1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ-ĐA Hà Tĩnh(2009-2010)

2 218 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 84,5 KB

Nội dung

Bỡ 1: 1. Gii phng trỡnh: x 2 + 5x + 6 = 0 2. Trong h trc to Oxy, bit ng thng y = ax + 3 i qua im M(-2;2). Tỡm h s a Bi 2:Cho biu thc: + + + = xxxx x x xx P 1 2 1 2 vi x >0 1.Rỳt gn biu thc P 2.Tỡm giỏ tr ca x P = 0 Bi 3: Mt on xe vn ti nhn chuyờn ch 15 tn hng. Khi sp khi hnh thỡ 1 xe phi iu i lm cụng vic khỏc, nờn mi xe cũn li phi ch nhiu hn 0,5 tn hng so vi d nh. Hi thc t cú bao nhiờu xe tham gia vn chuyn. (bit khi lng hng mi xe ch nh nhau) Bi 4: Cho ng trũn tõm O cú cỏc ng kớnh CD, IK (IK khụng trựng CD) 1. Chng minh t giỏc CIDK l hỡnh ch nht 2. Cỏc tia DI, DK ct tip tuyn ti C ca ng trũn tõm O th t G; H a. Chng minh 4 im G, H, I, K cựng thuc mt ng trũn. b. Khi CD c nh, IK thay , tỡm v trớ ca G v H khi din tớch tam giỏc DJ t giỏ tr nh nht. Bi 5: Cỏc s [ ] 4;1,, cba tho món iu kin 432 ++ cba chng minh bt ng thc: 3632 222 ++ cba ng thc xy ra khi no? HT Bài giảI đề thi vào THPT môn Toán Năm học 2009-2010 Bài 1: a, Giải PT : x 2 + 5x +6 = 0 x 1 = -2, x 2 = -3 . b, Vì đờng thẳng y = a.x +3 đi qua điểm M(-2,2) nên ta có: 2 = a.(-2) +3 a = 0,5 Bài 2: ĐK: x> 0 a, P = ( xxx x x xx + + + 2 1 ).(2- x 1 ) = x x x xxx 12 . 1 + + = )12( xx . b, P = 0 )12( xx x = 0 , x = 4 1 Do x = 0 không thuộc ĐK XĐ nên loại . Vậy P = 0 x = 4 1 . S GD&T H Tnh CHNH THC TUYN SINH LP 10 THPT NM HC 2009-2010 Mụn: Toỏn Thi gian l bi:120 phỳt Bài 3: Gọi số xe thực tế chở hàng là x xe ( x N * ) Thì số xe dự định chở hàng là x +1 ( xe ). Theo dự định mỗi xe phải chở số tấn là : 1 15 + x ( tấn ) Nhng thực tế mỗi xe phải chở số tấn là : x 15 ( tấn ) Theo bài ra ta có PT : x 15 - 1 15 + x = 0,5 Giải PT ta đợc : x 1 = -6 ( loại ) x 2 = 5 ( t/m) Vậy thực tế có 5 xe tham gia vận chuyển hàng . Bài 4 . 1, Ta có CD là đờng kính , nên : CKD = CID = 90 0 ( T/c góc nội tiếp ) Ta có IK là đờng kính , nên : KCI = KDI = 90 0 ( T/c góc nội tiếp ) Vậy tứ giác CIDK là hình chữ nhật . 2, a, Vì tứ giác CIDK nội tiếp nên ta có : ICD = IKD ( t/c góc nội tiếp ) Mặt khác ta có : G = ICD ( cùng phụ với GCI ) G = IKD Vậy tứ giác GIKH nội tiếp . b, Ta có : DC GH ( t/c) DC 2 = GC.CH mà CD là đờng kính ,nên độ dài CD không đổi . GC. CH không đổi . Để diện tích GDH đạt giá trị nhỏ nhất khi GH đạt giá trị nhỏ nhất . Mà GH = GC + CH nhỏ nhất khi GC = CH Khi GC = CH ta suy ra : GC = CH = CD Và IK CD . Bài 5 : Do -1 4,, cba Nên a +1 0 a 4 0 Suy ra : ( a+1)( a -4) 0 a 2 3.a +4 Tơng tự ta có b 2 3b +4 2.b 2 6 b + 8 3.c 2 9c +12 Suy ra: a 2 +2.b 2 +3.c 2 3.a +4+6 b + 8+9c +12 a 2 +2.b 2 +3.c 2 36 ( vì a +2b+3c 4 ) . Thi gian l bi:120 phỳt Bài 3: Gọi số xe thực tế chở hàng là x xe ( x N * ) Thì số xe dự định chở hàng là x +1 ( xe ). Theo dự định mỗi xe phải chở số. : x 1 = -6 ( loại ) x 2 = 5 ( t/m) Vậy thực tế có 5 xe tham gia vận chuyển hàng . Bài 4 . 1, Ta có CD là đờng kính , nên : CKD = CID = 90 0 ( T/c góc

Ngày đăng: 28/08/2013, 01:10

w