1. Trang chủ
  2. » Giáo án - Bài giảng

100 bai tap hinh hoc luyen thi tot nghiep lop 9 part2

40 102 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 532 KB

Nội dung

Bài 51:Cho (O), từ điểm A nằm đường tròn (O), vẽ hai tt AB AC với đường tròn Kẻ dây CD//AB Nối AD cắt đường tròn (O) E C/m ABOC nội tiếp Chứng tỏ AB2=AE.AD �  ACB � C/m góc AOC BDC cân CE kéo dài cắt AB I C/m IA=IB B I A O E D C Hình 51 1/C/m: ABOC nt:(HS tự c/m) � chung 2/C/m: AB2=AE.AD Chứng minh ADB ∽ ABE , có E � � (góc tt dây) Sđ ABE = sñ cung BE Sñ � = BDE � (góc nt chắn BE � ) sđ BE �  ACB � 3/C/m AOC �  ABC � * Do ABOC nt AOC (cùng chắn cung AC); AC = AB (t/c tt caét �  ACB � � AOC �  ACB � nhau)  ABC cân A ABC � = sđ BEC � � � * sđ ACB (góc tt dây); sđ BDC = sđ BEC (góc 2 nt) � = ACB � � = BDC � �  BCD �  BDC maø ABC (do CD//AB)  BDC  BDC cân B �  ECB � 4/ Ta có $ (góc tt dây; góc nt chắn cung I chung; IBE BE) IBE∽ICB IE IB   IB2=IE.IC IB IC � = sñ ( DB �  BE � ) mà BDC cân Xét IAE ICA có $ I chung; sñ IAE � � = sñ CE= � sñ ECA � �  BC � sñ IAE � = sñ (BC-BE) B DB  IAE∽ICA IA IE  IA2=IE.IC Từ vàIA2=IB2 IA=IB IC IA Bài 52: 49 Cho ABC (AB=AC); BC=6; Đường cao AH=4(cùng đơn vò độ dài), nội tiếp (O) đường kính AA’ Tính bán kính (O) Kẻ đường kính CC’ Tứ giác ACA’C’ hình gì? Kẻ AKCC’ C/m AKHC hình thang cân Quay ABC vòng quanh trục AH Tính diện tích xung quanh hình tạo A 1/Tính OA:ta có BC=6; đường cao AH=4  AB=5; ABA’ vuông BBH =AH.A’H C' K O A’H= AA’=AH+HA’= H B BH = AH C A' AO= 25 25 2/ACA’C’ laø hình gì? Hình Do O trung điểm 52 AA’ CC’ACA’C’ Hình bình hành Vì AA’=CC’(đường kính đường tròn)AC’A’C hình chữ nhật 3/ C/m: AKHC thang cân:  ta có AKC=AHC=1vAKHC nội tiếp.HKC=HAC(cùng chắn cung HC) mà OAC cân OOAC=OCAHKC=HCAHK//ACAKHC hình thang  Ta lại có:KAH=KCH (cùng chắn cung KH) KAO+OAC=KCH+OCAHình thang AKHC có hai góc đáy nhau.Vậy AKHC thang cân 4/ Khi Quay  ABC quanh trục AH hình sinh hình nón Trong BH bán kính đáy; AB đường sinh; AH đường cao hình nón 2 Sxq= p.d= 2.BH.AB=15 1/ a/ C/m MPOI thang 1 vuông V= B.h= BH2.AH=12 Vì OIMI; COIO(gt) 3 Bài 53:Cho(O) hai đường kính AB; CO//MI CD vuông mà góc với Gọi I trung MPCO C điểm OA Qua I vẽ dây MQOA (M cung AC ; Q AD) Đường MPMIMP//OIMPOI thẳng vuông P M góc với MQ M cắt (O) P thang vuông C/m: a/ PMIO thang vuông b/ C/m: P; Q; O thẳng S Q; O thẳng hàng b/ P; hàng: Gọi H S Giao điểm AP với Do CQ Tính Góclà CSP thang MPOI Gọi H giao điểm AP với vuông MQ Cmr: IMP=1v hay A a/ MH.MQ= MP2 B QMP=1v QP đường Ib/ MP O tiếp tuyến đường tròn ngoại tiếp QHP kính (O) Q; O; P thẳng hàng J 2/ Tính góc CSP: Ta có sđ CSP= sđ(AQ+CP) Q 50 D (góc có đỉnh nằm đường tròn) mà Hình 53 2 CM=QD  CP=QD  sñ CSP= sñ(AQ+CP)= sñ CSP= sñ(AQ+QD) = sđAD=45o Vậy CSP=45o 3/ a/ Xét hai tam giác vuông: MPQ MHP có : Vì  AOM cân O; I trung điểm AO; MIAOMAO tam giác cân M AMO tam giác  cung AM=60o MC = CP =30o  cung MP = 60o  cung AM=MP  goùc MPH= MQP (góc nt chắn hai cung nhau.) MHP∽MQP đpcm b/ C/m MP tiếp tuyến đường tròn ngoại tiếp  QHP Gọi J tâm đtròn ngoại tiếp QHP.Do cung AQ=MP=60o HQP cân H QHP=120oJ nằm đường thẳng HO HPJ tam giác mà HPM=30oMPH+HPJ=MPJ=90o hay JPMP P nằm đường tròn ngoại tiếp HPQ đpcm Bài 54: Cho (O;R) cát tuyến d không qua tâm O.Từ điểm M d (O) ta kẻ hai tiếp tuyến MA MB với đườmg tròn; BO kéo dài cắt (O) điểm thứ hai C.Gọi H chân đường vuông góc hạ từ O xuống d.Đường thẳng vuông góc với BC O cắt AM D C/m A; O; H; M; B nằm đường tròn C/m AC//MO MD=OD Đường thẳng OM cắt (O) E F Chứng tỏ MA2=ME.MF Xác đònh vò trí điểm M d để MAB tam giác đều.Tính diện tích phần tạo hai tt với đường tròn trường hợp naøy B d E F O D C A H 1/Chứngminh OBM=OAM=OHM=1v 2/ C/m AC//OM: Do MA MB hai tt cắt BOM=OMB MA=MB MO đường trung trực ABMOAB Mà BAC=1v (góc nt chắn nửa đtròn CAAB Vậy AC//MO 51 Hình 54 Do OD//MB (cùng CB)DOM=OMB(so le) mà OMB=OMD(cmt)DOM=DMODOM cân Dđpcm 3/C/m: MA2=ME.MF: Xét hai tam giác AEM MAF có góc M chung C/mMD=OD Sđ AFM= sđcungAE(góc nt chắn cungAE) EAM=A FM Sđ EAM= sd cungAE(góc tt dây) MAE∽MFAđpcm 4/Vì AMB tam giác đềugóc OMA=30oOM=2OA=2OB=2R Gọi diện tích cần tính S.Ta có S=S OAMB-Squạt AOB Ta coù AB=AM= OM  OA =R S AMBO= BA.OM= Squaït=   2R R = R2  R 120 R R 3   R2 = S= R2 = 360 3 Baøi 55: Cho nửa (O) đường kính AB, vẽ tiếp tuyến Ax By phía với nửa đường tròn Gọi M điểm cung AB N điểm đoạn AO Đường thẳng vuông góc với MN M cắt Ax By D C C/m AMN=BMC C/mANM=BMC DN cắt AM E CN cắt MB F.C/m FEAx Chứng tỏ M trung điểm DC x D y M C E 52 F A N O B Hình 55 1/C/m AMN=BMA Ta có AMB=1v(góc nt chắn nửa đtròn) NMDCNMC=1v vậy: AMB=AMN+NMB=NMB+BMC=1v AMN=BMA 2/C/m ANM=BCM: Do cung AM=MB=90o.dây AM=MB MAN=MBA=45o.(AMB vuông cân M)MAN=MBC=45o Theo c/mt CMB=AMN ANM=BCM(gcg) 3/C/m EFAx Do ADMN ntAMN=AND(cùng chắn cung AN) Do MNBC ntBMC=CNB(cùng chắn cung CB)  AND=CNB Mà AMN=BMC (chứng minh câu 1) Ta lại có AND+DNA=1vCNB+DNA=1v ENC=1v mà EMF=1v EMFN nội tiếp EMN= EFN(cùng chắn cung NE) EFN=FNB  EF//AB mà ABAx  EFAx 4/C/m M trung điểm DC: Ta có NCM=MBN=45o.(cùng chắn cung MN) NMC vuông cân M MN=NC Và NDC vuông cân NNDM=45o MND vuông cân M MD=MN MC= DM đpcm Bài 56: Từ điểm M nằm (O) kẻ hai tiếp tuyến MA MB với đường tròn Trên cung nhỏ AB lấy điểm C kẻ CDAB; CEMA; CFMB Gọi I K giao điểm AC với DE BC với DF C/m AECD nt C/m:CD2=CE.CF Cmr: Tia đối tia CD phân giác góc FCE C/m IK//AB A F K C x M D O I E B 53 Hình 56 1/C/m: AECD nt: (dùng phương pháp tổng hai góc đối) 2/C/m: CD2=CE.CF Xét hai tam giác CDF CDE có: -Do AECD ntCED=CAD(cùng chắn cung CD) -Do BFCD ntCDF=CBF(cùng chắn cung CF) Và sđ CBF= sđ cung BC(góc tt dây)FDC=DEC Mà sđ CAD= sđ cung BC(góc nt chắn cung BC) Do AECD nt BFCD nt DCE+DAE=DCF+DBF=2v.Mà MBD=DAM(t/c hai tt cắt nhau)DCF=DCE.Từ và CDF∽CEDđpcm 3/Gọi tia đối tia CD Cx,Ta có góc xCF=180 o-FCD xCE=180o-ECD.Mà theo cmt có: FCD= ECD xCF= xCE.đpcm 4/C/m: IK//AB Ta có CBF=FDC=DAC(cmt) Do ADCE ntCDE=CAE(cùng chắn cung CE) ABC+CAE(góc nt góc tt… chắn cung)CBA=CDI.trong CBA có BCA+CBA+CAD=2v hay KCI+KDI=2vDKCI nội tiếp KDC=KIC (cùng chắn cung CK)KIC=BACKI//AB Bài 57: Cho (O; R) đường kính AB, Kẻ tiếp tuyến Ax Ax lấy điểm P cho P>R Từ P kẻ tiếp tuyến PM với đường tròn C/m BM/ / OP Đường vuông góc với AB O cắt tia BM N C/m OBPN hình bình hành AN cắt OP K; PM cắt ON I; PN OM kéo dài cắt J C/m I; J; K thẳng hàng N P J I K M A O 54 B Q Hình 57 1/ C/m:BM//OP: Ta có MBAM (góc nt chắn nửa đtròn) OPAM (t/c hai tt caét nhau)  MB//OP 2/ C/m: OBNP hình bình hành: Xét hai  APO OBN có A=O=1v; OA=OB(bán kính) NB//AP  POA=NBO (đồng vò)APO=ONB PO=BN Mà OP//NB (Cmt)  OBNP hình bình hành 3/ C/m:I; J; K thẳng hàng: Ta có: PMOJ PN//OB(do OBNP hbhành) mà ONABONOJI trực tâm OPJIJOP -Vì PNOA hình chữ nhật P; N; O; A; M nằm đường tròn tâm K, mà MN//OP MNOP thang cânNPO= MOP, ta lại có NOM = � � MPN (cùng chắn cung NM)  IPO= IOP IPO cân I Và KP=KOIKPO Vậy K; I; J thẳng hàng Bài 58:Cho nửa đường tròn tâm O, đường kính AB; đường thẳng vuông góc với AB O cắt nửa đường tròn C Kẻ tiếp tuyến Bt với đường tròn AC cắt tiếp tuyến Bt I C/m ABI vuông cân Lấy D điểm cung BC, gọi J giao điểm AD với Bt C/m AC.AI=AD.AJ C/m JDCI nội tiếp Tiếp tuyến D nửa đường tròn cắt Bt K Hạ DHAB Cmr: AK qua trung điểm DH Hình 58 I C D N A O H J K B 1/C/m ABI vuoâng cân(Có nhiều cáchsau C/m cách): -Ta có ACB=1v(góc nt chắn nửa đtròn)ABC vuông C.Vì OCAB trung điểm OAOC=COB=1v  cung AC=CB=90o CAB=45 o (góc nt 55 ABC vuông cân C Mà BtAB có góc CAB=45 o  ABI vuông cân B 2/C/m: AC.AI=AD.AJ Xét hai ACD AIJ có góc A chung sđ góc CDA= sđ cung AC =45o Mà  ABI vuông cân BAIB=45 o.CDA=AIB ADC∽AIJđpcm 3/ Do CDA=CIJ (cmt) CDA+CDJ=2v CDJ+CIJ=2vCDJI nội tiếp 4/Gọi giao điểm AK DH N Ta phải C/m:NH=ND -Ta có:ADB=1v DK=KB(t/c hai tt cắt nhau) KDB=KBD.Mà KBD+DJK= 1v KDB+KDJ=1vKJD=JDKKDJ cân K KJ=KD KB=KJ -Do DH JBAB(gt)DH//JB p dụng hệ Ta lét tam giác AKJ AKB ta có: DN AN NH AN DN NH    ;  maø JK=KBDN=NH JK AK KB AK JK KB Baøi 59: Cho (O) vaø hai đường kính AB; CD vuông góc với Trên OC lấy điểm N; đường thẳng AN cắt đường tròn M Chứng minh: NMBO nội tiếp CD đường thẳng MB cắt E Chứng minh CM MD phân giác góc góc góc AMB C/m hệ thức: AM.DN=AC.DM Nếu ON=NM Chứng minh MOB tam giác E C M N A 56 O D B 1/C/m NMBO noäi tiếp:Sử dụng tổng hai góc đối) 2/C/m CM MD phân giác góc góc góc AMB: -Do ABCD trung điểm O AB CD.Cung AD=DB=CB=AC=90 o sđ sđcungAD=45o AMD= Hình 59 sđ DMB= sđcung DB=45o.AMD=DMB=45o.Tươngtự CAM=45o EMC=CMA=45o.Vậy CM MD phân giác góc góc góc AMB 3/C/m: AM.DN=AC.DM Xét hai tam giác ACM NMD có CMA=NMD=45 o.(cmt) Và CAM=NDM(cùng chắn cung CM)AMC∽DMNđpcm 4/Khi ON=NM ta c/m MOB tam giác Do MN=ONNMO vcân NNMO=NOM.Ta lại có: NMO+OMB=1v NOM+MOB=1vOMB=MOB.Mà OMB=OBM OMB=MOB=OBMMOB tam giác Bài 60: Cho (O) đường kính AB, d tiếp tuyến đường tròn C Gọi D; E theo thứ tự hình chiếu A B lên đường thẳng d C/m: CD=CE Cmr: AD+BE=AB Vẽ đường cao CH ABC.Chứng minh AH=AD BH=BE Chứng tỏ:CH2=AD.BE Chứng minh:DH//CB 1/C/m: CD=CE: Hình 60 d D C E A O H B hình thang ta có:OC= 3/C/m BH=BE.Ta có: Do ADd;OCd;BEd AD//OC//BE.Mà OH=OBOC đường trung bình hình thang ABED CD=CE 2/C/m AD+BE=AB Theo tính chất đường trung bình BE  AD BE+AD=2.OC=AB 2 sđ BCE= sdcung CB(góc tt dây) 57 sđ CAB= sđ cung CB(góc nt)ECB=CAB;ACB cuông CHCB=HCA HCB=BCE HCB=ECB(hai tam giác vuông có cạnh huyền góc nhọn nhau) HB=BE -C/m tương tự có AH=AD 4/C/m: CH2=AD.BE ACB có C=1v CH đường cao CH2=AH.HB Maø AH=AD;BH=BE  CH2=AD.BE 5/C/m DH//CB Do ADCH nội tiếp  CDH=CAH (cùng chắn cung CH) mà CAH=ECB (cmt)  CDH=ECB DH//CB Bài 61: Cho ABC có: A=1v.D điểm nằm cạnh AB.Đường tròn đường kính BD cắt BC E.các đường thẳng CD;AE cắt đường tròn điểm thứ hai F G C/m CAFB nội tiếp C/m AB.ED=AC.EB Chứng tỏ AC//FG Chứng minh AC;DE;BF đồng quy Hình 61 1/C/m CAFB nội tiếp(Sử dụng Hai điểm A; Fcùng làm với hai đầu đoạn thẳng BC) 2/C/m ABC EBD đồng dạng 3/C/m AC//FG: Do ADEC nội tiếp ACD=AED(cùng chắn cung AD) Mà DFG=DEG(cùng chắn cung GD)ACF=CFGAC//FG 4/C/m AC; ED; FB đồng quy: AC FB kéo dài cắt K.Ta phải c/m K; D; E thẳng hàng BACK CFKB; ABCF=DD trực tâm KBCKDCB Mà DECB(góc nt chắn nửa đường tròn)Qua điểm D có hai đường thẳng vuông góc với BCBa điểm K;D;E thẳng hàng.đpcm Bài 62: 58 1/Chứng minh tứ giác BDEC nội tiếp 2/Chứng minh :AD.AB=AE.AC 3/Chứng tỏ AK phân giác góc DKE 4/Gọi I; J trung điểm BC DE Chứng minh: OA//JI A x J E O D Hình 80 H B K I C 1/C/m:BDEC nội tiếp: Ta có: BDC=BEC=1v(do CD;BE đường cao)Hai điểm D E làm với hai đầu đoạn BC…đpcm 2/c/m AD.AB=AE.AC Xét hai tam giác ADE ABC có Góc BAC chung Do BDEC nt EDB+ECB=2v.Mà ADE+EDB=2vADE=ACB ADE~ACBđpcm 3/Do HKBD ntHKD=HBD(cùng chắn cung DH) HKD=EKH Do BDEC ntHBD=DCE (cùng chắn cung DE) Dễ dàng c/m KHEC ntECH=EKH(cùng chắn cungHE) 4/C/m JI//AO Từ A dựng tiếp tuyến Ax Ta có sđ xAC= sđ cung AC (góc tt dây) xAC=AED Mà sđABC= sđ cung AC (góc nt cung bò chắn) Ta lại có góc AED=ABC(cùng bù với góc DEC) Vậy Ax//DE.Mà AOAx(t/c tiếp tuyến)AODE.Ta lại có BDEC nt đường tròn tâm I DE dây cung có J trung điểm JIDE(đường kính qua trung điểm dây không qua tâm)Vậy IJ//AO Bài 81: Cho tam giác ABC có góc nhọn nội tiếpnội đường tròn tâm 1/C/m: BDCO tiếp O.Tiếp tuyến B C đường tròn Vì BD DCcắt hai D.Từ D kẻ đường thẳng song song với AB,đường cắt đường tròn E tiếp tuyến F,cắt AC I(Enằm cung nhỏ BC) OBD=OCD=1v 1/Chứng minh BDCO nội tiếp OBD+OCD=2v 2/Chứng minh:DC2=DE.DF BDCO nội tiếp 3/Chứng minh DOCI nội tiếp đường tròn 4/Chứng tỏ I trung 2/Cm: điểm :DC EF =DE.DF Xét hai tam giác DCE DCF có: D A F chung 74 SđECD= sđ cung EC (góc tiếp tuyến dây) O I B C E D Hình 81 Sđ DFC= sđ cung EC (góc nt cung bò chắn)EDC=DFC DCE~DFC đpcm 3/Cm: DCOI nội tiếp:Ta có sđ DIC= sđ(AF+EC) Vì FD//AD Cung AF=BE sñ DIC= sñ(BE+EC)= sñ cung BC 2 Sđ BOC=sđ cung BC.Mà DOC= BOCsđ DOC= sđBCDOC=DIC Hai điểm O I làm với hai đầu đoạn thẳng DC góc đpcm 4/C/m I trung điểm EF Do DCIO nội tiếpDIO=DCO (cùng chắn cung DO).Mà DCO=1v(tính chất tiếp tuyến)DIO=1v hay OIFE.Đường kính OI vuông góc với dây cung FE nên phải qua trung điểm FEđpcm Bài 82: Cho đường tròn tâm O,đường kính AB dây CD vuông góc với AB F Trên cung BC,lấy điểm M.AM cắt CD E 1/Chứng minh AM phân giác góc CMD 2/Chứng minh tứ giác EFBM nội tiếp đường tròn 3/Chứng tỏ AC2=AE.AM 4/Gọi giao điểm CB với AM N;MD với AB I.Chứng minh NI//CD C M E A F N O I Hình 82 B D 75 1/C/m AM phân giác góc CMD: Ta có: Vì OACD COD cân O OA phân giác góc COD Hay COA=AODcung AC=AD góc CMA=AMD(hai góc nội tiếp chắn hai cung nhau)đpcm 2/cm EFBM nội tiếp: VìCDAB(gt)EFB=1v;và EMB=1v(góc nt chắn nửa đường tròn) EFB+ EMB=2vđpcm 3/Cm: AC2=AE.AM Xét hai tam giác:ACM ACE có A chung.Vì cung AD=AChai góc ACD=AMC(hai góc nt chắn hai cung nhau) ACE~AMCđpcm 4/Cm NI//CD: Vì cung AC=ADgóc AMD=CBA(hai góc nt chắn hai cung nhau) Hay NMI=NBI Hai điểm M B cung làm với hai đầu đoạn thẳng NI góc NIBM nội tiếp Góc NIB+NMB=2v mà NMB=1v(cmt) NIB=1v hay NIAB.Mà CDAB(gt)NI//CD Bài 83: Cho ABC có A=1v;Kẻ AHBC.Qua H dựng đường thẳng thứ cắt cạnh AB E cắt đường thẳng AC G.Đường thẳng thứ hai vuông góc với đường thẳng thứ cắt cạnh AC F,cắt đường thẳng AB D C/m:AEHF nội tiếp Chứng tỏ:HG.HA=HD.HC Chứng minh EFDG FHC=AFE Tìm điều kiện hai đường thẳng HE HF để EF ngắn G A E B F H Hình 83 C D 1/Cm AEHF nội tiếp: Ta có BAC=1v(góc nt chắn nửa đtròn) FHE=1v  BAC+ FHE=2vđpcm 2/Cm: HG.HA=HD.HC Xét hai  vuông HAC HGD có:BAH=ACH (cùng phụ với góc ABC).Ta lại có GAD=GHD=1vGAHD nội tiếp DGH=DAH ( chắn cung DH DGH=HAC HCA~HGDđpcm 3/C/m:EFDG:Do GHDF DACG AD cắt GH E E trực tâm CDGEF đường cao thứ CDGFEDG  C/m:FHC=AFE: Do AEHF nội tiếp AFE=AHE(cùng chắn cung AE).Mà AHE+AHF=1v AHF+FHC=1vAFE=FHC 4/ Tìm điều kiện hai đường thẳng HE HF để EF ngắn nhất: 76 Do AEHF nội tiếp đường tròn có tâm trung điểm EF Gọi I tâm đường tròn ngoại tiêùp tứ giác AEHFIA=IHĐể EF ngắn I;H;A thẳng hàng hay AEHF hình chữ nhật HE//AC HF//AB Bài 84: Cho ABC (AB=AC) nội tiếp (O).M điểm cung nhỏ AC, phân giác góc BMC cắt BC N,cắt (O) I Chứng minh A;O;I thẳng hàng Kẻ AK với đường thẳng MC AI cắt BC J.Chứng minh AKCJ nội tiếp C/m:KM.JA=KA.JB A O  E J B I Hình 84 1/C/m A;O;I thẳng K hàng: Vì BMI=IMC(gt)  cung IB=IC Góc M BAI=IAC(hai góc nt chắn hai cung nhau)AI N C phân gíc  cân ABC AIBC.Mà BOC cân O có góc tâm chắn cung OI giác Theo cmt ta có AIlà làphân đường kính qua trung điểm góc BOC hay AJC=1v mà AKC=1v(gt)AJC+AKC=2v đpcm đpcm 2/C/m AKCJ nội tiếp: dây BC AIBC 3/Cm: KM.JA=KA.JB Xét hai tam giác vuông JAB KAM có: Góc KMA=MAC+MCA(góc tam giác AMC) 1 2 sđ(MC+AM)= sđAC=sđ góc ABC Vậy góc ABC=KMA Mà sđ MAC= sđ cung MC sđMCA= sđ cung AM sđKMA= JBA~KMAđpcm Bài 85: Cho nửa đường tròn (O) đường kính AB.Gọi C điểm nửa đường tròn.Trên nửa mặt phẳng bờ AB chứa điểm C,kẻ hai tiếp tuyến Ax By Một đường tròn (O’) qua A C cắt AB tia Ax theo thứ tự D E Đường thẳng EC cắt By F Chứng minh BDCF nội tiếp Chứng tỏ:CD2=CE.CF FD tiếp tuyến đường tròn (O) AC cắt DE I;CB cắt DF J.Chứng minh IJ//AB Xác đònh vò trí D để EF tiếp tuyến (O) Hình 85 77 F C E I J  O’ A  O D B 1/Cm:BDCF nội tiếp: Ta có ECD=1v(góc nt chắn nửa đường tròn tâm O’)FCD=1v FBD=1v(tính chất tiếp tuyến)đpcm 2/C/m: CD2=CE.CF Ta có Do CDBF ntDFC=CBD(cùng chắn cung CD).Mà CED=CAD(cùng chắn cung CD (O’) Mà CAD+CBD=1v (vì góc ACB=1v-góc nt chắn nửa đt) CED+CFD=1v nên EDF=1v hay EDF tam giác vuông có DC đường cao.p dụng hệ thức lượng tam giác vuông ta có CD2=CE.CF Vì EDF vuông D(cmt)FDED hay FDO’D điểm D nằm đường tròn tâm O’.đpcm 3/C/m IJ//AB Ta có ACB=1v(cmt) hay ICJ=1v EDF=1v (cmt) hay IDJ=1v ICJD nt CJI=CDI(cùng chắn cung CI).Mà CFD=CDI (cùng phụ với góc FED) Vì BDCF nt (cmt)CFD=CBD (cùng chắn cung CD)CJI=CBD đpcm 4/ Xác đònh vò trí D để EF tiếp tuyến (O) Ta có CDEF C nằm đường tròn tâm O.Nên để EF tiếp tuyến (O) CD phải bán kính DO Bài 86: Cho (O;R (O’;r) R>r, cắt Avà B Gọi I điểm đường thẳng AB nằm đoạn thẳng AB Kẻ hai tiếp tuyến IC ID với (O) (O’) Đường thẳng OC O’D cắt K Chứng minh ICKD nội tiếp Chứng tỏ:IC2=IA.IB Chứng minh IK nằm đường trung trực CD IK cắt (O) E F; Qua I dựng cát tuyến IMN a/ Chứng minh:IE.IF=IM.IN b/ E; F; M; N nằm đường tròn 1/C/m ICKD nt: Vì CI DI hai tt I hai đtròn Hình 86 ICK=IDK=1v đpcm C 2/C/m: IC2=IA.IB E Xét hai tam giác M ICE ICBcó A D góc I chung  O sđ ICE= sđ cung O’ CE (góc tt B N dây) F 78 K sđ CE (góc nt cung bò chắn)ICE=IBCICE~IBCđpcm 3/Cm IK nằm đường trung trực CD Theo chứng minh ta có: IC2=IA.IB Chứng minh tương tự ta có:ID2=IA.IB  -Hai tam giác vuông ICK IDK có Cạnh huyền IK chung cạnh góc vuông IC=ID ICK=IDKCK=DKK nằm đường trung trực CD.đpcm 4/ a/Bằng cách chứng minh tương tự câu ta có: IC2=IE.IF ID2=IM.IN Mà IC=ID (cmt)IE.IF=IM.IN b/ C/m Tứ giác AMNF nội tiếp: Theo chứng minh có E.Ì=IM.IN.p IF IN  dụng tính chất tỉ lệ thức ta có: Tức hai cặp cạnh tam IM IE giác IFN tương ứng tỉ lệ với hai cặp cạnh tam giác IME.Hơn góc EIM chung IEM~INFIEM=INF.Mà IEM+MEF=2vMEF+MNF=2vđpcm Sđ CBI= Bài 87: ChoABC có góc nhọn.Vẽ đường tròn tâm O đường kính BC.(O) cắt AB;AC D E.BE CD cắt H Chứng minh:ADHE nội tiếp C/m:AE.AC=AB.AD AH kéo dài cắt BC F.Cmr:H tâm đường tròn nội tiếp DFE Gọi I trung điểm AH.Cmr IE tiếp tuyến (O) A I E D x Hình 87 H B F O C 1/Cm:ADHE nội tiếp: Ta có BDC=BEC=1v(góc nt chắn nửa đường tròn) ADH+AEH=2vADHE nt 2/C/m:AE.AC=AB.AD Ta chứng minh AEB ADC đồng dạng 3/C/m H tâm đường tròn ngoại tiếp tam giác DEF: Ta phải c/m H giao điểm đường phân giác tam giác DEF 79 -Tứ giác BDHF ntHED=HBD(cùng chắn cung DH).Mà EBD=ECD (cùng chắn cung DE).Tứ gáic HECF ntECH=EFH(cùng chắn cung HE) EFH=HFDFH phân giác DEF -Tứ gáic BDHF ntFDH=HBF(cùng chắn cung HF).Mà EBC=CDE(cùng chắn cung EC)EDC=CDFDH phân giác góc FDEH là… 4/ C/m IE tiếp tuyến (O):Ta có IA=IHIA=IE=IH= AH (tính chất trung tuyến tam giác vuông)IAE cân IIEA=IAE.Mà IAE=EBC (cùng phụ với góc ECB) AEI=xEC(đối đỉnh)Do OEC cân O OEC=OCE xEC+CEO =EBC +ECB=1v Hay xEO=1v Vậy OEIE điểm E nằm đường tròn (O)đpcm Bài 88: Cho(O;R) (O’;r) cắt Avà B.Qua B vẽ cát tuyến chung CBDAB (C(O)) cát tuyến EBF bất kỳ(E(O)) Chứng minh AOC AO’D thẳng hàng Gọi K giao điểm đường thẳng CE DF.Cmr:AEKF nt Cm:K thuộc đường tròn ngoại tiếp ACD Chứng tỏ FA.EC=FD.EA A E  O C  O’ Hình 88 B D F K 1/C/m AOC AO’D thẳng hàng: -Vì ABCD Góc ABC=1vAC đường kính (O)A;O;C thẳng hàng.Tương tự AO’D thẳng hàng 2/C/m AEKF nt: Ta có AEC=1v(góc nt chắn nửa đường tròn tâm O.Tương tự AFD=1v hay AFK=1v AEK+AFK=2vđpcm 3/Cm: K thuộc đường tròn ngoại tếp ACD Ta có EAC=EBC(cùng chắn cung EC).Góc EBC=FBD(đối đỉnh).Góc FBD=FAD(cùng chắn cung FD).Mà EAC+ECA=90o ADF=ACE ACE+ACK=2vADF+ACK=2vK nằm đường tròn ngoại tiếp … 4/C/m FA.EC=FD.EA Ta chứng minh hai tam giác vuông FAD EAC đồng dạng EAC=EBC(cùng hcắn cung EC)EBC=FBD(đối đỉnh) FBD=FAD(cùng chắn cung FD)EAC=FADđpcm Bài 89: 80 Cho ABC có A=1v.Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC B dựng (O’;r) tiếp xúc với BC C.Gọi M;N trung điểm AB;AC,OM ON kéo dài cắt K Chứng minh:OAO’ thẳng hàng CM:AMKN nội tiếp Cm AK tiếp tuyến hai đường tròn K nằm BC Chứng tỏ 4MI2=Rr Hình 89 O’ A O M I N B K C 1/C/m AOO’ thẳng hàng: -Vì M trung điểm dây ABOMAB nên OM phân giác góc AOB hay BOM=MOA Xét hai tam giác BKO AKO có OA=OB=R; OK chung BOK=AOK (cmt) KBO=KAO  góc OBK=OAK mà OBK=1v OAK=1v Chứng minh tương tự ta có O’AK=1v Nên OAK+O’AK=2v đpcm 2/Cm:AMKN nội tiếp:Ta có Vì AMK=1v(do OMA=1v) ANK=1v AMK+ANK=2v đpcm Cần lưu ý AMKN hình chữ nhật 3/C/m AK tiếp tuyến (O) O’) -Theo chứng minh Góc OAK=1v hay OAAK điểm A nằm đường tròn (O)đpcm.Chứng minh tương tự ta có AK tt (O’) -C/m K nằm BC: Theo tính chất hai tt cắt ta có:BKO=OKA AKO’=O’KC Nhưng AMKN hình chữ nhậtMKN=1v hay OKA+O’KA=1v tức có nghóa góc BKO+O’KC=1v BKO+OKA+AKO’+O’KC=2vK;B;C thẳng hàng đpcm 4/ C/m: 4MI2=Rr Vì OKO’ vuông K có đường cao KA.p dụng hệ thue=ức lượng tam giác vuông có AK2=OA.O’A.Vì MN=AK MI=IN hay MI= AKđpcm Bài 90: Cho tứ giác ABCD (AB>BC) nội tiếp (O) đường kính AC; Hai đường chéo AC DB vuông góc với Đường thẳng AB CD kéo dài cắt E; BC AD cắt F Cm:BDEF nội tiếp Chứng tỏ:DA.DF=DC.DE Gọi I giao điểm DB với AC M giao điểm đường thẳng AC với đường tròn ngoại tiếp AEF Cmr: DIMF nội tiếp Gọi H giao điểm AC với FE Cm: AI.AM=AC.AH 81 E Hình 90 B A O I C H M D F 1/ Cm:DBEF nt: Do ABCD nt (O) đường kính ACABC=ADC=1v (góc nt chắn nửa đường tròn) FBE=EDF=1vđpcm 2/ C/m DA.DF=DC.DE: Xét hai tam giác vuông DAC DEF có: Do BFAE EDAF nên C trực tâm AEFGóc CAD=DEF(cùng phụ với góc DFE)đpcm 3/ Cm:DIMF nt: Vì ACBD(gt) DIM=1v I trung điểm DB(đường kính vuông góc với dây DB)ADB cân A AEF cân A (Tự c/m yếu tố này)Đường tròn ngoại tiếp AEF có tâm nằm đường AM góc AFM=1v(góc nt chắn nửa đường tròn)DIM+DFM=2vđpcm Bài 91: Cho (O) (O’) tiếp xúc A.Đường thẳng OO’ cắt (O) (O’) B C (khác A) Kẻ tiếp tuyến chung DE(D(O)); DB CE kéo dài cắt M Cmr: ADEM nội tiếp Cm: MA tiếp tuyến chung hai đường tròn ADEM hình gì? Chứng tỏ:MD.MB=ME.MC 1/Cm:ADEM nt: Vì AEC=1v ADB=1v(góc nt chắn nửa đtròn) B O A O’ ADM+AEM=2vđpcm C 2/C/m MA tiếp tuyến hai đường tròn; E D -Ta có sđADE= sđ cungAD=sđ DBA.Và M Hình ADE=AME(vì 91 chắn cung AE tứ Tương tự ta có AMB=ACMHai giác ABM ACM có hai giáctam ADME cặp góc tương ứng nhauCặp góc cònlại nhau.Hay nt)ABM=AMC BAM=MAC.Ta lại có BAM+MAC=2vBAM=MAC=1v hay OAAM điểm A nằm đtròn… 82 3/ADEM hình gì? Vì BAM=1vABM+AMB=1v.Ta có MA tt đtrònDAM=MBA (cùng nửa cung AD).Tương tự MAE=MCA.Mà theo cmt ta có ACM=AMB Nên DAM+MAE=ABM+ACM=ABM+AMB=1v.Vậy DAE=1v nên ADEM hình chữ nhật 4/Cm: MD.MB=ME.MC Tam giác MAC vuông A có đường cao AE.p dụng hệ thức lượng tam giác vuông ta có:MA2=ME.MC.Tương tự tam giác vuông MAB có MA2=MD.MBđpcm Bài 92: Cho hình vuông ABCD.Trên BC lấy điểm M Từ C hạ CK với đường thẳng AM Cm: ABKC nội tiếp Đường thẳng CK cắt đường thẳng AB N.Từ B dựng đường vuông góc với BD, đường cắt đường thẳng DK E Cmr: BD.KN=BE.KA Cm: MN//DB Cm: BMEN hình vuông A Hình 92 B N M E K D C 1/Cm: ABKC nội tiếp: Ta có ABC=1v (t/c hình vuông); AKC=1v(gt)  đpcm 2/Cm: BD.KN=BE.KA.Xét hai tam giác vuông BDE KAN có: Vì ABCD hình vuông nên nội tiếp đường tròn có tâm giao điểm hai đường chéo.Góc AKC=1vA;K;C nằm đtròn đường kính AC.Vậy điểm A;B;C;D;K nằm đường tròn.Góc BDK=KDN (cùng chắn cung BK)BDE~KAN BD BE  KA KN đpcm 3/ Cm:MN//DB.Vì AKCN CBAN ;AK cắt BC MM trực tâm tam giác ANCNMAC.Mà DBAC(tính chất hình vuông)MN//DB 4/Cm:BNEM hình vuông: Vì MN//DBDBM=BMN(so le) mà DBM=45oBMN =45oBNM tam giác vuông cânBN=BM.Do BEDB(gt)và BDM=45oMBE=45oMBE tam giác vuông cân BM phân giác tam giác MBN;Ta dễ dàng c/m MN phân giác góc BMNBMEN hình thoi lại có goác B vuông nên BMEN hình vuông 83 Bài 93: Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB O Gọi M điểm OB N điểm đối xứng với C qua M Kẻ NE; NF NP vuông góc với AB; AD; AC; PN cắt AB Q Cm: QPCB nội tiếp Cm: AN//DB Chứng tỏ F; E; M thẳng hàng Cm: PEN tam giác caân F N I Q A E B P M O D C 1/C/m QPCB nội tiếp:Ta có:NPC=1v(gt) QBC=1v(tính chất hình chữ nhật).đpcm 2/Cm:AN//DB O giao điểm hai đường chéo hình chữ nhậtO trung điểm AC.Vì C N đối xứng với qua MM trung điểm NC OM đường trung bình ANCOM//AN hay AN//DB 3/Cm:F;E;M thẳng hàng Gọi I giao điểm EF AN.Dễ dàng chứng minh AFNE hình chữ nhậtAIE OAB tam gíc cânIAE=IEA ABO=BAO.Vì AN//DB IAE=ABO(so le)IEA=EACEF//AC hay IE//AC Vì I trung điểm AN;M trung điểm NCIM đường trung bình ANCMI//AC .Từ và Ta có I;E;M thẳng hàng.Mà F;I;E thẳng hàng F;F;M thẳng hàng 4/C/mPEN cân:Dễ dàng c/m ANEP nội tiếpPNE=EAP(cùng chắn cung PE).Và PNE=EAN(cùng chắn cung EN).Theo chứng minh câu ta suy NAE=EAPENP=EPNPEN cân E Bài 94: Từ đỉnh A hình vuông ABCD,ta kẻ hai tia tạo với góc 45o Một tia cắt cạnh BC E cắt đường chéo DB P Tia cắt cạnh CD F cắt đường chéo DB Q Cm:E; P; Q; F; C nằm đường tròn Cm:AB.PE=EB.PF Cm:SAEF=2SAPQ 84 Gọi M trung điểm AE.Cmr: MC=MD A B M P E Q D F C 1/Cm:E;P;Q;C;F nằm đường tròn: Ta có QAE=45o.(gt) QBC=45o(t/c hình vuông)ABEQ nội tiếp ABE+AQE=2v mà ABE=1vAQE=1v.Ta có AQE vuông Q có góc QAE=45oAQE vuông cânAEQ=45o.Ta lại có EAF=45o(gt) PDF=45o APFD nội tiếpAPF+ADF=2v mà ADF=1vAPF=1v ECF=1v  Từ E;P;Q;F;C nằm đường tròn đường kính EF 2/Chứng minh: AB.PE=EB.PF.Xét hai tam giác vuông ABE có: -Vì ABEQ ntBAE=BQE(Cùng chắn cung BE) BAE=PFE -Vì QPEF ntPQE=PEF(Cùng chắn cung PE) đpcm 3/Cm: :SAEF=2SAPQ Theo cm AQE vuông cân QAE= AQ  QE = AQ Vì QPEF nt PEF=AQP(cùng phụ với góc PQF);Góc QAP chung S  AE   = AQP~AEF AEF  S AQP  AQ    =2ñpcm 4/Cm: MC=MD.Học sinh chứng minh hai MAD=MBC có BC=AD; MBE=MEB=DAE;AM=BM Bài 95: Cho hình chữ nhật ABCD có hai đường chéo cắt O.Kẻ AH BK vuông góc với BD AC.Đường thẳng AH BK cắt I.Gọi E F trung điểm DH BC.Từ E dụng đường thẳng song song với AD.Đường cắt AH J C/m:OHIK nội tiếp Chứng tỏ KHOI 1/Cm:OHIK nt Từ E kẻ đườngthẳng song song (Hs vớitự AD.Đường chứng cắt AH J.Chứng tỏ:HJ.KC=HE.KB minh) Chứng minh tứ giác ABFE nội2/Cm tiếp HKOI.trong đường tròn Tam giác ABI có hai A B đường cao DH AK J O cắt F O OI H K đường cao 85 thứ ba OIAB E D C I Ta có OKIH ntOKE=OIE(cùng chắn cung OH).Vì OIAB ADAB OI//ADOIH=HAD(so le).Mà HAD=HBA(cùng phụ với góc D).Do ABCD hình chữ nhật nên ABH+ACE OKH=OCEHK//AB.Mà OIAB OIKH 3/Cm: HJ.KC=HE.KB Chứng minh hai tam giác vuông HJE KBC đồng dạng 4/Chứng minh ABFE nội tiếp: VìAHBE;EJ//AD ADABEJABBJ đường cao thứ ba tam giác ABEBJAE Vì E trung điểm DH;EJ//ADEJ đường trung bình 2 tam giác ADHEJ//= AB;BF= BC mà BC//=ADJE//=BFBJEF hình bình hànhJB//EF.Mà BJAEEFAE hay AEF=1v;Ta lại có ABF=1vABFE nt Bài 96: Cho ABC, phân giác góc góc góc B C gặp theo thứ tự I J.Từ J kẻ JH; JP; JK vuông góc với đường thẳng AB; BC; AC Chứng tỏ A; I; J thẳng hàng Chứng minh: BICJ nt BI kéo dài cắt đường thẳng CJ E Cmr:AEAJ C/m: AI.AJ=AB.AC A E I B H P C K Baøi 97: J Từ đỉnh A hình vuông ABCD ta kẻ hai tia Ax Ay cho: Ax cắt cạnh BC P,Ay cắt cạnh CD Q.Kẻ BKAx;BIAy DMAx,DNAy 86 Chứng Chứng Chứng Chứng B P tỏ BKIA nội tiếp minh AD2=AP.MD minh MN=KI toû KIAN x C K y Q M I N A D Bài 98: Cho hình bình hành ABCD có góc A>90 o.Phân giác góc A cắt cạnh CD đường thẳng BC I K.Hạ KH KM vuông góc với CD AM Chứng minh KHDM nt Chứng minh:AB=CK+AM Bài 99: Cho(O) tiếp tuyến Ax.Trên Ax lấy điểm C gọi B trung điểm AC Vẽ cát tuyến BEF.Đường thẳng CE CF gặp lại đường tròn điểm thứ hai M N.Dựng hình bình hành AECD Chứng tỏ D nằm đường thẳng EF Chứng minh AFCD nội tiếp Chứng minh:CN.CF=4BE.BF Chứng minh MN//AC A M C D E B N F 1/Chứng minh D nằm đường thẳng EF:Do ADCE hình bình hành nên E;B;D thẳng hàng.Mà F;E;B thẳng hàngđpcm 2/Cm:AFCD nội tiếp: -Do ADCE hình bình hànhBC//AEgóc BCA=ACE(so le) 2 -sđCAE= sđcung AE(góc tt dây) sđ AFE= sđ cung AE CAE=AFE.BCN=BFAAFCD nội tiếp 87 2/Cm CN.CF=4BE.BF -Xét hai tam gáic BAE BFA có góc ABF chung AFB=BAE(chứng minh trên)BAE~BFA AB BE  AB2=BE.BF BF AB Tương tự hai tam giác CAN CFA đồng dạngAC2=CN.CF.Nhưng ta lại có AB= AC.Do đó trở thành: AC2=BE.BF hay AC2=4BE.BF Từ  đpcm 4/cm MN//AC Do ADCE hbhBAC=ACE(so le).Vì ADCF nt DAC=DFC(cùng chắn cung DC).Ta lại có EMN=EFN(cùng chắn cung EN)ACM=CMNMN//AC Bài 100: Trên (O) lấy điểm A;B;C.Gọi M;N;P theo thứ tự điểm cung AB;BC;AC AM cắt MP BP K I.MN cắt AB E Chứng minh BNI cân PKEN nội tiếp Chứng minh AN.BD=AB.BN Chứng minh I trực tâm MPN IE//BC 1/C/m BNI cân Ta có A sñBIN= sñ(AP+BN) P M F K sñIBN= sñ(CP+CN) O Maø Cung AP=CP; E I BN=CN(gt) B C BIN=IBNBNI cân N 2/Chứng tỏ PKEN N nội tiếp: Vì cung AM=MBANM=MPB hay KPE=KNEHai điểm P;N làm với hai đầu đoạn thẳng KE…đpcm 3/C/m AN.DB=AB.BN Xét hai tam giác BND ANB có góc N chung;Góc NBD=NAB(cùng chắn cung NC=NB)đpcm 4/ Chứng minh I trực tâm MNP: Gọi giao điểm MP với AB;AC F D.Ta có: sđ AFD= sđ cung (AP+MB)(góc có đỉnh đường tròn.) sđ ADF= sđ cung(PC+AM) (góc có đỉnh đường tròn.) Mà Cung AP=PC;MB=AMAFD=ADFAFD cân A có AN phân giác góc BAC(Vì Cung BN=NC nên BAN=NAC)ANMP hay NA đường cao NMP.Bằng cách làm tương tự ta chứng minh I trực tâm tam gáic MNP C/m IE//BC.Ta có BNI cân N có NE phân giác NE đường trung trực BIEB=EIBEI cân E.Ta có EBI=EIB.Do EBI=ABP=PBC (hai góc nội tiếp chắn hai cung PA=PC).Nên PBC=EIBEI//BC 88 Heát ... CM MD phân giác góc góc góc AMB: -Do ABCD trung điểm O AB CD.Cung AD=DB=CB=AC =90 o sđ sđcungAD=45o AMD= Hình 59 sđ DMB= sđcung DB=45o.AMD=DMB=45o.Tươngtự CAM=45o EMC=CMA=45o.Vậy CM MD phân... Hình 69 2 B H O C 1/Tính góc DOE: ta có D1=D2 (t/c tiếp tuyến cắt nhau);OD chungHai tam giác vuông DOB DOAO1=O2.Tương tự O3=O4.O1+O4=O2+O3 Ta lại có O1+O2+O3+O4=2v O1+O4=O2+O3=1v hay DOC =90 o... -Ta có ACB=1v(góc nt chắn nửa đtròn)ABC vuông C.Vì OCAB trung điểm OAOC=COB=1v  cung AC=CB =90 o CAB=45 o (góc nt 55 ABC vuông cân C Mà BtAB có góc CAB=45 o  ABI vuông cân B 2/C/m: AC.AI=AD.AJ

Ngày đăng: 22/03/2019, 17:24

TỪ KHÓA LIÊN QUAN

w