UBND TỈNH NINH BÌNH SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10- THPT Chuyên Lương Văn Tụy Năm học 2009- 2010 (Khóa ngày 30/9/2009) Môn thi: TOÁN- VÒNG I Câu 1: (2 điểm) Tính giá trị biểu thức: ( ) x 5 2 2 5 5 250= + − 3 3 y 3 1 3 1 = − − + ( ) x x y y A x y x xy y + = − − + Câu 2: (2,5 điểm) Cho phương trình (m + 1)x 2 – 2(m – 1) + m – 2 = 0 (ẩn x, tham số m). a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 1 2 1 1 7 x x 4 + = Câu 3: (1,0 điểm) Khoảng cách giữa hai bến sông A và B là 60 km. Một ca nô chạy xuôi dòng từ bến A tới bến B, nghỉ 1 giờ 20 phút ở bến sông B và ngược dòng trở về A. Thời gian kể từ lúc khởi hành đến khi về bến A tất cả 12 giờ. Tính vận tốc riêng của ca nô và vận tốc dòng nước biết vận tốc riêng cảu ca nô gấp 4 lần vận tốc dòng nước. Câu 4: (3,5 điểm) Cho đường tròn (O; R) và đường thẳng (d) không đi qua tâm O cắt đường tròn (O; R) tại hai điểm phân biệt A, B. Điểm M chuyển động trên (d) và nằm ngoài đường tròn (O; R), qua M kẻ hai tiếp tuyến MN và MP tới đường tròn (O; R) (N, P là hai tiếp điểm). a) Chứng minh rằng tứ giác MNOP nội tiếp được trong một đường tròn, xác định tâm đường tròn đó. b) Chứng minh MA.MB = MN 2 . c) Xác định vị trí điểm M sao cho tam giác MNP đều. d) Xác định quỹ tích tâm đường tròn ngoại tiếp tam giác MNP. Câu 5: (1 điểm) Cho hai số thực dương x, y thỏa mãn: 4 5 23 x y + ≥ Tìm giá trị nhỏ nhất của biểu thức: 6 7 B 8x 18y x y = + + +