1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 124 )

4 359 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 308 KB

Nội dung

Tài liệu tham khảo và tuyển tập đề thi thử đại học giúp các bạn ôn thi tốt và đạt kết quả cao trong kỳ thi tốt nghiệp trung học phổ thông và tuyển sinh cao đẳng, đại học

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 124 ) I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2,0 điểm) Cho hàm số 4 2 2 4 2 2y x m x m m= − + + (1), với m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1m = . 2. Chứng minh đồ thị hàm số (1) luôn cắt trục Ox tại ít nhất hai điểm phân biệt, với mọi 0m < . Câu II: (2,0 điểm) 1. Giải phương trình 2sin 2 4sin 1 6 x x π   + + =  ÷   . 2. Tìm các giá trị của tham số m sao cho hệ phương trình 2 1 y x m y xy − =    + =   có nghiệm duy nhất. Câu III: (2,0 điểm) 1. Tìm nguyên hàm của hàm số ( ) ( ) ( ) 2 4 1 2 1 x f x x − = + . 2. Với mọi số thực dương ; ;x y z thỏa điều kiện 1x y z+ + ≤ . Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 2P x y z x y z   = + + + + +  ÷   . Câu IV: (1,0 điểm) Cho khối tứ diện ABCD. Trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho 4 , 2BC BM BD BN= = và 3AC AP= . Mặt phẳng (MNP) chia khối tứ diện ABCD làm hai phần. Tính tỉ số thể tích giữa hai phần đó. II. PHẦN RIÊNG (3,0 điểm) Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu Va: (1,0 điểm) Trong mặt phẳng tọa độ (Oxy), cho đường thẳng ( ) : 2 4 0d x y− − = . Lập phương trình đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng (d). Câu VIa: (2,0 điểm) 1. Giải phương trình log log 4 2 2 8 x x x = . 2. Viết phương trình các đường thẳng cắt đồ thị hàm số 1 2 x y x − = − tại hai điểm phân biệt sao cho hoành độ và tung độ của mỗi điểm là các số nguyên B. Theo chương trình Nâng cao Câu Vb: (1,0 điểm) Trong không gian Oxyz , cho các điểm ( ) ( ) ( ) 1;3;5 , 4;3;2 , 0;2;1A B C− − . Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC. Câu VIb: (2,0 điểm) 1. Giải bất phương trình ( ) 2 4 8 2 1 log log log 0x x x+ + < . 2. Tìm m để đồ thị hàm số ( ) 3 2 5 5y x m x mx= + − − có điểm uốn ở trên đồ thị hàm số 3 y x= . .Hết ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 66 ) CÂU Ý NỘI DUNG ĐIỂM Câu I (2,0đ) Ý 1 (1,0đ) Khi 4 2 1 2 3m y x x= ⇒ = − + . Tập xác định D=R . 0,25 đ Giới hạn: lim ; lim x x y y →−∞ →+∞ = +∞ = +∞ . ( ) 3 2 ' 4 4 4 1y x x x x= − = − . ' 0 0, 1y x x= ⇔ = = ± . 0,25 đ Bảng biến thiên: Hàm số đồng biến trên khoảng ( ) ( ) 1;0 , 1;− +∞ và nghịch biến trên khoảng ( ) ( ) ; 1 , 0;1−∞ − . Hàm số đạt CĐ tại 0, 3 CD x y= = và đạt CT tại 1, 2 CT x y= ± = . 0,25 đ Đồ thị cắt Oy tại (0;3). Đồ thị đối xứng qua Oy. 0,25 đ Ý 2 (1,0đ) Phương trình HĐGĐ của đồ thị (1) và Ox: 4 2 2 4 2 2 0x m x m m− + + = (∗). 0,25 đ Đặt ( ) 2 0t x t= ≥ , ta có : 2 2 4 2 2 0t m t m m− + + = (∗∗). 0,25 đ Ta có : ' 2 0m∆ = − > và 2 2 0S m= > với mọi 0m > . Nên PT (∗∗) có nghiệm dương. 0,25 đ KL: PT (∗) có ít nhất 2 nghiệm phân biệt (đpcm). 0,25 đ Câu II (2,0đ) Ý 1 (1,0đ) PT 3 sin 2 cos2 4sin 1 0x x x⇔ + + − = 2 2 3sin cos 2sin 4sin 0x x x x⇔ − + = . 0,25 đ ( ) 2 3 cos sin 2 sin 0x x x⇔ − + = . 0,25 đ Khi : 5 sin 3 cos 2 sin 1 2 3 6 x x x x k π π π   − = ⇔ − = ⇔ = +  ÷   . 0,25 đ Khi: sin 0x x k π = ⇔ = . KL: nghiệm PT là 5 , 2 6 x k x k π π π = = + . 0,25 đ Ý 2 (1,0đ) Ta có : 2x y m= − , nên : 2 2 1y my y− = − . 0,25 đ PT 1 1 2 y m y y ≤   ⇔  = − +   ( vì y = 0 PTVN). 0,25 đ Xét ( ) ( ) 2 1 1 2 ' 1 0f y y f y y y = − + ⇒ = + > 0,25 đ Lập BTT. KL: Hệ có nghiệm duy nhất 2m⇔ > . 0,25 đ Câu III (2,0đ) Ý 1 (1,0đ) Ta có: ( ) 2 , 1 1 1 . . 3 2 1 2 1 x x f x x x − −     =  ÷  ÷ + +     . 0,50 đ KL: ( ) 3 1 1 9 2 1 x F x C x −   = +  ÷ +   . 0,50 đ Ý 2 (1,0đ) Áp dụng BĐT Cô-si : 2 18 12x x + ≥ (1). Dấu bằng xãy ra khi 1 3 x = . 0,25 đ Tương tự: 2 18 12y y + ≥ (2) và 2 18 12z z + ≥ (3). 0,25 đ Mà: ( ) 17 17x y z− + + ≥ − (4). Cộng (1),(2),(3),(4), ta có: 19P ≥ . 0,25 đ 1 19 3 P x y z= ⇔ = = = . KL: GTNN của P là 19 . 0,25 đ Câu IV (1,0đ) Gọi T là giao điểm của MN với CD; Q là giao điểm của PT với AD. Vẽ DD’ // BC, ta có: DD’=BM ' 1 3 TD DD TC MC ⇒ = = . 0,25 đ Mà: 1 2 / / 3 3 TD AP QD DP CP AT DP TC AC QA AT CA = = ⇒ ⇒ = = = . 0,25 đ Nên: . . . 1 3 1 1 . . 3 5 5 10 A PQN A PQN ABCD A CDN V AP AQ V V V AC AD = = = ⇒ = (1) 0,25 đ Và . . 2 3 1 1 . . 3 4 2 4 C PMN ABMNP ABCD C ABN V CP CM V V V CA CB = = = ⇒ = (2). Từ (1) và (2), suy ra : 7 20 ABMNQP ABCD V V= . KL tỉ số thể tích cần tìm là 7 13 hoặc 13 7 . 0,25 đ Câu Va (1,0đ) Gọi ( ) ( ) ;2 4I m m d− ∈ là tâm đường tròn cần tìm. 0,25 đ Ta có: 4 2 4 4, 3 m m m m= − ⇔ = = . 0,25 đ Khi: 4 3 m = thì PT ĐT là 2 2 4 4 16 3 3 9 x y     − + + =  ÷  ÷     . 0,25 đ Khi: 4m = thì PT ĐT là ( ) ( ) 2 2 4 4 16x y− + − = . 0,25 đ Câu VIa (2,0đ) Ý 1 (1,0đ) ĐK : 0x > . Ta có: 2 4 2 1 log log 3logx x x+ = . 0,25 đ Đặt 2 logt x= .Ta có: 2 3 2 0 1, 2t t t t− + = ⇔ = = . 0,25 đ Khi: 1t = thì 2 log 1 2( )x x th= ⇔ = . 0,25 đ Khi: 2t = thì 2 log 2 4( )x x th= ⇔ = . KL: Nghiệm PT 2, 4x x= = . 0,25 đ Ý 2 (1,0đ) Ta có: 1 1 2 y x = + − 0,25 đ Suy ra: ; 2 1 3, 1x y Z x x x∈ ⇔ − = ± ⇔ = = 0,25 đ Tọa độ các điểm trên đồ thị có hoành độ và tung độ là những số nguyên là ( ) ( ) 1;0 , 3;2A B 0,25 đ KL: PT đường thẳng cần tìm là 1 0x y− − = . 0,25 đ Câu Vb (1,0đ) Ta có: ( ) 3;0; 3 3 2AB AB= − − ⇒ = uuur . 0,25 đ Tương tự: 3 2BC CA= = . 0,25 đ Do đó: ABC ∆ đều, suy ra tâm I đường tròn ngoại tiếp ABC ∆ là trọng tâm của nó. 0,25 đ KL: 5 8 8 ; ; 3 3 3 I   −  ÷   . 0,25 đ Câu VIb (2,0đ) Ý 1 (1,0đ) ĐK : 0x > . Đặt 2 logt x= , ta có : ( ) 1 0 3 t t t+ + < 0,25 đ BPT 2 4 3 4 0 0 3 t t t⇔ + < ⇔ − < < . 0,25 đ KL: 2 3 4 1 log 0 1 3 2 2 x x− < < ⇔ < < . 0,50đ Ý 2 (1,0đ) Ta có: ( ) 2 ' 3 2 5 5 ; " 6 2 10y x m x m y x m= + − − = + − . 0,25 đ 5 " 0 3 m y x − = ⇔ = ; y’’đổi dấu qua 5 3 m x − = . Suy ra: ( ) ( ) 3 2 5 5 5 5 ; 3 27 3 m m m m U   − − −  ÷ +  ÷   là điểm uốn 0,50 đ KL: 5m = . 0,25 đ …HẾT…

Ngày đăng: 29/08/2013, 13:46

TỪ KHÓA LIÊN QUAN

w