2 2 2 2 2 2 (*) a b c 2ab 2bc 2ca 3a 3b 3c + + + + + + + 2 2 2 (a b) (b c) (c a) 0 + + (luôn đúng) 0,5 đ áp dụng (*) ta có: ( ) ( ) 2 p a p b p c 3 3p a b c 3p + + = 0,5 đ Suy ra p a p b p c 3p + + (đpcm) Bài 4: (3,0 điểm) J I C N M O A B D a) Xét MBC và MDB có: ã ã BDM MBC (haigóc nội tiếp chắn hai cung bằng nhau)= ã ã BMC BMD= 0,5 đ Do vậy MBC và MDB đồng dạng Suy ra MB MD MB.BD MD.BC BC BD = = 0,5 đ b) Gọi (J) là đờng tròn ngoại tiếp BDC ã ã ã BJC 2BDC 2MBC = = hay ã ã BJC MBC 2 = ã ã 0 180 BJC BCJ cân tại J CBJ 2 = 0,5 đ Suy ra ã ã ã ã O O BJC 180 BJC MBC CBJ 90 MB BJ 2 2 + = + = Suy ra MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB 0,5 đ c) Kẻ đờng kính MN của (O) NB MB Mà MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB Gọi (I) là đờng tròn ngoại tiếp ADC Chứng minh tơng tự I thuộc AN Ta có ã ã ã ã ANB ADB 2BDM BJC= = = CJ // IN Chứng minh tơng tự: CI // JN 0,5 đ Do đó tứ giác CINJ là hình bình hành CI = NJ Suy ra tổng bán kính của hai đờng tròn (I) và (J) là: IC + JB = BN (không đổi) 0,5 đ Bài 5: (1,0 điểm) g f e d h c b a G F I H J M C A B D E K Gọi EF = a ; FG = b ; GH = c ; HI = d ; IJ = e ; JK = f ; KM = g ; ME = h (với a, b, c, d, e, f, g, h là các số hữu tỉ dơng) Do các góc của hình 8 cạnh bằng nhau nên mỗi góc trong của hình 8 cạnh có số đo là: O O 8 2 180 135 8 ( ). = 0,25 đ Suy ra mỗi góc ngoài của hình 8 cạnh đó là: 180 O - 135 O = 45 O Do đó các tam giác MAE ; FBG ; CIH ; DKJ là các tam giác vuông cân. MA = AE = h 2 ; BF = BG = b 2 ; CH = CI = d 2 ; DK = DJ = f 2 Ta có AB = CD nên: h b f d a e 2 2 2 2 + + = + + (e - a) 2 = h + b - f - d 0,5 đ Nếu e - a 0 thì h b f d 2 e a + = Ô (điều này vô lý do 2 là số vô tỉ) Vậy e - a = 0 e = a hay EF = IJ (đpcm). 0,25 đ ------------ Hết ------------ . Sở giáo dục và đào tạo Hng yên đề chính thức kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2009 2010 Môn thi: Toán (Dành cho thí sinh thi vào các lớp. Họ và tên thí sinh: . Chữ ký của giám thị . Số báo danh: Phòng thi số: Hớng dẫn chấm thi (Bản Hớng dẫn chấm thi