Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 150 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
150
Dung lượng
2,65 MB
Nội dung
HỌC VIỆN CƠNG NGHỆ BƯU CHÍNH VIỄN THƠNG ——————————————————— CHU TIẾN DŨNG BẢO MẬT THÔNG TIN Ở LỚP VẬT LÝ: GIAO THỨC HIỆU QUẢ VÀ ĐÁNH GIÁ HIỆU NĂNG LUẬN ÁN TIẾN SĨ KỸ THUẬT HÀ NỘI - 2019 HỌC VIỆN CƠNG NGHỆ BƯU CHÍNH VIỄN THƠNG ——————————————————— CHU TIẾN DŨNG BẢO MẬT THÔNG TIN Ở LỚP VẬT LÝ: GIAO THỨC HIỆU QUẢ VÀ ĐÁNH GIÁ HIỆU NĂNG Chuyên ngành: KỸ THUẬT VIỄN THÔNG Mã số: 9.52.02.08 LUẬN ÁN TIẾN SĨ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS VÕ NGUYỄN QUỐC BẢO TS NGUYỄN LƯƠNG NHẬT HÀ NỘI - 2019 LỜI CAM ĐOAN Tôi xin cam đoan kết trình bày luận án cơng trình nghiên cứu hướng dẫn giáo viên hướng dẫn Các số liệu, kết trình bày luận án hoàn toàn trung thực chưa công bố tác giả hay cơng trình trước Các kết sử dụng tham khảo trích đầy đủ theo quy định Hà Nội, ngày tháng năm 2019 Tác giả Chu Tiến Dũng LỜI CẢM ƠN Trong q trình nghiên cứu hồn thành luận án này, tác giả nhận nhiều giúp đỡ đóng góp quý báu Đầu tiên, tác giả xin bày tỏ lòng cảm ơn sâu sắc tới PGS TS Võ Nguyễn Quốc Bảo TS Nguyễn Lương Nhật hướng dẫn, định hướng nghiên cứu khoa học, giúp đỡ tác giả q trình nghiên cứu hồn thành luận án Tác giả xin chân thành cảm ơn Ban Giám đốc, Hội đồng khoa học, Hội đồng tiến sĩ, Khoa Quốc Tế Đào Tạo Sau Đại học, Khoa Viễn Thơng Học Viện Cơng Nghệ Bưu Chính Viễn Thông tạo điều kiện thuận lợi để tác giả hoàn thành luận án Tác giả xin cảm ơn thủ trưởng Bộ Tư lệnh Thông Tin Liên Lạc Trường Sĩ Quan Thông Tin đơn vị chủ quản, tạo điều kiện cho tác giả tham gia nghiên cứu học tập thời gian làm nghiên cứu sinh Cuối cùng, tác giả xin bày tỏ lòng biết ơn đến gia đình, bạn bè, đồng chí, đồng nghiệp động viên, chia sẻ, giúp đỡ tác giả vượt qua khó khăn mặt để đạt kết nghiên cứu ngày hôm Hà Nội, ngày tháng năm 2019 Tác giả Chu Tiến Dũng MỤC LỤC MỤC LỤC DANH MỤC CÁC TỪ VIẾT TẮT iv DANH MỤC HÌNH VẼ vi DANH MỤC KÝ HIỆU TOÁN HỌC x MỞ ĐẦU Chương TỔNG QUAN VỀ THÔNG TIN VƠ TUYẾN VÀ ĐẢM BẢO AN TỒN THƠNG TIN Ở LỚP VẬT LÝ 15 1.1 Bảo mật thông tin hệ thống thông tin vô tuyến 15 1.2 Các tham số hiệu bảo mật 19 1.2.1 Dung lượng bảo mật 19 1.2.2 Xác suất dung lượng bảo mật khác không 21 1.2.3 Xác suất dừng bảo mật 22 1.3 Truyền thông hợp tác 24 1.3.1 Phương pháp chuyển tiếp vô tuyến 27 1.3.2 Kỹ thuật xử lý tín hiệu chuyển tiếp vô tuyến 29 1.3.3 Các phương pháp lựa chọn nút chuyển tiếp 31 1.4 Vô tuyến nhận thức 32 1.4.1 Mơ hình mạng vơ tuyến nhận thức dạng - Underlay 34 1.4.2 Mơ hình mạng vơ tuyến nhận thức dạng đan xen - Interweave 34 1.4.3 Mơ hình mạng vơ tuyến nhận thức dạng chồng chập - Overlay 35 i ii 1.5 Kết luận chương Chương 35 PHÂN TÍCH HIỆU NĂNG BẢO MẬT CỦA HỆ THỐNG VÔ TUYẾN TRUYỀN THÔNG ĐA CHẶNG 36 2.1 Mạng vô tuyến nhận thức chuyển tiếp đa chặng 36 2.1.1 Các nghiên cứu liên quan 36 2.1.2 Mơ hình hệ thống đề xuất 37 2.1.3 Phân tích hiệu hệ thống 41 2.1.4 Mô đánh giá kết 46 2.2 Mạng chuyển tiếp đa chặng với phần cứng không lý tưởng 51 2.2.1 Các nghiên cứu liên quan 51 2.2.2 Mơ hình hệ thống đề xuất 53 2.2.3 Phân tích hiệu hệ thống 56 2.2.4 Mô đánh giá kết 58 2.3 Kết luận chương 64 Chương PHÂN TÍCH HIỆU NĂNG BẢO MẬT CỦA HỆ THỐNG VÔ TUYẾN TRUYỀN THÔNG HỢP TÁC 66 3.1 Gây nhiễu chuyển tiếp có lựa chọn mạng truyền thơng hợp tác hai chặng 66 3.1.1 Các nghiên cứu liên quan 66 3.1.2 Mơ hình hệ thống đề xuất 68 3.1.3 Phân tích hiệu hệ thống 72 3.1.4 Mô đánh giá kết 80 iii 3.2 Bảo mật mạng vô tuyến hợp tác kết hợp kỹ thuật thu thập lượng 86 3.2.1 Các nghiên cứu liên quan 86 3.2.2 Mơ hình hệ thống đề xuất 87 3.2.3 Phân tích hiệu hệ thống 90 3.2.4 Mô đánh giá kết 94 3.3 Kết luận chương 97 Chương PHÂN TÍCH HIỆU NĂNG BẢO MẬT CỦA HỆ THỐNG VÔ TUYẾN TRUYỀN THÔNG HỢP TÁC TRONG ĐIỀU KIỆN THÔNG TIN TRẠNG THÁI KÊNH TRUYỀN KHƠNG HỒN HẢO 4.1 Các nghiên cứu liên quan 99 99 4.2 Ảnh hưởng kênh truyền không lý tưởng hiệu bảo mật mạng chuyển tiếp 101 4.2.1 Mơ hình hệ thống 101 4.2.2 Phân tích hiệu hệ thống 106 4.2.3 Mô đánh giá kết 108 4.3 Kết luận chương 114 KẾT LUẬN 116 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ 119 TÀI LIỆU THAM KHẢO 121 DANH MỤC CÁC TỪ VIẾT TẮT Từ viết tắt Nghĩa Tiếng Anh Nghĩa Tiếng Việt AF Amplify-and-Forward Khuếch đại-và-chuyển tiếp AWGN Additive White Gaussian Tạp âm Gauss trắng cộng Noise tính BER Bit Error Rate Tỷ lệ lỗi bít BS Base Station Trạm gốc BTS Base Transceiver Station Trạm thu phát gốc CDF Cumulative Distribution Hàm phân phối tích lũy Function CR Cognitive Radio Vô tuyến nhận thức CRC Cyclic Redundancy Check Mã kiểm tra dịch vòng CSI Channel State Information Thông tin trạng thái kênh truyền DES Data Encryption Standard Tiêu chuẩn mã hóa liệu DF Decode-and-Forward Giải mã-và-chuyển tiếp EH Energy Harvesting Thu thập lượng FCC Federal LOS Communications Ủy ban truyền thông quốc Commission gia Mỹ Line of Sight Đường truyền thẳng iv v MIMO Multiple Input-Multiple Nhiều đầu vào-nhiều đầu Output MISO Multiple Input-Single Out- Nhiều đầu vào-một đầu put MRC Maximal Ratio Combining Kết hợp tỉ số tối đa MS Mobile Station Trạm di động OP Outage Probability Xác suất dừng PDF Probability Density Func- Hàm mật độ xác suất tion PLS Physical Layer Security Bảo mật lớp vật lý PrNZ Non-zero Secrecy Capacity Dung lượng bảo mật khác Probability không PU Primary User Người dùng sơ cấp QoS Quality of Service Chất lượng dịch vụ RF Random-and-Forward Ngẫu nhiên-và-chuyển tiếp RSA Rivest - Shamir - Adleman Thuật tốn mã hóa công khai SC Secrecy Capacity Dung lượng bảo mật SNR Signal-to-Noise Ratio Tỷ số cơng suất tín hiệu tạp âm SOP Secrecy Outage Probability Xác suất dừng bảo mật SU Secondary User Người dùng thứ cấp DANH MỤC HÌNH VẼ 1.1 Mơ hình hệ thống vơ tuyến với máy nghe 17 1.2 Dung lượng bảo mật hệ thống 20 1.3 Xác suất dung lượng bảo mật khác không hệ thống 22 1.4 Xác suất dừng bảo mật hệ thống 24 1.5 Mơ hình truyền thông vô tuyến hợp tác 1.6 Mô hình mạng vơ tuyến chuyển tiếp trung kế vơ tuyến 26 1.7 Mơ hình chuyển tiếp chiều 27 1.8 Mơ hình chuyển tiếp hai chiều 28 1.9 Kỹ thuật Khuếch đại-và-Chuyển tiếp 29 25 1.10 Kỹ thuật giải mã-và-chuyển tiếp 30 1.11 Khoảng phổ sử dụng 34 2.1 Mơ hình hệ thống chuyển tiếp đa chặng sử dụng kỹ thuật lựa chọn nút chuyển tiếp phần 38 2.2 Xác suất dừng bảo mật biểu diễn theo giá trị Q [dB] xE = 1, yE = 0.25, xP = −0.5, yP = −0.5, Cth = {0.1, 0.5, 1} , K = 2, M1 = 2, M2 = 46 2.3 Xác suất dừng bảo mật biểu diễn theo giá trị Q [dB] xE = 1, yE = 0.25, xP = −0.5, yP = −0.5, Cth = 0.75, K = 3, M1 = M2 = M3 47 vi 122 [10] V N Q Bao, N T Duc, and H D Chien, "Incremental cooperative diversity for wireless networks under opportunistic spectrum access," The 2011 International Conference on Advanced Technologyogies for Communications, pp 121-125, 2011 [11] V N Q Bao and T T Duy (2012), "Performance Analysis of Cognitive Underlay DF Relay Protocol with Kth Best Partial Relay Selection", International Conference on Advanced Technologyogies for Communications (ATC), pp 130-135, 2012 [12] V N Q Bao and B Dang Hoai, “A unified framework for performance analysis of DF cognitive relay networks under interference constraints,” Processding 2011 International Conference on ICT Convergence (ICTC), pp 537–542, 2011 [13] V N Q Bao and T Q Duong, "Outage Analysis of Cognitive Multihop Networks under Interference Constraints," IEICE Transactions Communication, vol E95B, pp 1019-1022, 2012 [14] V N Q Bao and N L Trung, "Multihop Decode-and-Forward Relay Networks: Secrecy Analysis and Relay Position Optimization", Journal on Electronics and Communication (JEC), vol 2, no 1–2, pp 33-42, 2012 [15] V N Q Bao, T T Thanh, N T Duc, and V D Thanh, "Spectrum Sharingbased Multihop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization," Journal of Communications and Networks, 2013 [16] V N Q Bao and H Y Kong, “Diversity order analysis of dual-hop relaying with partial relay selection,” IEICE Transactions Communication, vol E92-B, no 12, pp 3942–3946, 2009 [17] V N Q Bao and T Q Duong, “Outage analysis of cognitive multihop networks under interference constraints,” IEICE Transactions Communication, vol E95-B, no 03, pp 1019–1022, 2012 [18] V N Q Bao, T Q Duong, and C Tellambura, “On the performance of cognitive underlay multihop networks with imperfect channel state information,” IEEE Transactions on Communication, vol 61, no 12, pp 4864–4873, 2013 [19] V N Q Bao, N Linh-Trung, and M Debbah, "Relay Selection Schemes for Dual-Hop Networks under Security Constraints with Multiple Eavesdroppers," IEEE Transactions on Wireless Communication, vol 12, pp 6076-6085, 2013 123 [20] J Barros and M R D Rodrigues, "Secrecy capacity of wireless channels," IEEE International Symposium on Information Theory, pp 356-360, 2006 [21] B Barua, M Abolhasan, D R Franklin, and F Safaei, "Outage probability of multihop relay networks," International Wireless Communications & Mobile Computing Conference (IWCMC), pp 456-460, 2013 [22] R Bassily, E Ekrem, X He, E Tekin, J Xie, M Bloch, S Ulukus, and A Yener, “Cooperative security at the physical layer: A summary of recent advances,” IEEE Signal Processding Magazine, vol 30, pp 16–28, 2013 [23] R Bassoli, H Marques, J Rodriguez, K W Shum, and R Tafazolli, "Network coding theory: A survey," IEEE Communication Surveys & Toturials, vol 15, no 4, pp 1950-1978, 2013 [24] J van de Beek, J Riihijarvi, A Achtzehn, and P Mahonen, "TV White Space in Europe," IEEE Transactions on Mobile Computing, vol 11, pp 178-188, 2012 [25] R Berry, M L Honig, and R Vohra, “Spectrum markets: motivation, challenges, and implications,” IEEE Communication Magazine, vol 48, no 11, pp 146–155, 2008 [26] E Bjornson, M Matthaiou, and M Debbah, "A New Look at Dual-Hop Relaying: Performance Limits with Hardware Impairments," IEEE Transactions on Communication, vol 61, pp 4512-4525, 2013 [27] E Bjornsony, A Papadogiannisz, M Matthaiouz, and M Debbah, "Two-Way Relaying under the Presence of Relay Transceiver Hardware Impairments," IEEE Communication Letter, 2013 [28] A Bletsas, A Khisti, D P Reed, and A Lippman, “A simple cooperative diversity method based on network path selection,” IEEE Journal on Selected Areas in Communications, vol 24, no 3, pp 659–672, Mar 2006 [29] R Boris and W Armin, "Spectral efficient protocols for half-duplex fading relay channels," IEEE Journal on Selected Areas in Communications, vol 25, no 2, pp 379-389, 2007 [30] J Boyer, D Falconer, and H Yanikomeroglu, "A theoretical characterization of the multihop wireless communications channel without diversity," IEEE International Symposium Personal, Indoor and Mobile Radio Communications, pp E-116-E-120 vol 2, 2001 124 [31] R W Broderson, A Wolisz, D Cabric, S M Mishra, and D Willkomm CORVUS : A cognitive radio approach for usage of virtual unlisenced spectrum [32] A Carleial and M Hellman, “A note on wyner’s wiretap channel,” IEEE Transactions Information Theory, vol 23, pp 387–390, 1977 [33] I Csiszar and J Korner, “Broadcast channels with confidential messages,” IEEE Transactions Information Theory, vol 24, pp 339–348, 1978 [34] Chan Dai Truyen Thai, Jemin Lee, Tony Q S Quek, “Physical-Layer Secret Key Generation With Colluding Untrusted Relays,” IEEE Transactions on Wireless Communications, vol 15, pp 1517-1530, 2016 [35] W Chao and W Hui-Ming, "Joint relay selection and artificial jamming power allocation for secure DF relay networks," IEEE International Conference on Communications Workshops (ICC), pp 819-824, 2014 [36] X Chen, J Chen, H Zhang, Y Zhang, and C Yuen, “On secrecy performance of a multi-antenna jammer aided secure communications with imperfect CSI,” IEEE Transactions Vehicular Technology., vol PP, no 99, pp 1–1, 2015 [37] J Chen, R Zhang, L Song, Z Han, and B Jiao, “Joint relay and jammer selection for secure two-way relay networks,” IEEE Transactions Information Forensics Security, vol 7, no 1, pp 310–320, 2012 [38] S L Y Cheong and M Hellman, “The Gaussian wire-tap channel,” IEEE Transactions Information Theory, vol 24, pp 451–456, 1978 [39] H Deng, H M Wang, W Guo, and W Wang, “Secrecy transmission with a helper: To relay or to jam,” IEEE Transactions Information Forensics and Security, vol 10, no 2, pp 293–307, 2015 [40] Z Ding, K Leung, D Goeckel, and D Towsley, “Opportunistic relaying for secrecy communications: Cooperative jamming vs relay chatting,” IEEE Transactions on Wireless Communication, vol 10, no 6, pp 1725 – 1729, 2011 [41] Z Ding, S Perlaza, I Esnaola, and H Poor, “Power allocation strategies in energy harvesting wireless cooperative networks,” IEEE Transactions Wireless Communication, vol 13, no 2, pp 846–860, Feb 2014 [42] M Dohler, E Lefranc, and H Aghvami, "Virtual Antenna arrays for future mobile communication systems," IEEE ICT2002, Beijing, China, 2002 125 [43] M Dohler, "Virtual Antenna Array," PhD., King’s College London, London, UK, 2003 [44] L Dong, Z Han, A P Petropulu, and H V Poor, "Secure wireless communications via cooperation," The 46th Annual Allerton Conference on Communication, Control, and Computing, pp 1132-1138, 2008 [45] T T Duy and H.Y Kong, "On Performance Evaluation of Hybrid DecodeAmplifyForward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks", Journal of Communication Network., vol 16, no 5, pp 502-511, 2014 [46] T T Duy and V N Q Bao, "Multi-hop Transmission with Diversity Combining Techniques Under Interference Constraint", International Conference on Advanced Technologyogies for Communications (ATC), pp 131-135, 2013 [47] T T Duy and V N Q Bao, "Secrecy outage performance of relay networks under interference constraint," International Conference on Advanced Technologyogies for Communications (ATC), pp 125-130, 2014 [48] T T Duy, V N Q Bao, and T Q Duong, "Secured communication in cognitive MIMO schemes under hardware impairments," International Conference on Advanced Technologyogies for Communications (ATC), pp 109-112, 2014 [49] T T Duy and V N Quoc Bao, "Outage performance of cooperative multihop transmission in cognitive underlay networks," International Conference on Computing, Management and Telecommunications (ComManTel), pp 123-127, 2013 [50] T T Duy and H Y Kong, "Exact outage probability of cognitive two-way relaying scheme with opportunistic relay selection under interference constraint," Communications IET, vol 6, pp 2750-2759, 2012 [51] T T Duy, T Q Duong, D B da Costa, V N Q Bao, and M Elkashlan, "Proactive Relay Selection With Joint Impact of Hardware Impairment and CoChannel Interference," IEEE Transactions on Communication, vol 63, pp 15941606, 2015 [52] T T Duy and H Kong, “Performance analysis of incremental amplify-andforward relaying protocols with nth best partial relay selection under interference constraint,” Wireless Pers Communication (WPC), vol 71, no 4, pp 2741–2757, 2013 126 [53] A E Ekpenyong and Y F Huang, “Feedback constraints for adaptive transmission,” IEEE Signal Processding Magazine, vol 24, no 3, pp 69–78, 2007 [54] E Ekrem and S Ulukus, “Secrecy in cooperative relay broadcast channels,” IEEE Transactions on Information Theory, vol 57, no 1, pp 137–155, 2011 [55] S Ghose and R Bose, “Outage optimal relay selection strategy using destinationbased jamming for secure communication in amplify-and-forward relay networks,” IEEE Workshop on Statistical Signal Processing (SSP), pp 404–407, 2014 [56] A Goldsmith, Wireless communications Cambridge ; New York: Cambridge University Press, 2005 [57] X Gong, H Long, F Dong and H Yin, "Secure communication design for multiuser peer-to-peer wireless relay networks," IET Communications, vol 10, pp 770-777, 2016 [58] P K Gopala, L Lifeng, and H El Gamal, “On the secrecy capacity of fading channels,” IEEE Transactions on Information Theory, vol 54, no 10, pp 4687–4698, 2008 [59] I S Gradshteyn and I M Ryzhik, “Table of Integrals, Series, and Products,” 6th ed San Diego, CA, 2000 [60] I S Gradshteyn and I M Ryzhik, Table of Integrals, Series and Products, 6th ed New York, NY, USA: Academic Press, 2000 [61] I S Gradshteyn, I M Ryzhik, A Jeffrey, and D Zwillinger, “Table of integrals, series and products”, 7th ed Amsterdam; Boston: Elsevier, 2007 [62] E Gvenkaya and H Arslan, “Secure communication in frequency selective channels with fade-avoiding subchannel usage,” IEEE ICC, pp 813–818, 2014 [63] Ha Nguyen Vu and Vo Nguyen Quoc Bao, "Study of Relay Selection for Dual-hop Networks under Secrecy Constraints with Multiple Eavesdroppers", International Conference on Advanced Technologyogies for Communications, pp 89-92, 2011 [64] W Harrison, J Almeida, M Bloch, S McLaughlin, and J Barros, “Coding for secrecy: An overview of error-control coding techniques for physical-layer security,” IEEE Signal Processding Magazine, vol 30, pp 41–50, 2013 [65] S Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communication, 23(2):201 – 220, 2005 127 [66] H M F He and W Wang, “Maximal ratio diversity combining enhanced security,” IEEE Communication Letter, pp 1–3, 2011 [67] M E Hellman and S K L Y C., "The Gaussian Wiretap Channel," IEEE Transactions Information Theory, vol 24, pp 451-456, 1978 [68] T M Hoang, T Q Duong, N S Vo and C Kundu, "Physical Layer Security in Cooperative Energy Harvesting Networks With a Friendly Jammer," IEEE Wireless Communications Letters, vol 6, no 2, pp 174-177, 2017 [69] Y W Hong, P.-C Lan, and C.-C Kuo, “Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches,” IEEE Signal Processding Magazine, vol 30, pp 29–40, 2013 [70] H Hui, A L Swindlehurst, L Guobing, and L Junli, "Secure Relay and Jammer Selection for Physical Layer Security," IEEE Signal Processding Letter, vol 22, pp 1147-1151, 2015 [71] A Hyadi, Z Rezki, A Khisti, and M Alouini, “Secure broadcasting with imperfect channel state information at the transmitter,” IEEE Transactions Wireless Communication, vol 15, no 3, pp 2215 – 2230, 2015 [72] J Hyoungsuk, K Namshik, C Jinho, L Hyuckjae, and H Jeongseok, "Bounds on Secrecy Capacity Over Correlated Ergodic Fading Channels at High SNR," IEEE Transactions on Information Theory, vol 57, pp 1975-1983, 2011 [73] H Jeon, N Kim, J Choi, H Lee, and J Ha, “Bounds on secrecy capacity over correlated ergodic fading channels at high SNR,” IEEE Transactions Information Theory, vol 57, pp 1975–1983, 2011 [74] F K Jondral, “Cognitive radio: A communications engineering view,” IEEE Wireless Communication Magazine, vol 14, pp 28-33, 2007 [75] E A Jorswieck and A Sezgin, “Impact of spatial correlation on the performance of orthogonal space-time block codes,” IEEE Communication Letter, vol 8, no 1, pp 21-23, Jan 2004 [76] H Ju and R Zhang, “Throughput maximization in wireless powered communication networks,” IEEE Transactions Communication, vol 13, no 1, pp 418–428, 2014 [77] H Karl and A Willig, "Protocols and architectures for wireless sensor networks" Hoboken, NJ: Wiley, 2005 128 [78] G Kefeng, C Jin, H Yuzhen, L Guoxin, and L Nian, "Outage and capacity analysis between opportunistic and partial relay cooperative network with hardware impairments," International Workshop on High Mobility Wireless Communications (HMWC), pp 78-83, 2014 [79] G Kefeng, C Jin, L Guoxin, and W Xueling, "Outage analysis of cooperative cellular network with hardware impairments," International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), pp 1416-1420, 2014 [80] S Kim, I Kim, and J Heo, “Secure transmission for multiuser relay networks,” IEEE Transactions Wireless Communication, vol 14, no 7, pp 3724–3737, Jul 2015 [81] H Kim, H Wang, S Lim, and D Hong, “On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments,” IEEE Transactions on Wireless Communication, vol 11, no 1, pp 284–295, 2012 [82] T Koike-Akino and D Chunjie, “Secrecy rate analysis of jamming superposition in presence of many eavesdropping users,” Processding of IEEE Global Telecommunications Conference (Globecom), pp 1–6, 2011 [83] I Krikidis, J Thompson, S McLaughlin, and N goertz, “Amplify-and-forward with partial relay selection,” IEEE Communication Letter, vol 12, no 4, pp 235–237, 2008 [84] I Krikidis, "Opportunistic relay selection for cooperative networks with secrecy constraints," IET Communications, vol 4, pp 1787-1791, 2010 [85] I Krikidis, J S Thompson, P M Grant, and S McLaughlin, "Power allocation for cooperative based jamming in wireless networks with secrecy constraints," IEEE Globecom Workshops (GC Wkshps), pp 1177-1181, 2010 [86] I Krikidis, J S Thompson, and S McLaughlin, "Relay Selection for Secure Cooperative Networks with Jamming," IEEE Transactions on Wireless Communication, vol 8, pp 5003-5011, 2009 [87] K Kyeong Jin, T Q Duong, T A Tsiftsis, and V N Q Bao, "Cognitive multihop networks in spectrum sharing environment with multiple licensed users," IEEE International Conference on Communications (ICC), pp 2869-2873, 2013 [88] Y M Khattabi and M M Matalgah, “Performance Analysis of Multiple-Relay AF Cooperative Systems Over Rayleigh Time-Selective Fading Channels With 129 Imperfect Channel Estimation,” IEEE Transactions on Vehicular Technologyogy, vol 65, pp 427-434, 2016 [89] H V Khuong, “Exact outage analysis of modified partial relay selection in cooperative cognitive networks under channel estimate errors,” IET Communications., vol 10, no 2, pp 219–226, 2016 [90] J Laneman, D Tse, and G W Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior”, IEEE Transactions Information Theory, vol 50, no 12, pp 3062–3080, 2004 [91] J H Lee, “Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems,” IEEE Communications Letters, vol 19, pp 525-528, 2015 [92] S Leung-Yan-Cheong and M Hellman, "The gaussian wire-tap channel," IEEE Transactions Information Theory, vol 24, pp 451–456, 1978 [93] W Li, C Chunyan, J X Ma, and S Mei, "Cluster-based cooperative jamming in wireless multi-hop networks," IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp 169-174, 2013 [94] Y Liang, H Poor, and S Shamai, “Secure communication over fading channels,” IEEE Transactions Information Theory, vol 54, pp 2470–2492, 2008 [95] Y Liu, J Li, and A Petropulu, “Destination assisted cooperative jamming for wireless physical layer security,” IEEE Transactions on Information Forensics and Security, vol 8, no 4, pp 682 – 694, 2013 [96] L Liu, R Zhang, and K.-C Chua, "Wireless information and power transfer: a dynamic power splitting approach," IEEE Transactions on Communication, vol 61, pp 3990-4001, 2013 [97] Y Liu, L Wang, T T Duy, M Elkashlan, and T Duong, “Relay selection for security enhancement in cognitive relay networks,” IEEE Wireless Communication Letter, vol 4, no 1, pp 46–49, 2015 [98] D Lun, H Zhu, A P Petropulu, and H V Poor, "Amplify-and-forward based cooperation for secure wireless communications," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2613-2616, 2009 [99] M Mirzaee and S Akhlaghi, "On the secrecy capacity of cooperative wiretap channel," Iran Workshop on Communication and Information Theory (IWCIT), pp 1-6, 2013 130 [100] J Mitola, “Cognitive radio: Model-based competence for software radios,” 1999 [101] J Mitola and G Q Maguire Jr., “Cognitive radio: Making software radios more personal,” IEEE Personal Communication, 6(4):13 – 18, 1999 [102] J Mo, M Tao, and Y Liu, “Relay placement for physical layer security: A secure connection perspective,” IEEE Communication Letter, vol 16, no 6, pp 878–881, 2012 [103] S Mousavifar, Y Liu, C Leung, M Elkashlan, and T Duong, “Wireless energy harvesting and spectrum sharing in cognitive radio,” IEEE Vehicular Technology Conference (VTC Fall), pp 1–5, 2014 [104] N Nguyen Hong, V N Q Bao, T Nguyen Linh, and M Debbah, "Relay selection in two-way relaying networks with the presence of hardware impairment at relay transceiver," International Conference on Advanced Technologyogies for Communications (ATC), pp 616-620, 2014 [105] A Nasir, X Zhou, S Durrani, and R Kennedy, “Throughput and ergodic capacity of wireless energy harvesting based df relaying network,” IEEE International Conference Communication (ICC), pp 4066–4071, 2014 [106] A Nasir, X Zhou, S Durrani, and R Kennedy, “Relaying protocols for wireless energy harvesting and information processing,” IEEE Transactions Communication, vol 12, no 7, pp 3622–3636, 2013 [107] W Nien-En and L Hsueh-Jyh, "Effect of Feedback Delay on Secure Cooperative Networks with Joint Relay and Jammer Selection," IEEE Wireless Communication Letter, vol 2, pp 415-418, 2013 [108] E Nosrati, X Wang, A Khabbazibasmenj and A M Akhtar, “Secrecy Enhancement via Cooperative Relays in Multi-Hop Communication Systems,” IEEE 83rd Vehicular Technologyogy Conference (VTC Spring), pp 1-6, 2016 [109] A Papoulis and S U Pillai, Probability, random variables, and stochastic processes, 4th ed Boston: McGraw-Hill, 2002 [110] P Parada and R Blahut, “Secrecy capacity of SIMO and slow fading channels,” IEEE IEEE International Symposium on Information Theory, pp 2152–2155, 2005 [111] P C Pinto, J Barros, and M Z Win, "Secure Communication in Stochastic Wireless Networks: Maximum Rate and Collusion," IEEE Transactions on Information Forensics and Security, vol 7, pp 139-147, 2012 131 [112] H V Poor, L Sankar, V Aggarwal, and A R Calderbank, "Information secrecy from multiple eavesdroppers in orthogonal relay channels," IEEE International Symposium on Information Theory (ISIT), pp 2607-2611, 2009 [113] R M Radaydeh, “Impact of delayed arbitrary transmit antenna selection on the performance of rectangular QAM with receive MRC in fading channels,” IEEE Communication Letter, vol 13, no 6, pp 390–392, 2009 [114] H Sakran, O Nasr, M Shokair, E S El-Rabaie, and A A El-Azm, "Proposed relay selection scheme for physical layer security in Cognitive Radio networks," Wireless Communications and Mobile Compututing Conference (IWCMC), 2012 8th International, pp 1052-1056, 2012 [115] A Salem and K A Hamdi, "Wireless Power Transfer in Two-Way AF Relaying Networks," IEEE Global Communications Conference (Globecom), pp 1-6, 2016 [116] A Salem, K A Hamdi and K M Rabie, "Physical Layer Security With RF Energy Harvesting in AF Multi-Antenna Relaying Networks," IEEE Transactions on Communications, vol 64, no 7, pp 3025-3038, 2016 [117] M Z I Sarkar and T Ratnarajah, "Secure wireless multicasting through Nakagami-m fading MISO channel," Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp 300-304, 2011 [118] M Z I Sarkar and T Ratnarajah, “Secrecy capacity and secure outage performance for rayleigh fading SIMO channel,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1900–1903, 2011 [119] M Z I Sarkar and T Ratnarajah, "Secure Communications through Rayleigh Fading SIMO Channel with Multiple Eavesdroppers," IEEE International Conference on Communication (ICC), 2010, pp 1-5, 2010 [120] M Z I Sarkar and T Ratnarajah, "On the Secrecy Mutual Information of Nakagami-m Fading SIMO Channel," IEEE International Conference on Communication (ICC) 2010, pp 1-5, 2010 [121] M Z I Sarkar and T Ratnarajah, "Secure Communication through Nakagamim Fading MISO Channel," IEEE International Conference on Communication (ICC), pp 1-5, 2011 [122] M Z I Sarkar, T Ratnarajah, and M Sellathurai, "Secrecy capacity of Nakagami-m fading wireless channels in the presence of multiple eavesdroppers," 132 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp 829-833, 2009 [123] M Sarkar, I Zahurul, and T Ratnarajah, "Bounds on the secrecy capacity with diversity combining techniques," IEEE Wireless Communication and Networking Conference (WCNC), pp 2847-2851, 2012 [124] B Schneier, “Description of a new variable-length key, 64-bit block cipher (Blowfish),” vol 809, pp 191–204, 1994 [125] B Schneier, “Applied cryptography: Protocols, algorithms, and source code in C,” Wiley, 1996 [126] M Schwartz, W Bennett, and S Stein, "Communication systems and techniques," Wiley-IEEE Press, 1995 [127] C Shahriar, M L Pan, M Lichtman, T C Clancy, R McGwier, R Tandon, S Sodagari, and J H Reed, “PHY-layer resiliency in OFDM communications: A tutorial,” IEEE Communication Surveys Tutorials, vol 17, pp 292–314, 2015 [128] C E Shannon, “Communication theory of secrecy systems”, The Bell System Technical Journal, vol 28, no 4, pp 656-715, 1949 [129] R K Sharma and D B Rawat, “Advances on security threats and countermeasures for cognitive radio networks: A survey,” IEEE Communication Surveys Tutorials, vol 17, pp 1023–1043, 2015 [130] K Shim, N T Do, B An and S Y Nam, “Outage performance of physical layer security for multi-hop underlay cognitive radio networks with imperfect channel state information,” International Conference on Electronics, Information, and Communications (ICEIC), pp 1-4, 2016 [131] Takayuki Shimizu, Hisato Iwai and Hideichi Sasaoka, “Physical-Layer Secret Key Agreement in Two-Way Wireless Relaying Systems,” IEEE Transactions on Information Forensics and Security, vol 6, pp 650-660, 2011 [132] Y S Shiu, S Y Chang, H.-C Wu, S.-H Huang, and H.-H Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Communication, vol 18, pp 66–74, 2011 [133] P N Son and H Y Kong, “Exact outage analysis of energy harvesting underlay cooperative cognitive networks,” IEICE Transactions Communication, vol E98B, no 4, pp 661–672, 2015 133 [134] S Suganya, P Shanmugapriya, and T R Priyadharshini, "Improving security in two-way relay networks by optimal relay and jammer selection," International Conference on Emerging Trends in Computing, Communication and NanoTechnologyogy (ICE-CCN), pp 276-281, 2013 [135] H A Suraweera, M Soysa, C Tellambura, and H K Garg, “Performance analysis of partial relay selection with feedback delay,” IEEE Signal Processding Letter, vol 17, no 6, pp 531–534, Jun 2010 [136] T Duong, T T Duy, M Elkashlan, N Tran, and O Dobre, “Secured ooperative cognitive radio networks with relay selection,” IEEE Global Communication Conference (Globecom), pp 3074–3079, 2014 [137] T Q Duong, D Tran Trung, M Elkashlan, N H Tran, and O A Dobre, "Secured cooperative cognitive radio networks with relay selection," IEEE Global Communications Conference (Globecom), pp 3074-3079, 2014 [138] T Q Duong, D Benevides da Costa, M Elkashlan, and V N Q Bao, “Cognitive amplify-and-forward relay networks over Nakagami-m fading,” IEEE Transactions on Vehicular Technologyogy, vol 61, no 5, pp 2368–2374, 2012 [139] T T Tran, V N Q Bao, V Dinh Thanh, and T Q Duong, “Performance analysis and optimal relay position of cognitive spectrum-sharing dual-hop decodeand-forward networks,” Processding of International Conference on Computing, Management and Telecommunications (ComManTel), pp 269 – 273, 2013 [140] T Tran and H Kong, “CSI-secured orthogonal jamming method for wireless physical layer security,” IEEE Communication Letter, vol 18, no 5, pp 841 – 844, 2014 [141] T Xuan, X Zhengyuan, and Z Ghassemlooy, "Outage probability of multihop free space optical communications over nakagami fading channels," Network and Optical Communications (NOC), European Conference on and Optical Cabling and Infrastructure, pp 199-202, 2013 [142] X Tang, M Alouini, and A Goldsmith, “Effect of channel estimation error on MQAM BER performance in rayleigh fading,” IEEE Transactions Communication, vol 47, no 12, pp 1856–1864, 1999 [143] D Tse and P Viswanath, "Fundamentals of wireless communication", Cambridge university press, 2005 134 [144] J Wang, J Chen, H Duan, H Ba, and J Wu, “Jammer selection for secure twoway DF relay communications with imperfect CSI,” International Conference on Advanced Communication Technologyogy (ICACT), pp 300–303, 2014 [145] Z Wang, Z Chen, L Luo, Z Hu, B Xia, and H Liu, “Outage analysis of cognitive relay networks with energy harvesting and information transfer,” IEEE International Conference Communication (ICC), pp 4348–4353, 2014 [146] P Wang, G Yu, and Z Zhang, "On the Secrecy Capacity of Fading Wireless Channel with Multiple Eavesdroppers," IEEE International Symposium on Information Theory (ISIT), pp 1301-1305, 2007 [147] C Wang, H.-M Wang, and X.-G Xia, “Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks,” IEEE Transactions Wireless Communication, vol 14, no 2, pp 589–605, 2015 [148] W Webb, “On using white space spectrum,” IEEE Communication Magazine, vol 50, no 8, pp 145–151, 2012 [149] A D Wyner, “The wire-tap channel,” Bell System Technical Journal, vol 54, no 8, pp 1355–1367, 1975 [150] H Xiang and A Yener, "End-to-End Secure Multi-Hop Communication with Untrusted Relays," IEEE Transactions on Wireless Communication, vol 12, pp 1-11, 2013 [151] W Xinjie, Z Hao, T Q Duong, M Elkashlan, and V N Q Bao, "Secure Cooperative Communication with Nth Best Relay Selection," IEEE 79th Vehicular Technology Conference (VTC Spring), pp 1-5, 2014 [152] Z Xinlin, M Matthaiou, E Bjornson, M Coldrey, and M Debbah, "On the MIMO capacity with residual transceiver hardware impairments," IEEE International Conference on Communication (ICC), pp 5299-5305, 2014 [153] H Xing, Z Chu, Z Ding, and A Nallanathan, “Harvest-and-jam: Improving security for wireless energy harvesting cooperative networks,” IEEE Global Communication Conference (Globecom), pp 3145– 3150, 2014 [154] W Xu and X Dong, “Optimized one-way relaying strategy with outdated CSI quantization for spatial multiplexing,” IEEE Transactions Signal Processing, vol 60, no 8, pp 4458–4464, 2012 135 [155] H Yamamoto, “Coding theorem for secret sharing communication systems with two noisy channels,” IEEE Transactions Information Theory, vol 35, pp 572–578, 1989 [156] H Yamamoto, “A coding theorem for secret sharing communication systems with two Gaussian wiretap channels,” IEEE Transactions Information Theory, vol 37, pp 634–638, May 1991 [157] L Yingbin, A Somekh-Baruch, H V Poor, S Shamai, and S Verdu, "Capacity of Cognitive Interference Channels With and Without Secrecy," IEEE Transactions on Information Theory, vol 55, pp 604-619, 2009 [158] P Yiyang, L Ying-Chang, T Kah Chan, and L Kwok Hung, “Secure communication in multiantenna cognitive radio networks with imperfect channel state information,” IEEE Transactions Signal Processding, vol 59, no 4, pp 1683–1693, 2011 [159] L Yuanwei, W Lifeng, T T Duy, M Elkashlan, and T Q Duong, "Relay Selection for Security Enhancement in Cognitive Relay Networks," IEEE Wireless Communication Letter, vol 4, pp 46-49, 2015 [160] Z Yulong, W Xianbin, and S Weiming, "Optimal Relay Selection for PhysicalLayer Security in Cooperative Wireless Networks," IEEE Journal on Selected Areas in Communication, vol 31, pp 2099-2111, 2013 [161] M Zhang and Y Liu, "Energy Harvesting for Physical-Layer Security in OFDMA Networks," IEEE Transactions on Information Forensics and Security, vol 11, no 1, pp 154-162, 2016 [162] T X Zheng and H M Wang, “Optimal Power Allocation for Artificial Noise under Imperfect CSI against Spatially Random Eavesdroppers,” IEEE Transactions on Vehicular Technologyogy, vol 99, pp 1-7, 2016 [163] B Zhong and Z Zhang, "Secure Full-duplex Two-way Relaying Networks with Optimal Relay Selection," IEEE Communications Letters, vol PP, no 99 pp 1-1, 2017 [164] X Zhou, R Zhang, and C K Ho, "Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff," IEEE Transactions on Communication, vol 61, pp 4754-4767, 2013 136 [165] H Zhu, N Marina, M Debbah, and A Hjorungnes, "Physical layer security game: How to date a girl with her boyfriend on the same table," International Conference on Game Theory for Networks (GameNets), pp 287-294, 2009 [166] Cisco, “Visual Networking Index,” White paper, Feb 2015 [Online] Available: www.Cisco.com [167] Cognitive Radio Technologyogy: http://www.ofcom.org.uk/research/Technologyogy/ /cogradmain.pdf [168] http://integrals.wolfram.com/index.jsp ... hóa thực lớp trên, bảo mật lớp vật lý có số lợi Bảo mật lớp vật lý bảo đảm an tồn thơng tin theo số cách khác Ví dụ, đặc tính vật lý kênh vơ tuyến khai thác để đảm bảo tính bảo mật tin tức với... truyền thông lớn để chia sẻ thông tin mật mã thực thể hợp pháp [125], bảo mật lớp vật lý không cần phải xem xét giao thức bảo mật thực khơng địi hỏi phải thực chế bảo mật bổ sung lớp khác lớp vật lý. .. VIỄN THƠNG ——————————————————— CHU TIẾN DŨNG BẢO MẬT THÔNG TIN Ở LỚP VẬT LÝ: GIAO THỨC HIỆU QUẢ VÀ ĐÁNH GIÁ HIỆU NĂNG Chuyên ngành: KỸ THUẬT VIỄN THÔNG Mã số: 9.52.02.08 LUẬN ÁN TIẾN SĨ KỸ THUẬT