1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Download test bank for a graphical approach to algebra and trigonometry 5th edition by john hornsby lial rockswold

143 106 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 143
Dung lượng 5,87 MB

Nội dung

Test Bank for A Graphical Approach to Algebra and Trigonometry 5th Edition by John Hornsby Lial Rockswold Link full download: https://getbooksolutions.com/download/test-bank-for-a-graphical-approach-toalgebra-and-trigonometry-5th-edition-by-john-hornsby-lial-rockswold/ Link download solution: https://getbooksolutions.com/download/solutionmanual-for-a-graphical-approach-to-algebra-and-trigonometry-5th-edition-byjohn-hornsby-lial-rockswold/ MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Determine the intervals of the domain over which the function is continuous 1) A) (-∞, ∞) B) C) [0, ∞) 1) D) Answer: A 2) 2) A) [0, ∞) Answer: B 3) B) (-∞, ∞) C) (0, ∞) D) (-∞, 0] 3) A) (-∞, ∞) B) (-∞, 0); (0, ∞) C) (-∞, 0) D) (0, ∞) Answer: A 4) 4) _ A) (-∞, 2] Answer: A B) (-∞, 2); ( 2, ∞) C) ( 2, ∞) D) (-∞, ∞) 5) 5) A) (-∞, ∞) B) (-∞, 1); ( 1, ∞) C) (-∞, -1); ( -1, ∞) D) (0, ∞) Answer: B 6) 6) A) (-∞, ∞) Answer: B 7) B) (-∞, 2); ( 2, ∞) C) (-∞, 4); ( 4, ∞) D) (-∞, -2); ( -2, ∞) 7) _ A) [ -1, ∞) Answer: D B) [ 1, ∞) C) [0, 1) D) [0, ∞) 8) 8) A) (0, 5) Answer: C B) ( 5, ∞) C) (-∞, ∞) Determine the intervals on which the function is increasing, decreasing, and constant 9) A) Increasing on (-∞, 1]; Decreasing on [1, ∞) B) Increasing on (-∞, -1]; Decreasing on [-1, ∞) C) Increasing on [1, ∞); Decreasing on (-∞, 1] D) Increasing on [-1, ∞); Decreasing on (-∞, -1] Answer: D 10) D) (0, ∞) 9) 10) A) Increasing on (-∞, 0]; Decreasing on (-∞, 0] B) Increasing on [0, ∞); Decreasing on (-∞, 0] C) Increasing on (-∞, 0]; Decreasing on [0, ∞) D) Increasing on (∞, 0]; Decreasing on [0, -∞) Answer: B 11) 11) A) Increasing on (∞, 0]; Decreasing on [0, -∞) B) Increasing on [0, ∞); Decreasing on (-∞, 0] C) Increasing on (-∞, 0]; Decreasing on (-∞, 0] D) Increasing on (-∞, 0]; Decreasing on [0, ∞) Answer: D 12) 12) A) Increasing on (-∞, -3]; Decreasing on [ -3, ∞) B) Increasing on [-3, ∞); Decreasing on [ -3, ∞) C) Increasing on (-∞, -3]; Decreasing on (-∞, -3] D) Increasing on [-3, ∞); Decreasing on (-∞, -3] Answer: A 13) 13) A) Increasing on (-∞, 0]; Decreasing on [0, ∞) C) Decreasing on (-∞, ∞) Answer: D B) Increasing on [0, ∞); Decreasing on (-∞, 0] D) Increasing on (-∞, ∞) 14) 14) A) Increasing on [ 4, ∞); Decreasing on [ -4, ∞); Constant on [ -4, 4] B) Increasing on [ 4, ∞); Decreasing on (-∞, -4]; Constant on [ -4, 4] C) Increasing on (-∞, 4]; Decreasing on (-∞, -4]; Constant on [4, ∞) D) Increasing on (-∞, 4]; Decreasing on [ -4, ∞); Constant on [4, ∞) Answer: B 15) 15) A) Increasing on [1, 3]; Decreasing on [-2, 0] and [3, 5]; Constant on [2, 5] B) Increasing on [-2, 0] and [3, 5]; Decreasing on [1, 3]; Constant on C) Increasing on [-1, 0] and [3, 5]; Decreasing on [0, 3]; Constant on [-5, -3] D) Increasing on [-2, 0] and [3, 4]; Decreasing on [-5, -2] and [1, 3] Answer: B 16) 16) A) Increasing on [-3, -1]; Decreasing on [-5, -2] and [2, 4]; Constant on [-1, 2] B) Increasing on [-3, 1]; Decreasing on [-5, -3] and [0, 5]; Constant on [1, 2] C) Increasing on [-3, 0]; Decreasing on [-5, -3) and [2, 5]; Constant on [0, 2] D) Increasing on [-5, -3] and [2, 5]; Decreasing on [-3, 0]; Constant on [0, 2] Answer: C Find the domain and the range for the function 17) 17) A) D: (-∞, ∞), R: (-∞, ∞) B) C) D) D: D: Answer: A 18) , R: (-∞, 0] , R: [0, ∞) D: [0, ∞), R: 18) A) D: (0, ∞), R: (0, ∞) C) D: [0, ∞), R: [0, ∞) Answer: D B) D: (-∞, 0], R: (-∞, 0] D) D: (-∞, ∞), R: (-∞, ∞) 19) 19) A) D: ( 2, ∞), R: [0, ∞) C) D: [ 2, ∞), R: [0, ∞) Answer: C B) D: [0, ∞), R: (-∞, 0] D) D: (0, ∞), R: (-∞, 0) 20) 20) A) D: (0, ∞), R: (-∞, 3] C) D: (-∞, 0), R: (-∞, 0) Answer: D B) D: (-∞, ∞), R: (-∞, ∞) D) D: (-∞, ∞), R: [6, ∞) 21) 21) A) D: [0, ∞), R: (-∞, 8] C) D: (-∞, 8], R: [8, ∞) Answer: B B) D: (-∞, 8], R: [0, ∞) D) D: (-∞, ∞), R: [0, ∞) 22) 22) A) D: (-∞, 3) ∪ (3, ∞), R: (-∞, 1) ∪ (1, ∞) C) D: (-∞, ∞), R: (-∞, ∞) Answer: A B) D: (0, ∞), R: (1, ∞) D) D: (-∞, -3) ∪ (-3, ∞), R: (-∞, ∞) 23) 23) A) D: (-∞, 4) ∪ (4, ∞), R: (-∞, 2) ∪ (2, ∞) C) D: (-∞, -2) ∪ (-2, ∞), R: (-∞, -4) ∪ (-4, ∞) Answer: D B) D: (-∞, ∞), R: (-∞, ∞) D) D: (-∞, 2) ∪ (2, ∞), R: (-∞, 4) ∪ (4, ∞) 24) 24) A) D: [0, ∞), R: [0, ∞) C) D: [0, ∞), R: [4, ∞) Answer: C 25) B) D: [4, ∞), R: [0, ∞) D) D: [ -4, ∞), R: (-∞, 0] Answer: D 148) For f(x) = 2x - and g(x) = , what is the domain of (f ∘ g)? A) [ 2, ∞) B) ( -2, 2) C) [0, ∞) Answer: D D) [ -2, ∞) 149) For f(x) = 2x - and g(x) = , what is the domain of (g ∘ f)? A) [ -1, ∞) B) [∞, -1) C) ( -7, 7) Answer: A D) [ 7, ∞) 148) 149) 150) 150) For f(x) = - and g(x) = 2x + 3, what is the domain of (f - g)? A) [ 2, ∞) B) [0, ∞) C) ( -2, 2) Answer: D 151) D) (-∞, ∞) 151) For f(x) = - 36 and g(x) = 2x + 3, what is the domain of ? A) ( -6, 6) B) (-∞, ∞) C) D) ∪ 152) Answer: C 152) For f(x) = - 81 and g(x) = 2x + 3, what is the domain of A) B) (-∞, ∞) C) (-∞, -9) ∪ ( -9, 9) ∪ ( 9, ∞) ? D) ∪ Answer: C 153) For f(x) = - 36 and g(x) = 2x + 3, what is the domain of (f ∘ g)? A) (-∞, ∞) B) [ 6, ∞) C) ( -6, 6) Answer: A 154) For f(x) = A) [ 5, ∞) Answer: C and g(x) = , what is the domain of (f ∙ g)? B) [0, 9) ∪ (9, ∞) C) [ 5, 9) ∪ (9, ∞) 155) 153) D) [0, ∞) 154) D) ( 5, 9) ∪ (9, ∞) 155) For g(x) = and h(x) = A) [0, 8) ∪ (8, ∞) C) [ -1, 8) ∪ ( 8, ∞) Answer: B , what is the domain of (h ∘ g)? B) [ -1, 63) ∪ (63, ∞) D) [0, 63) ∪ (63, ∞) Use the graphs to evaluate the expression 156) f( 2) + g( -4) y = f(x) y = g(x) 156) _ A) Answer: C B) C) D) -1 157) f( 2) - g( -2) 157) y = f(x) A) Answer: D 158) f( 1) -g( -4) y = g(x) B) C) 11 D) y = f(x) 158) _ A) -4 B) -1 C) D) -5 - Answer: D 159) f( 4) * g( -2) 159) y = f(x) A) y = g(x) B) C) Answer: B 160) (g ∘ f)( -2) y = f(x) y = g(x) D) -2 160) _ A) 4.5 Answer: A 161) (f ∘ g)( -2) B) 162) (f ∘ g)( -1) D) 1.5 161) y = f(x) A) Answer: D C) 5.5 y = g(x) B) C) 1.5 D) y = f(x) 162) _ A) Answer: B 163) (g ∘ f)( 0) B) 164) (f + g)( 3) D) 163) y = f(x) A) -5 Answer: C C) y = g(x) B) -6 C) -4 D) -3 y = f(x) 164) _ A) -3 B) C) D) Answer: D 165) g(f( 4)) 165) y = f(x) A) Answer: D y = g(x) B) C) -2 D) Use the tables to evaluate the expression if possible 166) Find (f + g)( -7) A) 16 Answer: D B) 166) C) 10 D) -3 167) Find (fg)( 1) 167) A) 16 Answer: A B) C) 48 D) 54 168) Find (g ∘ f)( 8) A) 25 Answer: D 168) B) C) 41 D) 53 169) Find (f ∘ g)( 8) 169) A) 30 Answer: A B) C) 15 D) 34 170) Find (g ∘ f)( 6) A) 11 Answer: B 170) B) 13 C) D) 31 171) Find (f ∘ f)( 3) 171) A) Answer: C B) 11 C) 13 D) 172) Find (g ∘ g)( 5) 172) A) 11 B) C) 27 Answer: B Determine whether (f ∘ g)(x) = x and whether (g ∘ f)(x) = x 173) D) 25 173) f(x) = A) No, yes Answer: C , g(x) = + 15 B) No, no C) Yes, yes D) Yes, no 174) f(x) = + , g(x) = A) No, yes Answer: D 174) -4 B) Yes, no C) Yes, yes D) No, no 175) 175) f(x) = , g(x) = x A) Yes, no Answer: B B) No, no C) Yes, yes D) No, yes 176) f(x) = , g(x) = A) Yes, yes Answer: C 176) B) Yes, no C) No, no D) No, yes 177) 177) f(x) = + 8, g(x) = A) Yes, no Answer: B B) Yes, yes D) No, yes (h ≠ 0) for the function f Simplify completely Determine the difference quotient 178) f(x) = 6x - 15 A) C) No, no 178) B) C) 15 D) -6h Answer: B 179) f(x) = + 8x - 14 A) 16xh + 8h + 179) B) 16x + + 8h C) 8x + + 16h D) 16x + 8 Answer: B 180) f(x) = 13 - A) -2(3 - 3x - h) C) -2( - xh ) 180) B) -2(3 + 3xh + ) D) -39 Answer: B Consider the function h as defined Find functions f and g such that (f ∘ g)(x) = h(x) 181) h(x) = A) f(x) = B) f(x) = , g(x) = x - C) 182) h(x) = 182) A) f(x) = -6 D) f(x) = f(x) = Answer: D , g(x) = , g(x) = -6 , g(x) = - , g(x) = 6x - C) f(x) = x, g(x) = 6x + B) f(x) = , g(x) = 6x + D) f(x) = - , g(x) = 6x + 181) Answer: B 183) 183) h(x) = A) +9 B) f(x) = , g(x) = f(x) = x + 9, g(x) = C) f(x) = Answer: B D) , g(x) = +9 f(x) = x, g(x) = +9 184) 184) h(x) = A) f(x) = 2, g(x) = C) f(x) = Answer: C B) f(x) = , g(x) = D) f(x) = , g(x) = 5x + , g(x) = 5x + 185) h(x) = A) f(x) = C) f(x) = Answer: D 186) h(x) = 186) A) f(x) = -27 C) f(x) = 185) B) f(x) = 4x + 11, g(x) = D) f(x) = , g(x) = 4x + 11 , g(x) = 11 , g(x) = x + 11 + 74, g(x) = B) f(x) = , g(x) = D) f(x) = , g(x) = -27 , g(x) = + 74 Answer: D Solve the problem 187) Regrind, Inc regrinds used typewriter platens The cost to buy back each used platen is $ 1.30 The fixed cost to run the grinding machine is $ 220 per day If the company sells the reground platens for $ 5.30, how many must be reground daily to break even? A) 55 platens B) 169 platens C) 33 platens D) 36 platens Answer: A 187) 188) Northwest Molded molds plastic handles which cost $ 0.10 per handle to mold The fixed cost to run the molding machine is $ 1829 per week If the company sells the handles for $ 1.10 each, how many handles must be molded weekly to break even? A) 1829 handles B) 1219 handles C) 1524 handles D) 18,290 handles Answer: A 188) 189) Midtown Delivery Service delivers packages which cost $ 1.90 per package to deliver The fixed cost to run the delivery truck is $ 96 per day If the company charges $ 5.90 per package, how many packages must be delivered daily to break even? A) 24 packages B) 50 packages C) 12 packages D) 16 packages Answer: A 189) 190) A lumber yard has fixed costs of $ 6166.80 a day and marginal costs of $ 0.77 per board-foot prod daily uced to produced The company gets per board-foot sold How many board-feet must be break even? 190) _ B) 8008 board-feet D) 3426board-feet A) 1846 board-feet C) 2284 board-feet Answer: D 191) Midtown Delivery Service delivers packages which cost $ 1.70 per package to deliver The fixed cost to run the delivery truck is $ 400 per day If the company charges $ 6.70 per package, how many packages must be delivered daily to make a profit of ? A) 235 packages B) 99 packages C) 80 packages D) 47 packages Answer: B 191) 192) The cost of manufacturing clocks is given by C(x) = 75 + 56x Also, it is known that in t hours the number of clocks that can be produced is given by x = 5t, where Express C as a function of t A) C(t) = 75 + 280t B) C(t) = 75 + 56t + 192) C) C(t) = 75 + 280t - 25t Answer: A D) C(t) = 75 + 56t - 193) At Allied Electronics, production has begun on the X-15 Computer Chip The total revenue 193) function is given by and the total cost function is given by , where x represents the number of boxes of computer chips produced The total profit function, P(x), is such that A) P(x) = 0.3 Find P(x) B) P(x) = 0.3 + 45x - 32 C) P(x) = -0 D) P(x) = -0.3 + 45x - 16 + 41x - 48 + 41x + 16 Answer: C 194) At Allied Electronics, production has begun on the X-15 Computer Chip The total revenue function is given by 194) and the total profit function is given by , where x represents the number of boxes of computer chips produced The total cost function, C(x), is such that Find C(x) A) C(x) = 10x + 19 B) C(x) = + 18x + 14 D) C(x) = 11x + 10 C) C(x) = 9x + 14 Answer: C 195) At Allied Electronics, production has begun on the X-15 Computer Chip The total cost function 195) is given by and the total profit function is given by , where x represents the number of boxes of computer chips produced The total revenue function, R(x), is such that A) R(x) = Find R(x) 57x - C) R(x) = 59x Answer: A B) R(x) = 57x + 0.3 D) R(x) = 56x - 196) The radius r of a circle of known area A is given by r = , where Find the radius and circumference of a circle with an area of 16.39 sq ft (Round results to two decimal places.) A) r = 2.28 ft, C = 14.35 sq ft B) r = 2.28 ft, C = 8.86 ft C) r = 2.28 ft, C = 14.35 ft D) r = 5.22 ft, C = 32.78 ft Answer: C 196) 197) The volume of water added to a circular drum of radius r is given by = 15t, where is volume in cu ft and t is time in sec Find the depth of water in a drum of radius ft after adding water for 22 sec (Round result to one decimal place.) A) 23.3 ft B) 3.4 ft C) 11.7 ft D) 36.7 ft Answer: C 197) 198) A retail store buys 215 VCRs from a distributor at a cost of $ 205 each plus an overhead charge of $ 20 per order The retail markup is 45% on the total price paid Find the profit on the sale of one VCR A) $ 92.21 B) $ 92.29 C) $ 9229.19 D) $ 92.25 Answer: B 198) 199) A balloon (in the shape of a sphere) is being inflated The radius is increasing at a rate of cm per second Find a function, r(t), for the radius in terms of t Find a function, V(r), for the volume of the balloon in t erms of r Find (V ∘ r)(t) A) B) 199) (V ∘ r)(t) = (V ∘ r)(t) = C) D) (V ∘ r)(t) = (V ∘ r)(t) = Answer: B 200) A stone is thrown into a pond A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 3.4 feet per second Find a function, r(t), for the radius in terms of t Find a function, A(r), for the area of the ripple in terms of r A) (A ∘ r)(t) = B) (A ∘ r)(t) = 6.8n t C) (A ∘ r)(t) = 3.4n Answer: D D) 200) (A ∘ r)(t) = 11.56n 201) Ken is feet tall and is walking away from a streetlight The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 1.9 feet per second Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time Find a function, , which gives the length of Ken's shadow in terms of d Then find A) (S ∘ d)(t) = 1.43t B) (S ∘ d)(t) = 1.81t C) (S ∘ d)(t) = 3.21t D) (S ∘ d)(t) = 1.05t Answer: A 202) Ken is feet tall and is walking away from a streetlight The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 2.8 feet per second Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time Find a function, , which gives the length of Ken's shadow in terms of d Then find W hat is the meaning of ? A) (S ∘ d)(t) gives the distance Ken is from the streetlight in terms of time B) (S ∘ d)(t) gives the length of Ken's shadow in terms of his distance from the streetlight C) (S ∘ d)(t) gives the time in terms of Ken's distance from the streetlight D) (S ∘ d)(t) gives the length of Ken's shadow in terms of time Answer: D 201) 202) 1) B 2) A 3) A 4) D 5) D 6) C 7) C 8) C 9) C 10) B 11) C 12) D 13) A 14) D 15) A 16) C 17) B 18) B 19) D 20) C 21) D 22) D 23) C 24) B 25) A 26) B 27) C 28) C 29) B 30) D 31) A 32) C 33) B 34) A 35) B 36) A 37) D 38) C 39) D 40) C 41) B 42) D 43) B 44) A 45) D 46) D 47) C 48) C 49) C 50) A 51) A 52) B 53) C 54) B 55) B 56) A 57) D 58) B 59) C 60) B 61) C 62) C 63) C 64) A 65) C 66) B 67) B 68) C 69) B 70) D 71) D 72) B 73) C 74) A 75) A 76) A 77) A 78) B 79) D 80) B 81) B 82) D 83) B 84) C 85) A 86) D 87) A 88) D 89) B 90) B 91) A 92) B 93) D 94) B 95) B 96) D 97) D 98) B 99) D 100) C 101) D 102) A 103) B 104) A 105) D 106) C 107) B 108) B 109) D 110) A 111) D 112) D 113) C 114) D 115) D 116) B 117) A 118) D 119) A 120) D 121) A 122) B 123) D 124) A 125) B 126) D 127) C 128) D 129) A 130) D 131) D 132) C 133) A 134) C 135) C 136) D 137) D 138) B 139) C 140) A 141) D 142) B 143) C 144) D 145) D 146) C 147) D 148) D 149) A 150) D 151) C 152) C 153) A 154) C 155) B 156) 157) 158) 159) 160) 161) 162) 163) 164) 165) 166) 167) 168) 169) 170) 171) 172) 173) 174) 175) 176) 177) 178) 179) 180) 181) 182) 183) 184) 185) 186) 187) 188) 189) 190) 191) 192) 193) 194) 195) 196) 197) 198) 199) 200) 201) 202) C D D B A D B C D D D A D A B C B C D B C B B B B D B B C D D A A A D B A C C A C C B B D A D ... (1, ∞) A) Increasing Answer: A f(x) = ; (3, ∞) A) Increasing Answer: A 26) 27) B) Decreasing 28) B) Decreasing 29) B) Decreasing 30) 30) f(x) = ; (-∞, 0) A) Increasing Answer: A B) Decreasing... 36) 36) A) x-axis, origin Answer: C B) x-axis C) y-axis 37) D) y-axis, origin 37) A) x-axis, origin C) x-axis, y-axis, origin Answer: C B) Origin D) x-axis 38) 38) A) y-axis Answer: D B) x-axis,... Use translations of one of the basic functions to sketch a graph of y = f(x) by hand 81) y= -2 A) B) C) D) Answer: A 82) y= D) y = + A) y = D) y = 81) 82) A) B) C) D) Answer: A 83) y = A) -2 83)

Ngày đăng: 28/02/2019, 14:48

TỪ KHÓA LIÊN QUAN