Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 143 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
143
Dung lượng
5,87 MB
Nội dung
TestBankforAGraphicalApproachtoAlgebraandTrigonometry5thEditionbyJohnHornsbyLialRockswold Link full download: https://getbooksolutions.com/download/test-bank-for-a-graphical-approach-toalgebra-and-trigonometry-5th-edition-by-john-hornsby-lial-rockswold/ Link download solution: https://getbooksolutions.com/download/solutionmanual-for-a-graphical-approach-to-algebra-and-trigonometry-5th-edition-byjohn-hornsby-lial-rockswold/ MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Determine the intervals of the domain over which the function is continuous 1) A) (-∞, ∞) B) C) [0, ∞) 1) D) Answer: A 2) 2) A) [0, ∞) Answer: B 3) B) (-∞, ∞) C) (0, ∞) D) (-∞, 0] 3) A) (-∞, ∞) B) (-∞, 0); (0, ∞) C) (-∞, 0) D) (0, ∞) Answer: A 4) 4) _ A) (-∞, 2] Answer: A B) (-∞, 2); ( 2, ∞) C) ( 2, ∞) D) (-∞, ∞) 5) 5) A) (-∞, ∞) B) (-∞, 1); ( 1, ∞) C) (-∞, -1); ( -1, ∞) D) (0, ∞) Answer: B 6) 6) A) (-∞, ∞) Answer: B 7) B) (-∞, 2); ( 2, ∞) C) (-∞, 4); ( 4, ∞) D) (-∞, -2); ( -2, ∞) 7) _ A) [ -1, ∞) Answer: D B) [ 1, ∞) C) [0, 1) D) [0, ∞) 8) 8) A) (0, 5) Answer: C B) ( 5, ∞) C) (-∞, ∞) Determine the intervals on which the function is increasing, decreasing, and constant 9) A) Increasing on (-∞, 1]; Decreasing on [1, ∞) B) Increasing on (-∞, -1]; Decreasing on [-1, ∞) C) Increasing on [1, ∞); Decreasing on (-∞, 1] D) Increasing on [-1, ∞); Decreasing on (-∞, -1] Answer: D 10) D) (0, ∞) 9) 10) A) Increasing on (-∞, 0]; Decreasing on (-∞, 0] B) Increasing on [0, ∞); Decreasing on (-∞, 0] C) Increasing on (-∞, 0]; Decreasing on [0, ∞) D) Increasing on (∞, 0]; Decreasing on [0, -∞) Answer: B 11) 11) A) Increasing on (∞, 0]; Decreasing on [0, -∞) B) Increasing on [0, ∞); Decreasing on (-∞, 0] C) Increasing on (-∞, 0]; Decreasing on (-∞, 0] D) Increasing on (-∞, 0]; Decreasing on [0, ∞) Answer: D 12) 12) A) Increasing on (-∞, -3]; Decreasing on [ -3, ∞) B) Increasing on [-3, ∞); Decreasing on [ -3, ∞) C) Increasing on (-∞, -3]; Decreasing on (-∞, -3] D) Increasing on [-3, ∞); Decreasing on (-∞, -3] Answer: A 13) 13) A) Increasing on (-∞, 0]; Decreasing on [0, ∞) C) Decreasing on (-∞, ∞) Answer: D B) Increasing on [0, ∞); Decreasing on (-∞, 0] D) Increasing on (-∞, ∞) 14) 14) A) Increasing on [ 4, ∞); Decreasing on [ -4, ∞); Constant on [ -4, 4] B) Increasing on [ 4, ∞); Decreasing on (-∞, -4]; Constant on [ -4, 4] C) Increasing on (-∞, 4]; Decreasing on (-∞, -4]; Constant on [4, ∞) D) Increasing on (-∞, 4]; Decreasing on [ -4, ∞); Constant on [4, ∞) Answer: B 15) 15) A) Increasing on [1, 3]; Decreasing on [-2, 0] and [3, 5]; Constant on [2, 5] B) Increasing on [-2, 0] and [3, 5]; Decreasing on [1, 3]; Constant on C) Increasing on [-1, 0] and [3, 5]; Decreasing on [0, 3]; Constant on [-5, -3] D) Increasing on [-2, 0] and [3, 4]; Decreasing on [-5, -2] and [1, 3] Answer: B 16) 16) A) Increasing on [-3, -1]; Decreasing on [-5, -2] and [2, 4]; Constant on [-1, 2] B) Increasing on [-3, 1]; Decreasing on [-5, -3] and [0, 5]; Constant on [1, 2] C) Increasing on [-3, 0]; Decreasing on [-5, -3) and [2, 5]; Constant on [0, 2] D) Increasing on [-5, -3] and [2, 5]; Decreasing on [-3, 0]; Constant on [0, 2] Answer: C Find the domain and the range for the function 17) 17) A) D: (-∞, ∞), R: (-∞, ∞) B) C) D) D: D: Answer: A 18) , R: (-∞, 0] , R: [0, ∞) D: [0, ∞), R: 18) A) D: (0, ∞), R: (0, ∞) C) D: [0, ∞), R: [0, ∞) Answer: D B) D: (-∞, 0], R: (-∞, 0] D) D: (-∞, ∞), R: (-∞, ∞) 19) 19) A) D: ( 2, ∞), R: [0, ∞) C) D: [ 2, ∞), R: [0, ∞) Answer: C B) D: [0, ∞), R: (-∞, 0] D) D: (0, ∞), R: (-∞, 0) 20) 20) A) D: (0, ∞), R: (-∞, 3] C) D: (-∞, 0), R: (-∞, 0) Answer: D B) D: (-∞, ∞), R: (-∞, ∞) D) D: (-∞, ∞), R: [6, ∞) 21) 21) A) D: [0, ∞), R: (-∞, 8] C) D: (-∞, 8], R: [8, ∞) Answer: B B) D: (-∞, 8], R: [0, ∞) D) D: (-∞, ∞), R: [0, ∞) 22) 22) A) D: (-∞, 3) ∪ (3, ∞), R: (-∞, 1) ∪ (1, ∞) C) D: (-∞, ∞), R: (-∞, ∞) Answer: A B) D: (0, ∞), R: (1, ∞) D) D: (-∞, -3) ∪ (-3, ∞), R: (-∞, ∞) 23) 23) A) D: (-∞, 4) ∪ (4, ∞), R: (-∞, 2) ∪ (2, ∞) C) D: (-∞, -2) ∪ (-2, ∞), R: (-∞, -4) ∪ (-4, ∞) Answer: D B) D: (-∞, ∞), R: (-∞, ∞) D) D: (-∞, 2) ∪ (2, ∞), R: (-∞, 4) ∪ (4, ∞) 24) 24) A) D: [0, ∞), R: [0, ∞) C) D: [0, ∞), R: [4, ∞) Answer: C 25) B) D: [4, ∞), R: [0, ∞) D) D: [ -4, ∞), R: (-∞, 0] Answer: D 148) For f(x) = 2x - and g(x) = , what is the domain of (f ∘ g)? A) [ 2, ∞) B) ( -2, 2) C) [0, ∞) Answer: D D) [ -2, ∞) 149) For f(x) = 2x - and g(x) = , what is the domain of (g ∘ f)? A) [ -1, ∞) B) [∞, -1) C) ( -7, 7) Answer: A D) [ 7, ∞) 148) 149) 150) 150) For f(x) = - and g(x) = 2x + 3, what is the domain of (f - g)? A) [ 2, ∞) B) [0, ∞) C) ( -2, 2) Answer: D 151) D) (-∞, ∞) 151) For f(x) = - 36 and g(x) = 2x + 3, what is the domain of ? A) ( -6, 6) B) (-∞, ∞) C) D) ∪ 152) Answer: C 152) For f(x) = - 81 and g(x) = 2x + 3, what is the domain of A) B) (-∞, ∞) C) (-∞, -9) ∪ ( -9, 9) ∪ ( 9, ∞) ? D) ∪ Answer: C 153) For f(x) = - 36 and g(x) = 2x + 3, what is the domain of (f ∘ g)? A) (-∞, ∞) B) [ 6, ∞) C) ( -6, 6) Answer: A 154) For f(x) = A) [ 5, ∞) Answer: C and g(x) = , what is the domain of (f ∙ g)? B) [0, 9) ∪ (9, ∞) C) [ 5, 9) ∪ (9, ∞) 155) 153) D) [0, ∞) 154) D) ( 5, 9) ∪ (9, ∞) 155) For g(x) = and h(x) = A) [0, 8) ∪ (8, ∞) C) [ -1, 8) ∪ ( 8, ∞) Answer: B , what is the domain of (h ∘ g)? B) [ -1, 63) ∪ (63, ∞) D) [0, 63) ∪ (63, ∞) Use the graphs to evaluate the expression 156) f( 2) + g( -4) y = f(x) y = g(x) 156) _ A) Answer: C B) C) D) -1 157) f( 2) - g( -2) 157) y = f(x) A) Answer: D 158) f( 1) -g( -4) y = g(x) B) C) 11 D) y = f(x) 158) _ A) -4 B) -1 C) D) -5 - Answer: D 159) f( 4) * g( -2) 159) y = f(x) A) y = g(x) B) C) Answer: B 160) (g ∘ f)( -2) y = f(x) y = g(x) D) -2 160) _ A) 4.5 Answer: A 161) (f ∘ g)( -2) B) 162) (f ∘ g)( -1) D) 1.5 161) y = f(x) A) Answer: D C) 5.5 y = g(x) B) C) 1.5 D) y = f(x) 162) _ A) Answer: B 163) (g ∘ f)( 0) B) 164) (f + g)( 3) D) 163) y = f(x) A) -5 Answer: C C) y = g(x) B) -6 C) -4 D) -3 y = f(x) 164) _ A) -3 B) C) D) Answer: D 165) g(f( 4)) 165) y = f(x) A) Answer: D y = g(x) B) C) -2 D) Use the tables to evaluate the expression if possible 166) Find (f + g)( -7) A) 16 Answer: D B) 166) C) 10 D) -3 167) Find (fg)( 1) 167) A) 16 Answer: A B) C) 48 D) 54 168) Find (g ∘ f)( 8) A) 25 Answer: D 168) B) C) 41 D) 53 169) Find (f ∘ g)( 8) 169) A) 30 Answer: A B) C) 15 D) 34 170) Find (g ∘ f)( 6) A) 11 Answer: B 170) B) 13 C) D) 31 171) Find (f ∘ f)( 3) 171) A) Answer: C B) 11 C) 13 D) 172) Find (g ∘ g)( 5) 172) A) 11 B) C) 27 Answer: B Determine whether (f ∘ g)(x) = x and whether (g ∘ f)(x) = x 173) D) 25 173) f(x) = A) No, yes Answer: C , g(x) = + 15 B) No, no C) Yes, yes D) Yes, no 174) f(x) = + , g(x) = A) No, yes Answer: D 174) -4 B) Yes, no C) Yes, yes D) No, no 175) 175) f(x) = , g(x) = x A) Yes, no Answer: B B) No, no C) Yes, yes D) No, yes 176) f(x) = , g(x) = A) Yes, yes Answer: C 176) B) Yes, no C) No, no D) No, yes 177) 177) f(x) = + 8, g(x) = A) Yes, no Answer: B B) Yes, yes D) No, yes (h ≠ 0) for the function f Simplify completely Determine the difference quotient 178) f(x) = 6x - 15 A) C) No, no 178) B) C) 15 D) -6h Answer: B 179) f(x) = + 8x - 14 A) 16xh + 8h + 179) B) 16x + + 8h C) 8x + + 16h D) 16x + 8 Answer: B 180) f(x) = 13 - A) -2(3 - 3x - h) C) -2( - xh ) 180) B) -2(3 + 3xh + ) D) -39 Answer: B Consider the function h as defined Find functions f and g such that (f ∘ g)(x) = h(x) 181) h(x) = A) f(x) = B) f(x) = , g(x) = x - C) 182) h(x) = 182) A) f(x) = -6 D) f(x) = f(x) = Answer: D , g(x) = , g(x) = -6 , g(x) = - , g(x) = 6x - C) f(x) = x, g(x) = 6x + B) f(x) = , g(x) = 6x + D) f(x) = - , g(x) = 6x + 181) Answer: B 183) 183) h(x) = A) +9 B) f(x) = , g(x) = f(x) = x + 9, g(x) = C) f(x) = Answer: B D) , g(x) = +9 f(x) = x, g(x) = +9 184) 184) h(x) = A) f(x) = 2, g(x) = C) f(x) = Answer: C B) f(x) = , g(x) = D) f(x) = , g(x) = 5x + , g(x) = 5x + 185) h(x) = A) f(x) = C) f(x) = Answer: D 186) h(x) = 186) A) f(x) = -27 C) f(x) = 185) B) f(x) = 4x + 11, g(x) = D) f(x) = , g(x) = 4x + 11 , g(x) = 11 , g(x) = x + 11 + 74, g(x) = B) f(x) = , g(x) = D) f(x) = , g(x) = -27 , g(x) = + 74 Answer: D Solve the problem 187) Regrind, Inc regrinds used typewriter platens The cost to buy back each used platen is $ 1.30 The fixed cost to run the grinding machine is $ 220 per day If the company sells the reground platens for $ 5.30, how many must be reground daily to break even? A) 55 platens B) 169 platens C) 33 platens D) 36 platens Answer: A 187) 188) Northwest Molded molds plastic handles which cost $ 0.10 per handle to mold The fixed cost to run the molding machine is $ 1829 per week If the company sells the handles for $ 1.10 each, how many handles must be molded weekly to break even? A) 1829 handles B) 1219 handles C) 1524 handles D) 18,290 handles Answer: A 188) 189) Midtown Delivery Service delivers packages which cost $ 1.90 per package to deliver The fixed cost to run the delivery truck is $ 96 per day If the company charges $ 5.90 per package, how many packages must be delivered daily to break even? A) 24 packages B) 50 packages C) 12 packages D) 16 packages Answer: A 189) 190) A lumber yard has fixed costs of $ 6166.80 a day and marginal costs of $ 0.77 per board-foot prod daily uced to produced The company gets per board-foot sold How many board-feet must be break even? 190) _ B) 8008 board-feet D) 3426board-feet A) 1846 board-feet C) 2284 board-feet Answer: D 191) Midtown Delivery Service delivers packages which cost $ 1.70 per package to deliver The fixed cost to run the delivery truck is $ 400 per day If the company charges $ 6.70 per package, how many packages must be delivered daily to make a profit of ? A) 235 packages B) 99 packages C) 80 packages D) 47 packages Answer: B 191) 192) The cost of manufacturing clocks is given by C(x) = 75 + 56x Also, it is known that in t hours the number of clocks that can be produced is given by x = 5t, where Express C as a function of t A) C(t) = 75 + 280t B) C(t) = 75 + 56t + 192) C) C(t) = 75 + 280t - 25t Answer: A D) C(t) = 75 + 56t - 193) At Allied Electronics, production has begun on the X-15 Computer Chip The total revenue 193) function is given byand the total cost function is given by , where x represents the number of boxes of computer chips produced The total profit function, P(x), is such that A) P(x) = 0.3 Find P(x) B) P(x) = 0.3 + 45x - 32 C) P(x) = -0 D) P(x) = -0.3 + 45x - 16 + 41x - 48 + 41x + 16 Answer: C 194) At Allied Electronics, production has begun on the X-15 Computer Chip The total revenue function is given by 194) and the total profit function is given by , where x represents the number of boxes of computer chips produced The total cost function, C(x), is such that Find C(x) A) C(x) = 10x + 19 B) C(x) = + 18x + 14 D) C(x) = 11x + 10 C) C(x) = 9x + 14 Answer: C 195) At Allied Electronics, production has begun on the X-15 Computer Chip The total cost function 195) is given byand the total profit function is given by , where x represents the number of boxes of computer chips produced The total revenue function, R(x), is such that A) R(x) = Find R(x) 57x - C) R(x) = 59x Answer: A B) R(x) = 57x + 0.3 D) R(x) = 56x - 196) The radius r of a circle of known area A is given by r = , where Find the radius and circumference of a circle with an area of 16.39 sq ft (Round results to two decimal places.) A) r = 2.28 ft, C = 14.35 sq ft B) r = 2.28 ft, C = 8.86 ft C) r = 2.28 ft, C = 14.35 ft D) r = 5.22 ft, C = 32.78 ft Answer: C 196) 197) The volume of water added toa circular drum of radius r is given by = 15t, where is volume in cu ft and t is time in sec Find the depth of water in a drum of radius ft after adding water for 22 sec (Round result to one decimal place.) A) 23.3 ft B) 3.4 ft C) 11.7 ft D) 36.7 ft Answer: C 197) 198) A retail store buys 215 VCRs from a distributor at a cost of $ 205 each plus an overhead charge of $ 20 per order The retail markup is 45% on the total price paid Find the profit on the sale of one VCR A) $ 92.21 B) $ 92.29 C) $ 9229.19 D) $ 92.25 Answer: B 198) 199) A balloon (in the shape of a sphere) is being inflated The radius is increasing at a rate of cm per second Find a function, r(t), for the radius in terms of t Find a function, V(r), for the volume of the balloon in t erms of r Find (V ∘ r)(t) A) B) 199) (V ∘ r)(t) = (V ∘ r)(t) = C) D) (V ∘ r)(t) = (V ∘ r)(t) = Answer: B 200) A stone is thrown into a pond A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 3.4 feet per second Find a function, r(t), for the radius in terms of t Find a function, A(r), for the area of the ripple in terms of r A) (A ∘ r)(t) = B) (A ∘ r)(t) = 6.8n t C) (A ∘ r)(t) = 3.4n Answer: D D) 200) (A ∘ r)(t) = 11.56n 201) Ken is feet tall and is walking away from a streetlight The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 1.9 feet per second Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time Find a function, , which gives the length of Ken's shadow in terms of d Then find A) (S ∘ d)(t) = 1.43t B) (S ∘ d)(t) = 1.81t C) (S ∘ d)(t) = 3.21t D) (S ∘ d)(t) = 1.05t Answer: A 202) Ken is feet tall and is walking away from a streetlight The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 2.8 feet per second Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time Find a function, , which gives the length of Ken's shadow in terms of d Then find W hat is the meaning of ? A) (S ∘ d)(t) gives the distance Ken is from the streetlight in terms of time B) (S ∘ d)(t) gives the length of Ken's shadow in terms of his distance from the streetlight C) (S ∘ d)(t) gives the time in terms of Ken's distance from the streetlight D) (S ∘ d)(t) gives the length of Ken's shadow in terms of time Answer: D 201) 202) 1) B 2) A 3) A 4) D 5) D 6) C 7) C 8) C 9) C 10) B 11) C 12) D 13) A 14) D 15) A 16) C 17) B 18) B 19) D 20) C 21) D 22) D 23) C 24) B 25) A 26) B 27) C 28) C 29) B 30) D 31) A 32) C 33) B 34) A 35) B 36) A 37) D 38) C 39) D 40) C 41) B 42) D 43) B 44) A 45) D 46) D 47) C 48) C 49) C 50) A 51) A 52) B 53) C 54) B 55) B 56) A 57) D 58) B 59) C 60) B 61) C 62) C 63) C 64) A 65) C 66) B 67) B 68) C 69) B 70) D 71) D 72) B 73) C 74) A 75) A 76) A 77) A 78) B 79) D 80) B 81) B 82) D 83) B 84) C 85) A 86) D 87) A 88) D 89) B 90) B 91) A 92) B 93) D 94) B 95) B 96) D 97) D 98) B 99) D 100) C 101) D 102) A 103) B 104) A 105) D 106) C 107) B 108) B 109) D 110) A 111) D 112) D 113) C 114) D 115) D 116) B 117) A 118) D 119) A 120) D 121) A 122) B 123) D 124) A 125) B 126) D 127) C 128) D 129) A 130) D 131) D 132) C 133) A 134) C 135) C 136) D 137) D 138) B 139) C 140) A 141) D 142) B 143) C 144) D 145) D 146) C 147) D 148) D 149) A 150) D 151) C 152) C 153) A 154) C 155) B 156) 157) 158) 159) 160) 161) 162) 163) 164) 165) 166) 167) 168) 169) 170) 171) 172) 173) 174) 175) 176) 177) 178) 179) 180) 181) 182) 183) 184) 185) 186) 187) 188) 189) 190) 191) 192) 193) 194) 195) 196) 197) 198) 199) 200) 201) 202) C D D B A D B C D D D A D A B C B C D B C B B B B D B B C D D AAA D B A C C A C C B B D A D ... (1, ∞) A) Increasing Answer: A f(x) = ; (3, ∞) A) Increasing Answer: A 26) 27) B) Decreasing 28) B) Decreasing 29) B) Decreasing 30) 30) f(x) = ; (-∞, 0) A) Increasing Answer: A B) Decreasing... 36) 36) A) x-axis, origin Answer: C B) x-axis C) y-axis 37) D) y-axis, origin 37) A) x-axis, origin C) x-axis, y-axis, origin Answer: C B) Origin D) x-axis 38) 38) A) y-axis Answer: D B) x-axis,... Use translations of one of the basic functions to sketch a graph of y = f(x) by hand 81) y= -2 A) B) C) D) Answer: A 82) y= D) y = + A) y = D) y = 81) 82) A) B) C) D) Answer: A 83) y = A) -2 83)