Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
532 KB
Nội dung
Bài 51:Cho (O), từ điểm A nằm đường tròn (O), vẽ hai tt AB AC với đường tròn Kẻ dây CD//AB Nối AD cắt đường tròn (O) E C/m ABOC nội tiếp Chứng tỏ AB2=AE.AD � ACB � C/m góc AOC BDC cân CE kéo dài cắt AB I C/m IA=IB B I A O E D C Hình 51 1/C/m: ABOC nt:(HS tự c/m) � chung 2/C/m: AB2=AE.AD Chứng minh ADB ∽ ABE , có E � � (góc tt dây) Sđ ABE = sñ cung BE Sñ � = BDE � (góc nt chắn BE � ) sđ BE � ACB � 3/C/m AOC � ABC � * Do ABOC nt AOC (cùng chắn cung AC); AC = AB (t/c tt caét � ACB � � AOC � ACB � nhau) ABC cân A ABC � = sđ BEC � � � * sđ ACB (góc tt dây); sđ BDC = sđ BEC (góc 2 nt) � = ACB � � = BDC � � BCD � BDC maø ABC (do CD//AB) BDC BDC cân B � ECB � 4/ Ta có $ (góc tt dây; góc nt chắn cung I chung; IBE BE) IBE∽ICB IE IB IB2=IE.IC IB IC � = sñ ( DB � BE � ) mà BDC cân Xét IAE ICA có $ I chung; sñ IAE � � = sñ CE= � sñ ECA � � BC � sñ IAE � = sñ (BC-BE) B DB IAE∽ICA IA IE IA2=IE.IC Từ vàIA2=IB2 IA=IB IC IA Bài 52: 49 Cho ABC (AB=AC); BC=6; Đường cao AH=4(cùng đơn vò độ dài), nội tiếp (O) đường kính AA’ Tính bán kính (O) Kẻ đường kính CC’ Tứ giác ACA’C’ hình gì? Kẻ AKCC’ C/m AKHC hình thang cân Quay ABC vòng quanh trục AH Tính diện tích xung quanh hình tạo A 1/Tính OA:ta có BC=6; đường cao AH=4 AB=5; ABA’ vuông BBH =AH.A’H C' K O A’H= AA’=AH+HA’= H B BH = AH C A' AO= 25 25 2/ACA’C’ laø hình gì? Hình Do O trung điểm 52 AA’ CC’ACA’C’ Hình bình hành Vì AA’=CC’(đường kính đường tròn)AC’A’C hình chữ nhật 3/ C/m: AKHC thang cân: ta có AKC=AHC=1vAKHC nội tiếp.HKC=HAC(cùng chắn cung HC) mà OAC cân OOAC=OCAHKC=HCAHK//ACAKHC hình thang Ta lại có:KAH=KCH (cùng chắn cung KH) KAO+OAC=KCH+OCAHình thang AKHC có hai góc đáy nhau.Vậy AKHC thang cân 4/ Khi Quay ABC quanh trục AH hình sinh hình nón Trong BH bán kính đáy; AB đường sinh; AH đường cao hình nón 2 Sxq= p.d= 2.BH.AB=15 1/ a/ C/m MPOI thang 1 vuông V= B.h= BH2.AH=12 Vì OIMI; COIO(gt) 3 Bài 53:Cho(O) hai đường kính AB; CO//MI CD vuông mà góc với Gọi I trung MPCO C điểm OA Qua I vẽ dây MQOA (M cung AC ; Q AD) Đường MPMIMP//OIMPOI thẳng vuông P M góc với MQ M cắt (O) P thang vuông C/m: a/ PMIO thang vuông b/ C/m: P; Q; O thẳng S Q; O thẳng hàng b/ P; hàng: Gọi H S Giao điểm AP với Do CQ Tính Góclà CSP thang MPOI Gọi H giao điểm AP với vuông MQ Cmr: IMP=1v hay A a/ MH.MQ= MP2 B QMP=1v QP đường Ib/ MP O tiếp tuyến đường tròn ngoại tiếp QHP kính (O) Q; O; P thẳng hàng J 2/ Tính góc CSP: Ta có sđ CSP= sđ(AQ+CP) Q 50 D (góc có đỉnh nằm đường tròn) mà Hình 53 2 CM=QD CP=QD sñ CSP= sñ(AQ+CP)= sñ CSP= sñ(AQ+QD) = sđAD=45o Vậy CSP=45o 3/ a/ Xét hai tam giác vuông: MPQ MHP có : Vì AOM cân O; I trung điểm AO; MIAOMAO tam giác cân M AMO tam giác cung AM=60o MC = CP =30o cung MP = 60o cung AM=MP goùc MPH= MQP (góc nt chắn hai cung nhau.) MHP∽MQP đpcm b/ C/m MP tiếp tuyến đường tròn ngoại tiếp QHP Gọi J tâm đtròn ngoại tiếp QHP.Do cung AQ=MP=60o HQP cân H QHP=120oJ nằm đường thẳng HO HPJ tam giác mà HPM=30oMPH+HPJ=MPJ=90o hay JPMP P nằm đường tròn ngoại tiếp HPQ đpcm Bài 54: Cho (O;R) cát tuyến d không qua tâm O.Từ điểm M d (O) ta kẻ hai tiếp tuyến MA MB với đườmg tròn; BO kéo dài cắt (O) điểm thứ hai C.Gọi H chân đường vuông góc hạ từ O xuống d.Đường thẳng vuông góc với BC O cắt AM D C/m A; O; H; M; B nằm đường tròn C/m AC//MO MD=OD Đường thẳng OM cắt (O) E F Chứng tỏ MA2=ME.MF Xác đònh vò trí điểm M d để MAB tam giác đều.Tính diện tích phần tạo hai tt với đường tròn trường hợp naøy B d E F O D C A H 1/Chứngminh OBM=OAM=OHM=1v 2/ C/m AC//OM: Do MA MB hai tt cắt BOM=OMB MA=MB MO đường trung trực ABMOAB Mà BAC=1v (góc nt chắn nửa đtròn CAAB Vậy AC//MO 51 Hình 54 Do OD//MB (cùng CB)DOM=OMB(so le) mà OMB=OMD(cmt)DOM=DMODOM cân Dđpcm 3/C/m: MA2=ME.MF: Xét hai tam giác AEM MAF có góc M chung C/mMD=OD Sđ AFM= sđcungAE(góc nt chắn cungAE) EAM=A FM Sđ EAM= sd cungAE(góc tt dây) MAE∽MFAđpcm 4/Vì AMB tam giác đềugóc OMA=30oOM=2OA=2OB=2R Gọi diện tích cần tính S.Ta có S=S OAMB-Squạt AOB Ta coù AB=AM= OM OA =R S AMBO= BA.OM= Squaït= 2R R = R2 R 120 R R 3 R2 = S= R2 = 360 3 Baøi 55: Cho nửa (O) đường kính AB, vẽ tiếp tuyến Ax By phía với nửa đường tròn Gọi M điểm cung AB N điểm đoạn AO Đường thẳng vuông góc với MN M cắt Ax By D C C/m AMN=BMC C/mANM=BMC DN cắt AM E CN cắt MB F.C/m FEAx Chứng tỏ M trung điểm DC x D y M C E 52 F A N O B Hình 55 1/C/m AMN=BMA Ta có AMB=1v(góc nt chắn nửa đtròn) NMDCNMC=1v vậy: AMB=AMN+NMB=NMB+BMC=1v AMN=BMA 2/C/m ANM=BCM: Do cung AM=MB=90o.dây AM=MB MAN=MBA=45o.(AMB vuông cân M)MAN=MBC=45o Theo c/mt CMB=AMN ANM=BCM(gcg) 3/C/m EFAx Do ADMN ntAMN=AND(cùng chắn cung AN) Do MNBC ntBMC=CNB(cùng chắn cung CB) AND=CNB Mà AMN=BMC (chứng minh câu 1) Ta lại có AND+DNA=1vCNB+DNA=1v ENC=1v mà EMF=1v EMFN nội tiếp EMN= EFN(cùng chắn cung NE) EFN=FNB EF//AB mà ABAx EFAx 4/C/m M trung điểm DC: Ta có NCM=MBN=45o.(cùng chắn cung MN) NMC vuông cân M MN=NC Và NDC vuông cân NNDM=45o MND vuông cân M MD=MN MC= DM đpcm Bài 56: Từ điểm M nằm (O) kẻ hai tiếp tuyến MA MB với đường tròn Trên cung nhỏ AB lấy điểm C kẻ CDAB; CEMA; CFMB Gọi I K giao điểm AC với DE BC với DF C/m AECD nt C/m:CD2=CE.CF Cmr: Tia đối tia CD phân giác góc FCE C/m IK//AB A F K C x M D O I E B 53 Hình 56 1/C/m: AECD nt: (dùng phương pháp tổng hai góc đối) 2/C/m: CD2=CE.CF Xét hai tam giác CDF CDE có: -Do AECD ntCED=CAD(cùng chắn cung CD) -Do BFCD ntCDF=CBF(cùng chắn cung CF) Và sđ CBF= sđ cung BC(góc tt dây)FDC=DEC Mà sđ CAD= sđ cung BC(góc nt chắn cung BC) Do AECD nt BFCD nt DCE+DAE=DCF+DBF=2v.Mà MBD=DAM(t/c hai tt cắt nhau)DCF=DCE.Từ và CDF∽CEDđpcm 3/Gọi tia đối tia CD Cx,Ta có góc xCF=180 o-FCD xCE=180o-ECD.Mà theo cmt có: FCD= ECD xCF= xCE.đpcm 4/C/m: IK//AB Ta có CBF=FDC=DAC(cmt) Do ADCE ntCDE=CAE(cùng chắn cung CE) ABC+CAE(góc nt góc tt… chắn cung)CBA=CDI.trong CBA có BCA+CBA+CAD=2v hay KCI+KDI=2vDKCI nội tiếp KDC=KIC (cùng chắn cung CK)KIC=BACKI//AB Bài 57: Cho (O; R) đường kính AB, Kẻ tiếp tuyến Ax Ax lấy điểm P cho P>R Từ P kẻ tiếp tuyến PM với đường tròn C/m BM/ / OP Đường vuông góc với AB O cắt tia BM N C/m OBPN hình bình hành AN cắt OP K; PM cắt ON I; PN OM kéo dài cắt J C/m I; J; K thẳng hàng N P J I K M A O 54 B Q Hình 57 1/ C/m:BM//OP: Ta có MBAM (góc nt chắn nửa đtròn) OPAM (t/c hai tt caét nhau) MB//OP 2/ C/m: OBNP hình bình hành: Xét hai APO OBN có A=O=1v; OA=OB(bán kính) NB//AP POA=NBO (đồng vò)APO=ONB PO=BN Mà OP//NB (Cmt) OBNP hình bình hành 3/ C/m:I; J; K thẳng hàng: Ta có: PMOJ PN//OB(do OBNP hbhành) mà ONABONOJI trực tâm OPJIJOP -Vì PNOA hình chữ nhật P; N; O; A; M nằm đường tròn tâm K, mà MN//OP MNOP thang cânNPO= MOP, ta lại có NOM = � � MPN (cùng chắn cung NM) IPO= IOP IPO cân I Và KP=KOIKPO Vậy K; I; J thẳng hàng Bài 58:Cho nửa đường tròn tâm O, đường kính AB; đường thẳng vuông góc với AB O cắt nửa đường tròn C Kẻ tiếp tuyến Bt với đường tròn AC cắt tiếp tuyến Bt I C/m ABI vuông cân Lấy D điểm cung BC, gọi J giao điểm AD với Bt C/m AC.AI=AD.AJ C/m JDCI nội tiếp Tiếp tuyến D nửa đường tròn cắt Bt K Hạ DHAB Cmr: AK qua trung điểm DH Hình 58 I C D N A O H J K B 1/C/m ABI vuoâng cân(Có nhiều cáchsau C/m cách): -Ta có ACB=1v(góc nt chắn nửa đtròn)ABC vuông C.Vì OCAB trung điểm OAOC=COB=1v cung AC=CB=90o CAB=45 o (góc nt 55 ABC vuông cân C Mà BtAB có góc CAB=45 o ABI vuông cân B 2/C/m: AC.AI=AD.AJ Xét hai ACD AIJ có góc A chung sđ góc CDA= sđ cung AC =45o Mà ABI vuông cân BAIB=45 o.CDA=AIB ADC∽AIJđpcm 3/ Do CDA=CIJ (cmt) CDA+CDJ=2v CDJ+CIJ=2vCDJI nội tiếp 4/Gọi giao điểm AK DH N Ta phải C/m:NH=ND -Ta có:ADB=1v DK=KB(t/c hai tt cắt nhau) KDB=KBD.Mà KBD+DJK= 1v KDB+KDJ=1vKJD=JDKKDJ cân K KJ=KD KB=KJ -Do DH JBAB(gt)DH//JB p dụng hệ Ta lét tam giác AKJ AKB ta có: DN AN NH AN DN NH ; maø JK=KBDN=NH JK AK KB AK JK KB Baøi 59: Cho (O) vaø hai đường kính AB; CD vuông góc với Trên OC lấy điểm N; đường thẳng AN cắt đường tròn M Chứng minh: NMBO nội tiếp CD đường thẳng MB cắt E Chứng minh CM MD phân giác góc góc góc AMB C/m hệ thức: AM.DN=AC.DM Nếu ON=NM Chứng minh MOB tam giác E C M N A 56 O D B 1/C/m NMBO noäi tiếp:Sử dụng tổng hai góc đối) 2/C/m CM MD phân giác góc góc góc AMB: -Do ABCD trung điểm O AB CD.Cung AD=DB=CB=AC=90 o sđ sđcungAD=45o AMD= Hình 59 sđ DMB= sđcung DB=45o.AMD=DMB=45o.Tươngtự CAM=45o EMC=CMA=45o.Vậy CM MD phân giác góc góc góc AMB 3/C/m: AM.DN=AC.DM Xét hai tam giác ACM NMD có CMA=NMD=45 o.(cmt) Và CAM=NDM(cùng chắn cung CM)AMC∽DMNđpcm 4/Khi ON=NM ta c/m MOB tam giác Do MN=ONNMO vcân NNMO=NOM.Ta lại có: NMO+OMB=1v NOM+MOB=1vOMB=MOB.Mà OMB=OBM OMB=MOB=OBMMOB tam giác Bài 60: Cho (O) đường kính AB, d tiếp tuyến đường tròn C Gọi D; E theo thứ tự hình chiếu A B lên đường thẳng d C/m: CD=CE Cmr: AD+BE=AB Vẽ đường cao CH ABC.Chứng minh AH=AD BH=BE Chứng tỏ:CH2=AD.BE Chứng minh:DH//CB 1/C/m: CD=CE: Hình 60 d D C E A O H B hình thang ta có:OC= 3/C/m BH=BE.Ta có: Do ADd;OCd;BEd AD//OC//BE.Mà OH=OBOC đường trung bình hình thang ABED CD=CE 2/C/m AD+BE=AB Theo tính chất đường trung bình BE AD BE+AD=2.OC=AB 2 sđ BCE= sdcung CB(góc tt dây) 57 sđ CAB= sđ cung CB(góc nt)ECB=CAB;ACB cuông CHCB=HCA HCB=BCE HCB=ECB(hai tam giác vuông có cạnh huyền góc nhọn nhau) HB=BE -C/m tương tự có AH=AD 4/C/m: CH2=AD.BE ACB có C=1v CH đường cao CH2=AH.HB Maø AH=AD;BH=BE CH2=AD.BE 5/C/m DH//CB Do ADCH nội tiếp CDH=CAH (cùng chắn cung CH) mà CAH=ECB (cmt) CDH=ECB DH//CB Bài 61: Cho ABC có: A=1v.D điểm nằm cạnh AB.Đường tròn đường kính BD cắt BC E.các đường thẳng CD;AE cắt đường tròn điểm thứ hai F G C/m CAFB nội tiếp C/m AB.ED=AC.EB Chứng tỏ AC//FG Chứng minh AC;DE;BF đồng quy Hình 61 1/C/m CAFB nội tiếp(Sử dụng Hai điểm A; Fcùng làm với hai đầu đoạn thẳng BC) 2/C/m ABC EBD đồng dạng 3/C/m AC//FG: Do ADEC nội tiếp ACD=AED(cùng chắn cung AD) Mà DFG=DEG(cùng chắn cung GD)ACF=CFGAC//FG 4/C/m AC; ED; FB đồng quy: AC FB kéo dài cắt K.Ta phải c/m K; D; E thẳng hàng BACK CFKB; ABCF=DD trực tâm KBCKDCB Mà DECB(góc nt chắn nửa đường tròn)Qua điểm D có hai đường thẳng vuông góc với BCBa điểm K;D;E thẳng hàng.đpcm Bài 62: 58 1/Chứng minh tứ giác BDEC nội tiếp 2/Chứng minh :AD.AB=AE.AC 3/Chứng tỏ AK phân giác góc DKE 4/Gọi I; J trung điểm BC DE Chứng minh: OA//JI A x J E O D Hình 80 H B K I C 1/C/m:BDEC nội tiếp: Ta có: BDC=BEC=1v(do CD;BE đường cao)Hai điểm D E làm với hai đầu đoạn BC…đpcm 2/c/m AD.AB=AE.AC Xét hai tam giác ADE ABC có Góc BAC chung Do BDEC nt EDB+ECB=2v.Mà ADE+EDB=2vADE=ACB ADE~ACBđpcm 3/Do HKBD ntHKD=HBD(cùng chắn cung DH) HKD=EKH Do BDEC ntHBD=DCE (cùng chắn cung DE) Dễ dàng c/m KHEC ntECH=EKH(cùng chắn cungHE) 4/C/m JI//AO Từ A dựng tiếp tuyến Ax Ta có sđ xAC= sđ cung AC (góc tt dây) xAC=AED Mà sđABC= sđ cung AC (góc nt cung bò chắn) Ta lại có góc AED=ABC(cùng bù với góc DEC) Vậy Ax//DE.Mà AOAx(t/c tiếp tuyến)AODE.Ta lại có BDEC nt đường tròn tâm I DE dây cung có J trung điểm JIDE(đường kính qua trung điểm dây không qua tâm)Vậy IJ//AO Bài 81: Cho tam giác ABC có góc nhọn nội tiếpnội đường tròn tâm 1/C/m: BDCO tiếp O.Tiếp tuyến B C đường tròn Vì BD DCcắt hai D.Từ D kẻ đường thẳng song song với AB,đường cắt đường tròn E tiếp tuyến F,cắt AC I(Enằm cung nhỏ BC) OBD=OCD=1v 1/Chứng minh BDCO nội tiếp OBD+OCD=2v 2/Chứng minh:DC2=DE.DF BDCO nội tiếp 3/Chứng minh DOCI nội tiếp đường tròn 4/Chứng tỏ I trung 2/Cm: điểm :DC EF =DE.DF Xét hai tam giác DCE DCF có: D A F chung 74 SđECD= sđ cung EC (góc tiếp tuyến dây) O I B C E D Hình 81 Sđ DFC= sđ cung EC (góc nt cung bò chắn)EDC=DFC DCE~DFC đpcm 3/Cm: DCOI nội tiếp:Ta có sđ DIC= sđ(AF+EC) Vì FD//AD Cung AF=BE sñ DIC= sñ(BE+EC)= sñ cung BC 2 Sđ BOC=sđ cung BC.Mà DOC= BOCsđ DOC= sđBCDOC=DIC Hai điểm O I làm với hai đầu đoạn thẳng DC góc đpcm 4/C/m I trung điểm EF Do DCIO nội tiếpDIO=DCO (cùng chắn cung DO).Mà DCO=1v(tính chất tiếp tuyến)DIO=1v hay OIFE.Đường kính OI vuông góc với dây cung FE nên phải qua trung điểm FEđpcm Bài 82: Cho đường tròn tâm O,đường kính AB dây CD vuông góc với AB F Trên cung BC,lấy điểm M.AM cắt CD E 1/Chứng minh AM phân giác góc CMD 2/Chứng minh tứ giác EFBM nội tiếp đường tròn 3/Chứng tỏ AC2=AE.AM 4/Gọi giao điểm CB với AM N;MD với AB I.Chứng minh NI//CD C M E A F N O I Hình 82 B D 75 1/C/m AM phân giác góc CMD: Ta có: Vì OACD COD cân O OA phân giác góc COD Hay COA=AODcung AC=AD góc CMA=AMD(hai góc nội tiếp chắn hai cung nhau)đpcm 2/cm EFBM nội tiếp: VìCDAB(gt)EFB=1v;và EMB=1v(góc nt chắn nửa đường tròn) EFB+ EMB=2vđpcm 3/Cm: AC2=AE.AM Xét hai tam giác:ACM ACE có A chung.Vì cung AD=AChai góc ACD=AMC(hai góc nt chắn hai cung nhau) ACE~AMCđpcm 4/Cm NI//CD: Vì cung AC=ADgóc AMD=CBA(hai góc nt chắn hai cung nhau) Hay NMI=NBI Hai điểm M B cung làm với hai đầu đoạn thẳng NI góc NIBM nội tiếp Góc NIB+NMB=2v mà NMB=1v(cmt) NIB=1v hay NIAB.Mà CDAB(gt)NI//CD Bài 83: Cho ABC có A=1v;Kẻ AHBC.Qua H dựng đường thẳng thứ cắt cạnh AB E cắt đường thẳng AC G.Đường thẳng thứ hai vuông góc với đường thẳng thứ cắt cạnh AC F,cắt đường thẳng AB D C/m:AEHF nội tiếp Chứng tỏ:HG.HA=HD.HC Chứng minh EFDG FHC=AFE Tìm điều kiện hai đường thẳng HE HF để EF ngắn G A E B F H Hình 83 C D 1/Cm AEHF nội tiếp: Ta có BAC=1v(góc nt chắn nửa đtròn) FHE=1v BAC+ FHE=2vđpcm 2/Cm: HG.HA=HD.HC Xét hai vuông HAC HGD có:BAH=ACH (cùng phụ với góc ABC).Ta lại có GAD=GHD=1vGAHD nội tiếp DGH=DAH ( chắn cung DH DGH=HAC HCA~HGDđpcm 3/C/m:EFDG:Do GHDF DACG AD cắt GH E E trực tâm CDGEF đường cao thứ CDGFEDG C/m:FHC=AFE: Do AEHF nội tiếp AFE=AHE(cùng chắn cung AE).Mà AHE+AHF=1v AHF+FHC=1vAFE=FHC 4/ Tìm điều kiện hai đường thẳng HE HF để EF ngắn nhất: 76 Do AEHF nội tiếp đường tròn có tâm trung điểm EF Gọi I tâm đường tròn ngoại tiêùp tứ giác AEHFIA=IHĐể EF ngắn I;H;A thẳng hàng hay AEHF hình chữ nhật HE//AC HF//AB Bài 84: Cho ABC (AB=AC) nội tiếp (O).M điểm cung nhỏ AC, phân giác góc BMC cắt BC N,cắt (O) I Chứng minh A;O;I thẳng hàng Kẻ AK với đường thẳng MC AI cắt BC J.Chứng minh AKCJ nội tiếp C/m:KM.JA=KA.JB A O E J B I Hình 84 1/C/m A;O;I thẳng K hàng: Vì BMI=IMC(gt) cung IB=IC Góc M BAI=IAC(hai góc nt chắn hai cung nhau)AI N C phân gíc cân ABC AIBC.Mà BOC cân O có góc tâm chắn cung OI giác Theo cmt ta có AIlà làphân đường kính qua trung điểm góc BOC hay AJC=1v mà AKC=1v(gt)AJC+AKC=2v đpcm đpcm 2/C/m AKCJ nội tiếp: dây BC AIBC 3/Cm: KM.JA=KA.JB Xét hai tam giác vuông JAB KAM có: Góc KMA=MAC+MCA(góc tam giác AMC) 1 2 sđ(MC+AM)= sđAC=sđ góc ABC Vậy góc ABC=KMA Mà sđ MAC= sđ cung MC sđMCA= sđ cung AM sđKMA= JBA~KMAđpcm Bài 85: Cho nửa đường tròn (O) đường kính AB.Gọi C điểm nửa đường tròn.Trên nửa mặt phẳng bờ AB chứa điểm C,kẻ hai tiếp tuyến Ax By Một đường tròn (O’) qua A C cắt AB tia Ax theo thứ tự D E Đường thẳng EC cắt By F Chứng minh BDCF nội tiếp Chứng tỏ:CD2=CE.CF FD tiếp tuyến đường tròn (O) AC cắt DE I;CB cắt DF J.Chứng minh IJ//AB Xác đònh vò trí D để EF tiếp tuyến (O) Hình 85 77 F C E I J O’ A O D B 1/Cm:BDCF nội tiếp: Ta có ECD=1v(góc nt chắn nửa đường tròn tâm O’)FCD=1v FBD=1v(tính chất tiếp tuyến)đpcm 2/C/m: CD2=CE.CF Ta có Do CDBF ntDFC=CBD(cùng chắn cung CD).Mà CED=CAD(cùng chắn cung CD (O’) Mà CAD+CBD=1v (vì góc ACB=1v-góc nt chắn nửa đt) CED+CFD=1v nên EDF=1v hay EDF tam giác vuông có DC đường cao.p dụng hệ thức lượng tam giác vuông ta có CD2=CE.CF Vì EDF vuông D(cmt)FDED hay FDO’D điểm D nằm đường tròn tâm O’.đpcm 3/C/m IJ//AB Ta có ACB=1v(cmt) hay ICJ=1v EDF=1v (cmt) hay IDJ=1v ICJD nt CJI=CDI(cùng chắn cung CI).Mà CFD=CDI (cùng phụ với góc FED) Vì BDCF nt (cmt)CFD=CBD (cùng chắn cung CD)CJI=CBD đpcm 4/ Xác đònh vò trí D để EF tiếp tuyến (O) Ta có CDEF C nằm đường tròn tâm O.Nên để EF tiếp tuyến (O) CD phải bán kính DO Bài 86: Cho (O;R (O’;r) R>r, cắt Avà B Gọi I điểm đường thẳng AB nằm đoạn thẳng AB Kẻ hai tiếp tuyến IC ID với (O) (O’) Đường thẳng OC O’D cắt K Chứng minh ICKD nội tiếp Chứng tỏ:IC2=IA.IB Chứng minh IK nằm đường trung trực CD IK cắt (O) E F; Qua I dựng cát tuyến IMN a/ Chứng minh:IE.IF=IM.IN b/ E; F; M; N nằm đường tròn 1/C/m ICKD nt: Vì CI DI hai tt I hai đtròn Hình 86 ICK=IDK=1v đpcm C 2/C/m: IC2=IA.IB E Xét hai tam giác M ICE ICBcó A D góc I chung O sđ ICE= sđ cung O’ CE (góc tt B N dây) F 78 K sđ CE (góc nt cung bò chắn)ICE=IBCICE~IBCđpcm 3/Cm IK nằm đường trung trực CD Theo chứng minh ta có: IC2=IA.IB Chứng minh tương tự ta có:ID2=IA.IB -Hai tam giác vuông ICK IDK có Cạnh huyền IK chung cạnh góc vuông IC=ID ICK=IDKCK=DKK nằm đường trung trực CD.đpcm 4/ a/Bằng cách chứng minh tương tự câu ta có: IC2=IE.IF ID2=IM.IN Mà IC=ID (cmt)IE.IF=IM.IN b/ C/m Tứ giác AMNF nội tiếp: Theo chứng minh có E.Ì=IM.IN.p IF IN dụng tính chất tỉ lệ thức ta có: Tức hai cặp cạnh tam IM IE giác IFN tương ứng tỉ lệ với hai cặp cạnh tam giác IME.Hơn góc EIM chung IEM~INFIEM=INF.Mà IEM+MEF=2vMEF+MNF=2vđpcm Sđ CBI= Bài 87: ChoABC có góc nhọn.Vẽ đường tròn tâm O đường kính BC.(O) cắt AB;AC D E.BE CD cắt H Chứng minh:ADHE nội tiếp C/m:AE.AC=AB.AD AH kéo dài cắt BC F.Cmr:H tâm đường tròn nội tiếp DFE Gọi I trung điểm AH.Cmr IE tiếp tuyến (O) A I E D x Hình 87 H B F O C 1/Cm:ADHE nội tiếp: Ta có BDC=BEC=1v(góc nt chắn nửa đường tròn) ADH+AEH=2vADHE nt 2/C/m:AE.AC=AB.AD Ta chứng minh AEB ADC đồng dạng 3/C/m H tâm đường tròn ngoại tiếp tam giác DEF: Ta phải c/m H giao điểm đường phân giác tam giác DEF 79 -Tứ giác BDHF ntHED=HBD(cùng chắn cung DH).Mà EBD=ECD (cùng chắn cung DE).Tứ gáic HECF ntECH=EFH(cùng chắn cung HE) EFH=HFDFH phân giác DEF -Tứ gáic BDHF ntFDH=HBF(cùng chắn cung HF).Mà EBC=CDE(cùng chắn cung EC)EDC=CDFDH phân giác góc FDEH là… 4/ C/m IE tiếp tuyến (O):Ta có IA=IHIA=IE=IH= AH (tính chất trung tuyến tam giác vuông)IAE cân IIEA=IAE.Mà IAE=EBC (cùng phụ với góc ECB) AEI=xEC(đối đỉnh)Do OEC cân O OEC=OCE xEC+CEO =EBC +ECB=1v Hay xEO=1v Vậy OEIE điểm E nằm đường tròn (O)đpcm Bài 88: Cho(O;R) (O’;r) cắt Avà B.Qua B vẽ cát tuyến chung CBDAB (C(O)) cát tuyến EBF bất kỳ(E(O)) Chứng minh AOC AO’D thẳng hàng Gọi K giao điểm đường thẳng CE DF.Cmr:AEKF nt Cm:K thuộc đường tròn ngoại tiếp ACD Chứng tỏ FA.EC=FD.EA A E O C O’ Hình 88 B D F K 1/C/m AOC AO’D thẳng hàng: -Vì ABCD Góc ABC=1vAC đường kính (O)A;O;C thẳng hàng.Tương tự AO’D thẳng hàng 2/C/m AEKF nt: Ta có AEC=1v(góc nt chắn nửa đường tròn tâm O.Tương tự AFD=1v hay AFK=1v AEK+AFK=2vđpcm 3/Cm: K thuộc đường tròn ngoại tếp ACD Ta có EAC=EBC(cùng chắn cung EC).Góc EBC=FBD(đối đỉnh).Góc FBD=FAD(cùng chắn cung FD).Mà EAC+ECA=90o ADF=ACE ACE+ACK=2vADF+ACK=2vK nằm đường tròn ngoại tiếp … 4/C/m FA.EC=FD.EA Ta chứng minh hai tam giác vuông FAD EAC đồng dạng EAC=EBC(cùng hcắn cung EC)EBC=FBD(đối đỉnh) FBD=FAD(cùng chắn cung FD)EAC=FADđpcm Bài 89: 80 Cho ABC có A=1v.Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC B dựng (O’;r) tiếp xúc với BC C.Gọi M;N trung điểm AB;AC,OM ON kéo dài cắt K Chứng minh:OAO’ thẳng hàng CM:AMKN nội tiếp Cm AK tiếp tuyến hai đường tròn K nằm BC Chứng tỏ 4MI2=Rr Hình 89 O’ A O M I N B K C 1/C/m AOO’ thẳng hàng: -Vì M trung điểm dây ABOMAB nên OM phân giác góc AOB hay BOM=MOA Xét hai tam giác BKO AKO có OA=OB=R; OK chung BOK=AOK (cmt) KBO=KAO góc OBK=OAK mà OBK=1v OAK=1v Chứng minh tương tự ta có O’AK=1v Nên OAK+O’AK=2v đpcm 2/Cm:AMKN nội tiếp:Ta có Vì AMK=1v(do OMA=1v) ANK=1v AMK+ANK=2v đpcm Cần lưu ý AMKN hình chữ nhật 3/C/m AK tiếp tuyến (O) O’) -Theo chứng minh Góc OAK=1v hay OAAK điểm A nằm đường tròn (O)đpcm.Chứng minh tương tự ta có AK tt (O’) -C/m K nằm BC: Theo tính chất hai tt cắt ta có:BKO=OKA AKO’=O’KC Nhưng AMKN hình chữ nhậtMKN=1v hay OKA+O’KA=1v tức có nghóa góc BKO+O’KC=1v BKO+OKA+AKO’+O’KC=2vK;B;C thẳng hàng đpcm 4/ C/m: 4MI2=Rr Vì OKO’ vuông K có đường cao KA.p dụng hệ thue=ức lượng tam giác vuông có AK2=OA.O’A.Vì MN=AK MI=IN hay MI= AKđpcm Bài 90: Cho tứ giác ABCD (AB>BC) nội tiếp (O) đường kính AC; Hai đường chéo AC DB vuông góc với Đường thẳng AB CD kéo dài cắt E; BC AD cắt F Cm:BDEF nội tiếp Chứng tỏ:DA.DF=DC.DE Gọi I giao điểm DB với AC M giao điểm đường thẳng AC với đường tròn ngoại tiếp AEF Cmr: DIMF nội tiếp Gọi H giao điểm AC với FE Cm: AI.AM=AC.AH 81 E Hình 90 B A O I C H M D F 1/ Cm:DBEF nt: Do ABCD nt (O) đường kính ACABC=ADC=1v (góc nt chắn nửa đường tròn) FBE=EDF=1vđpcm 2/ C/m DA.DF=DC.DE: Xét hai tam giác vuông DAC DEF có: Do BFAE EDAF nên C trực tâm AEFGóc CAD=DEF(cùng phụ với góc DFE)đpcm 3/ Cm:DIMF nt: Vì ACBD(gt) DIM=1v I trung điểm DB(đường kính vuông góc với dây DB)ADB cân A AEF cân A (Tự c/m yếu tố này)Đường tròn ngoại tiếp AEF có tâm nằm đường AM góc AFM=1v(góc nt chắn nửa đường tròn)DIM+DFM=2vđpcm Bài 91: Cho (O) (O’) tiếp xúc A.Đường thẳng OO’ cắt (O) (O’) B C (khác A) Kẻ tiếp tuyến chung DE(D(O)); DB CE kéo dài cắt M Cmr: ADEM nội tiếp Cm: MA tiếp tuyến chung hai đường tròn ADEM hình gì? Chứng tỏ:MD.MB=ME.MC 1/Cm:ADEM nt: Vì AEC=1v ADB=1v(góc nt chắn nửa đtròn) B O A O’ ADM+AEM=2vđpcm C 2/C/m MA tiếp tuyến hai đường tròn; E D -Ta có sđADE= sđ cungAD=sđ DBA.Và M Hình ADE=AME(vì 91 chắn cung AE tứ Tương tự ta có AMB=ACMHai giác ABM ACM có hai giáctam ADME cặp góc tương ứng nhauCặp góc cònlại nhau.Hay nt)ABM=AMC BAM=MAC.Ta lại có BAM+MAC=2vBAM=MAC=1v hay OAAM điểm A nằm đtròn… 82 3/ADEM hình gì? Vì BAM=1vABM+AMB=1v.Ta có MA tt đtrònDAM=MBA (cùng nửa cung AD).Tương tự MAE=MCA.Mà theo cmt ta có ACM=AMB Nên DAM+MAE=ABM+ACM=ABM+AMB=1v.Vậy DAE=1v nên ADEM hình chữ nhật 4/Cm: MD.MB=ME.MC Tam giác MAC vuông A có đường cao AE.p dụng hệ thức lượng tam giác vuông ta có:MA2=ME.MC.Tương tự tam giác vuông MAB có MA2=MD.MBđpcm Bài 92: Cho hình vuông ABCD.Trên BC lấy điểm M Từ C hạ CK với đường thẳng AM Cm: ABKC nội tiếp Đường thẳng CK cắt đường thẳng AB N.Từ B dựng đường vuông góc với BD, đường cắt đường thẳng DK E Cmr: BD.KN=BE.KA Cm: MN//DB Cm: BMEN hình vuông A Hình 92 B N M E K D C 1/Cm: ABKC nội tiếp: Ta có ABC=1v (t/c hình vuông); AKC=1v(gt) đpcm 2/Cm: BD.KN=BE.KA.Xét hai tam giác vuông BDE KAN có: Vì ABCD hình vuông nên nội tiếp đường tròn có tâm giao điểm hai đường chéo.Góc AKC=1vA;K;C nằm đtròn đường kính AC.Vậy điểm A;B;C;D;K nằm đường tròn.Góc BDK=KDN (cùng chắn cung BK)BDE~KAN BD BE KA KN đpcm 3/ Cm:MN//DB.Vì AKCN CBAN ;AK cắt BC MM trực tâm tam giác ANCNMAC.Mà DBAC(tính chất hình vuông)MN//DB 4/Cm:BNEM hình vuông: Vì MN//DBDBM=BMN(so le) mà DBM=45oBMN =45oBNM tam giác vuông cânBN=BM.Do BEDB(gt)và BDM=45oMBE=45oMBE tam giác vuông cân BM phân giác tam giác MBN;Ta dễ dàng c/m MN phân giác góc BMNBMEN hình thoi lại có goác B vuông nên BMEN hình vuông 83 Bài 93: Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB O Gọi M điểm OB N điểm đối xứng với C qua M Kẻ NE; NF NP vuông góc với AB; AD; AC; PN cắt AB Q Cm: QPCB nội tiếp Cm: AN//DB Chứng tỏ F; E; M thẳng hàng Cm: PEN tam giác caân F N I Q A E B P M O D C 1/C/m QPCB nội tiếp:Ta có:NPC=1v(gt) QBC=1v(tính chất hình chữ nhật).đpcm 2/Cm:AN//DB O giao điểm hai đường chéo hình chữ nhậtO trung điểm AC.Vì C N đối xứng với qua MM trung điểm NC OM đường trung bình ANCOM//AN hay AN//DB 3/Cm:F;E;M thẳng hàng Gọi I giao điểm EF AN.Dễ dàng chứng minh AFNE hình chữ nhậtAIE OAB tam gíc cânIAE=IEA ABO=BAO.Vì AN//DB IAE=ABO(so le)IEA=EACEF//AC hay IE//AC Vì I trung điểm AN;M trung điểm NCIM đường trung bình ANCMI//AC .Từ và Ta có I;E;M thẳng hàng.Mà F;I;E thẳng hàng F;F;M thẳng hàng 4/C/mPEN cân:Dễ dàng c/m ANEP nội tiếpPNE=EAP(cùng chắn cung PE).Và PNE=EAN(cùng chắn cung EN).Theo chứng minh câu ta suy NAE=EAPENP=EPNPEN cân E Bài 94: Từ đỉnh A hình vuông ABCD,ta kẻ hai tia tạo với góc 45o Một tia cắt cạnh BC E cắt đường chéo DB P Tia cắt cạnh CD F cắt đường chéo DB Q Cm:E; P; Q; F; C nằm đường tròn Cm:AB.PE=EB.PF Cm:SAEF=2SAPQ 84 Gọi M trung điểm AE.Cmr: MC=MD A B M P E Q D F C 1/Cm:E;P;Q;C;F nằm đường tròn: Ta có QAE=45o.(gt) QBC=45o(t/c hình vuông)ABEQ nội tiếp ABE+AQE=2v mà ABE=1vAQE=1v.Ta có AQE vuông Q có góc QAE=45oAQE vuông cânAEQ=45o.Ta lại có EAF=45o(gt) PDF=45o APFD nội tiếpAPF+ADF=2v mà ADF=1vAPF=1v ECF=1v Từ E;P;Q;F;C nằm đường tròn đường kính EF 2/Chứng minh: AB.PE=EB.PF.Xét hai tam giác vuông ABE có: -Vì ABEQ ntBAE=BQE(Cùng chắn cung BE) BAE=PFE -Vì QPEF ntPQE=PEF(Cùng chắn cung PE) đpcm 3/Cm: :SAEF=2SAPQ Theo cm AQE vuông cân QAE= AQ QE = AQ Vì QPEF nt PEF=AQP(cùng phụ với góc PQF);Góc QAP chung S AE = AQP~AEF AEF S AQP AQ =2ñpcm 4/Cm: MC=MD.Học sinh chứng minh hai MAD=MBC có BC=AD; MBE=MEB=DAE;AM=BM Bài 95: Cho hình chữ nhật ABCD có hai đường chéo cắt O.Kẻ AH BK vuông góc với BD AC.Đường thẳng AH BK cắt I.Gọi E F trung điểm DH BC.Từ E dụng đường thẳng song song với AD.Đường cắt AH J C/m:OHIK nội tiếp Chứng tỏ KHOI 1/Cm:OHIK nt Từ E kẻ đườngthẳng song song (Hs vớitự AD.Đường chứng cắt AH J.Chứng tỏ:HJ.KC=HE.KB minh) Chứng minh tứ giác ABFE nội2/Cm tiếp HKOI.trong đường tròn Tam giác ABI có hai A B đường cao DH AK J O cắt F O OI H K đường cao 85 thứ ba OIAB E D C I Ta có OKIH ntOKE=OIE(cùng chắn cung OH).Vì OIAB ADAB OI//ADOIH=HAD(so le).Mà HAD=HBA(cùng phụ với góc D).Do ABCD hình chữ nhật nên ABH+ACE OKH=OCEHK//AB.Mà OIAB OIKH 3/Cm: HJ.KC=HE.KB Chứng minh hai tam giác vuông HJE KBC đồng dạng 4/Chứng minh ABFE nội tiếp: VìAHBE;EJ//AD ADABEJABBJ đường cao thứ ba tam giác ABEBJAE Vì E trung điểm DH;EJ//ADEJ đường trung bình 2 tam giác ADHEJ//= AB;BF= BC mà BC//=ADJE//=BFBJEF hình bình hànhJB//EF.Mà BJAEEFAE hay AEF=1v;Ta lại có ABF=1vABFE nt Bài 96: Cho ABC, phân giác góc góc góc B C gặp theo thứ tự I J.Từ J kẻ JH; JP; JK vuông góc với đường thẳng AB; BC; AC Chứng tỏ A; I; J thẳng hàng Chứng minh: BICJ nt BI kéo dài cắt đường thẳng CJ E Cmr:AEAJ C/m: AI.AJ=AB.AC A E I B H P C K Baøi 97: J Từ đỉnh A hình vuông ABCD ta kẻ hai tia Ax Ay cho: Ax cắt cạnh BC P,Ay cắt cạnh CD Q.Kẻ BKAx;BIAy DMAx,DNAy 86 Chứng Chứng Chứng Chứng B P tỏ BKIA nội tiếp minh AD2=AP.MD minh MN=KI toû KIAN x C K y Q M I N A D Bài 98: Cho hình bình hành ABCD có góc A>90 o.Phân giác góc A cắt cạnh CD đường thẳng BC I K.Hạ KH KM vuông góc với CD AM Chứng minh KHDM nt Chứng minh:AB=CK+AM Bài 99: Cho(O) tiếp tuyến Ax.Trên Ax lấy điểm C gọi B trung điểm AC Vẽ cát tuyến BEF.Đường thẳng CE CF gặp lại đường tròn điểm thứ hai M N.Dựng hình bình hành AECD Chứng tỏ D nằm đường thẳng EF Chứng minh AFCD nội tiếp Chứng minh:CN.CF=4BE.BF Chứng minh MN//AC A M C D E B N F 1/Chứng minh D nằm đường thẳng EF:Do ADCE hình bình hành nên E;B;D thẳng hàng.Mà F;E;B thẳng hàngđpcm 2/Cm:AFCD nội tiếp: -Do ADCE hình bình hànhBC//AEgóc BCA=ACE(so le) 2 -sđCAE= sđcung AE(góc tt dây) sđ AFE= sđ cung AE CAE=AFE.BCN=BFAAFCD nội tiếp 87 2/Cm CN.CF=4BE.BF -Xét hai tam gáic BAE BFA có góc ABF chung AFB=BAE(chứng minh trên)BAE~BFA AB BE AB2=BE.BF BF AB Tương tự hai tam giác CAN CFA đồng dạngAC2=CN.CF.Nhưng ta lại có AB= AC.Do đó trở thành: AC2=BE.BF hay AC2=4BE.BF Từ đpcm 4/cm MN//AC Do ADCE hbhBAC=ACE(so le).Vì ADCF nt DAC=DFC(cùng chắn cung DC).Ta lại có EMN=EFN(cùng chắn cung EN)ACM=CMNMN//AC Bài 100: Trên (O) lấy điểm A;B;C.Gọi M;N;P theo thứ tự điểm cung AB;BC;AC AM cắt MP BP K I.MN cắt AB E Chứng minh BNI cân PKEN nội tiếp Chứng minh AN.BD=AB.BN Chứng minh I trực tâm MPN IE//BC 1/C/m BNI cân Ta có A sñBIN= sñ(AP+BN) P M F K sñIBN= sñ(CP+CN) O Maø Cung AP=CP; E I BN=CN(gt) B C BIN=IBNBNI cân N 2/Chứng tỏ PKEN N nội tiếp: Vì cung AM=MBANM=MPB hay KPE=KNEHai điểm P;N làm với hai đầu đoạn thẳng KE…đpcm 3/C/m AN.DB=AB.BN Xét hai tam giác BND ANB có góc N chung;Góc NBD=NAB(cùng chắn cung NC=NB)đpcm 4/ Chứng minh I trực tâm MNP: Gọi giao điểm MP với AB;AC F D.Ta có: sđ AFD= sđ cung (AP+MB)(góc có đỉnh đường tròn.) sđ ADF= sđ cung(PC+AM) (góc có đỉnh đường tròn.) Mà Cung AP=PC;MB=AMAFD=ADFAFD cân A có AN phân giác góc BAC(Vì Cung BN=NC nên BAN=NAC)ANMP hay NA đường cao NMP.Bằng cách làm tương tự ta chứng minh I trực tâm tam gáic MNP C/m IE//BC.Ta có BNI cân N có NE phân giác NE đường trung trực BIEB=EIBEI cân E.Ta có EBI=EIB.Do EBI=ABP=PBC (hai góc nội tiếp chắn hai cung PA=PC).Nên PBC=EIBEI//BC 88 Heát ... CM MD phân giác góc góc góc AMB: -Do ABCD trung điểm O AB CD.Cung AD=DB=CB=AC =90 o sđ sđcungAD=45o AMD= Hình 59 sđ DMB= sđcung DB=45o.AMD=DMB=45o.Tươngtự CAM=45o EMC=CMA=45o.Vậy CM MD phân... Hình 69 2 B H O C 1/Tính góc DOE: ta có D1=D2 (t/c tiếp tuyến cắt nhau);OD chungHai tam giác vuông DOB DOAO1=O2.Tương tự O3=O4.O1+O4=O2+O3 Ta lại có O1+O2+O3+O4=2v O1+O4=O2+O3=1v hay DOC =90 o... -Ta có ACB=1v(góc nt chắn nửa đtròn)ABC vuông C.Vì OCAB trung điểm OAOC=COB=1v cung AC=CB =90 o CAB=45 o (góc nt 55 ABC vuông cân C Mà BtAB có góc CAB=45 o ABI vuông cân B 2/C/m: AC.AI=AD.AJ