ĐỀ THI TUYỂN SINH VÀO LỚP 10 MÔN TOÁN NĂM HỌC 2013 CỦA SỞ GIÁO DỤC VÀ ĐÀO TẠO LẦM ĐỒNG
www.VNMATH.com Sở giáo dục & ĐT Lâm Đồng KÌ THI TUYỂN SINH VÀO LỚP 1O THPT Khoá ngày 19 tháng 6 năm 2013 ĐỀ CHÍNH THỨC Môn thi: Toán (thời gian 120 phút) Câu 1: (0,75đ) Tính độ dài đường tròn có bán kính bằng 5 cm. Câu 2: (0,75đ) Cho hàm số bậc nhất y = (m – 3)x + 2014. Tìm giá trị của m để hàm số đồng biến trên R Câu 3: (0,75đ) Thực hiện phép tính: 1 1 2 3 2 3 Câu 4: (0,75đ) Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC tại H. Biết AB = 6cm, sinC = 3 5 . Tính độ dài các đoạn thẳng BC và AH. Câu 5: (0,75đ) Giải phương trình: (x 2 + 6x – 7 )(2x + 4) = 0 Câu 6: (0,75đ) Cho hệ phương trình 1 2 8 mx ny mx ny có nghiệm là 3 1 x y .Tìm m và n . Câu 7: (0,75đ) Cho parabol (P) y = x 2 và đường thẳng (d 1 ): y = 2x – 5. Lập phương trình đường thẳng (d 2 ) song song với (d 1 ) và cắt (P) tại điểm M có hoành độ là 3. Câu 8: (0,75đ) Cho hình nón có đường sinh là 5cm, diện tích toàn phần là 24 cm 2 . Tính thể tích hình nón. Câu 9: (0,75đ) Cho tam giác ABC có AB = 4 2 cm, BC = 7cm, B = 45 0 . Tính độ dài cạnh AC. Câu 10: (0,75đ) Một người dự định đi xe gắn máy từ A đến B với quãng đường dài 90 km. Thực tế vì có việc gấp nên người đó đã tăng vận tốc thêm 10km/giờ so với dự định, nên đã đến B sớm hơn 45 phút. Tính vận tốc người đó dự định đi từ A đến B. Câu 11: (0,75đ) Cho phương trình bậc hai: x 2 – 2(m – 1)x + 4m – 11 = 0(*) (x là ẩn số, m là tham số). Gọi x 1 , x 2 là hai nghiệm của phương trình(*). Chứng minh A = 2x 1 – x 1 x 2 + 2x 2 không phụ thuộc vào m. Câu 12: (0,5đ) Rút gọn biểu thức: 6 4 7 2 6 Câu 13: (0,75đ) Cho điểm M thuộc nửa đường tròn đường kính AB (M khác A và B). Lấy điểm I nằm giữa M và B, kẻ IH vuông góc với AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại K. Chứng minh rằng B + 2AKM AIM Câu 14: (0,5đ) Cho đường tròn (O), từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC (B, C là hai tiếp điểm). Gọi M là giao điểm của OA và BC, D là một điểm nằm trên đường tròn (O) sao cho D không nằm trên đường thẳng OA, kẻ dây cung DE đi qua M. Chứng minh tứ giác ADOE nội tiếp. ---------Hết--------- www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN LÂM ĐỒNG Khóa ngày 21/6/2013 ĐỀ THI CHÍNH THỨC MÔN THI : TOÁN ( Đề thi gồmcó 01 trang) Thời gian làm bài : 150 phút Câu 1:(2,0đ) Rút gọn : 2 3. 2 2 3 . 2 2 3A Câu 2:(2,0đ) Cho là góc nhọn. Chứng minh : 6 6 2 2 sin cos 3sin cos 1 Câu 3:(2,0đ) Giải hệ phương trình : 2 6 8 6 x y x y x y Câu 4:(2,0đ) Giải phương trình : 2 2 3 3 2 4 3x x x Câu 5:(1,5đ) Cho tam giác ABC, lấy điểm M nằm giữa B và C, lấy điểm N nằm giữa A và M. Biết diện tích tam giác ABM và diện tích tam giác NBC đều bằng 10m 2 , diện tích tam giác ANC là 9m 2 . Tính diện tích tam giác ABC. Câu 6:(1,5đ) Trên mặt phẳng toạ độ Oxy ( đơn vị trên hai trục toạ độ bằng nhau) cho A(6;0) , B(3;0) , C(0;- 4) , D(0;-8) . Đường thẳng AC cắt đường thẳng BD tại M. Tính độ dài đoạn thẳng OM. Câu 7:(1,5đ) Cho phương trình bậc hai : 2 2 3 1 15 0x m x m (x là ẩn số, m là tham số). Tìm giá trị của m để phương trình có hai nghiệm phân biệt 1 2 ,x x thoả mãn hệ thức 1 2 2 12x x Câu 8:(1,5đ) Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Trên tia đối của tia AC lấy điểm D và trên tia đối của tia BA lấy điểm E sao cho AD = BE . Chứng minh tứ giác DAOE nội tiếp . Câu 9:(1,5đ) Tìm giá trị nhỏ nhất của 2 5M x x Câu 10:(1,5đ) Tìm số tự nhiên n để n + 4 và n + 11 đều là số chính phương. Câu 11:(1,5đ) Cho tam giác ABC cân tại A, lấy điểm D nằm giữa B và C, lấy điểm E nằm giữa A và B , lấy điểm F nằm giữa A và C sao cho ˆ ˆ EDF B . Chứng minh : 2 . 4 BC BE CF Câu 12:(1,5đ) Cho đường tròn tâm O đường kính AB, M là một điểm trên đường tròn (M khác A và B), kẻ MH vuông góc với AB tại H. Đường tròn tâm M bán kính MH cắt (O) tại C và D. Đoạn thẳng CD cắt MH tại I. Chứng minh : I là trung điểm của MH . -------Hết ------ www.VNMATH.com K J I D C H B O A M 4 3 2 1 A O B C D E Chứng minh MC 2 = MK.MJ = 2MK.MO = 2MI.MH = MH 2 => MH = 2MI => đpcm . đi m của MH . -------Hết ------ www.VNMATH .com K J I D C H B O A M 4 3 2 1 A O B C D E Chứng minh MC 2 = MK.MJ = 2MK.MO = 2MI.MH = MH 2 => MH = 2MI =>. 5:(1,5đ) Cho tam giác ABC, lấy đi m M n m giữa B và C, lấy đi m N n m giữa A và M. Biết diện tích tam giác ABM và diện tích tam giác NBC đều bằng 1 0m 2 , diện