1) (A07) 3 1 3 2log (4 3) log (2 3) 2 + + x x ( 3 3 4 x< ) 2) (D305) 2 2 4 2 3 log log ( 4 4) log 3 2 x x x x + + + + > (x>2 4x < ) 3) (D206) 2 4 2 1 2(log 1) log log 0 4 x x+ + = ( x=2 x= ẳ) 4) (B203) 0,5 0,25 2 log 2log ( 1) log 6 0x x + + (x 3) 5) 8 4 2 2 1 1 log ( 3) log ( 1) log (4 ) 2 4 x x x+ + = (x = 3 x= 3+ 12 ) 6) (B104) 1 2 4 16 4 2 x x x + > (x<2 x> 4) 7) (A104) 2 2 4 log [log ( 2 )] 0x x x + < (x >1 x< - 4) 8) (B204) 3 log log 3 x x > ( x>3 1/3 <x <1) 9) (D03) 2 2 2 2 2 3 x x x x + = (x =1 x=2) 10) (D2.05) 3 3 1 .29 2 2 2 2 xx xx ( 1 2 1 2x + ) 11) (B206) 2 2 1 2 9 10.3 1 0 x x x x+ + + = ( x=1 x=2) 12) (A.06) 3.8 x +4.12 x 18 x 2.27 x =0 (x=1) 13) (D06) 2 2 2 2 4.2 2 4 0 x x x x x+ + = ( x=0 x=1) 14) (CHQ 05) 1 2 1 2 3 2 12 0 x x x+ + < (x >0) 15) (B07) ( ) ( ) 2 1 2 1 2 2 0 x x + = (x = 1) 16) (D203) 5 log (5 4) 1 x x = (x =1) 17) (B06) 2 5 5 5 log (4 144) 4log 2 1 log (2 1) x x + < + + (2<x<4) 18) (B02) 3 log (log (9 72)) 1 x x ( 9 log 73 2x< ) 19) (D07) ( ) 2 2 1 log 4 15.2 27 2log 0 4.2 3 x x x + + + = 2 ( log 3)x = 20) (D106)4 x 2 x+1 +2(2 x 1)sin(2 x +y 1) +2 =0 (x =1, y = 2 p 1 +k2) 21) (D106) 1 3 3 log (3 1) log (3 3) 6 x x+ = ( x= 3 log 10 x= 3 28 log 27 ) 22) (D102) 16 3 2 3 27 log 3log 0 x x x x = (x=1) 23) (A102) 2 1 1 0,5 2 log (4 4) log (2 3.2 ) x x x+ + ( x 2) 24) (A204)2 2 2 1 3 log log 2 2 2 x x x (0 < x 2 x4) 25) (A203) 1 1 15.2 1 2 1 2 x x x+ + + + (x 2) 26) (D103) f(x)= log 2. x x . Gii bpt f (x)0 (0 < x e x 1) 27) (B3-03) 3 2 3 2 x x x+ = + ( x=0 x=1) 28) 2 2 2 log 9 log log 3 2 3 x x x x= (x = 2 ) 29) 5 5 log 3 log 4 x x x+ = (x=25) 30) 2 2 2 3 log ( 5 5 1) log ( 5 7) 2x x x x + + + + ( 5 5 5 5 1 4 2 2 x x + ) 31) (A-08) 2 2 2x-1 x 1 log (2x x 1) log (2x-1) 4 + + - + = 5 x 2;x 4 = = 32) (B-08) 2 0,7 6 log log 0 4 ổ ử + ữ ỗ < ữ ỗ ữ ố ứ + x x x ( 4; 3) (8; )- - ẩ +Ơ 33) (D-08) 2 1 2 3 2 log 0 - + x x x ) ( 2 2;1 2;2 2 ộ ự - ẩ + ở ỷ 34) (A1-08) 1 2 3 2 3 log (log ) 0 1 + + x x x < 1 35) (A1-08) sin( ) 4 tan p - = x e x x= /4 + k 36) (A2-08) 3 1 6 3 log (9 ) log + = - x x x x x = 2 37) (B1-08) 1 2 2 2log (2 2) log (9 1) 1+ + - =x x x= 1; x = 3 2 38) (B2-08) 2 1 2 1 3 2 5.6 0 + + - - Ê x x x 2 3 1 log 2 Êx 39) (D1-08) 2 2 2 4 2 2 1 2 16.2 2 0 - - - - - - Ê x x x x 1 3 1 3- Ê Ê +x 40) (D1-07) 2 2 1 2 2 1 1 log 2 3 1 log ( 1) 2 2 - + + - x x x 1 1 3 2 Ê <x 41) (D2-07) 2 2 1 log 1 2 - = + - x x x x x= 1 42) (D2-07) 3 1 2 2 7.2 7.2 2 0 + - + - = x x x x= 0; 1 43) (A1-07) 2 4 2 (log 8 log )log 2 0+ x x x 1 0 1 2 < Ê >x x 44) (A2-07) 4 2 2 1 1 1 log ( 1) log 2 log 4 2 + - + = + + x x x x = 5 2 45) (B1-07) 2 3 3 log ( 1) log (2 1) 2- + - =x x x=2 46) (B2-07) 3 9 3 4 (2 log )log 3 1 1 log + - = - x x x x= 1 3 ; x= 81