Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 132 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
132
Dung lượng
1,21 MB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Phạm Hồng Phong MỘT SỐ PHƯƠNG PHÁP TÍNH TỐN DỰA TRÊN TỪ NGƠN NGỮ TRỰC CẢM VÀ ỨNG DỤNG LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2018 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Phạm Hồng Phong MỘT SỐ PHƯƠNG PHÁP TÍNH TỐN DỰA TRÊN TỪ NGƠN NGỮ TRỰC CẢM VÀ ỨNG DỤNG Chuyên ngành: Cơ sở Toán cho Tin học Mã số: 62.46.01.10 LUẬN ÁN TIẾN SĨ TOÁN HỌC Tập thể hướng dẫn khoa học: PGS.TSKH Bùi Công Cường PGS.TS Đỗ Trung Tuấn Hà Nội - 2018 LỜI CAM ĐOAN Tơi xin cam đoan kết trình bày luận án mới, trung thực chưa cơng bố cơng trình khác Những kết viết chung với tác giả khác đồng ý đưa vào luận án Nghiên cứu sinh Phạm Hồng Phong i LỜI CẢM ƠN Luận án hoàn thành Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội, dự hướng dẫn PGS TSKH Bùi Công Cường PGS TS Đỗ Trung Tuấn Tôi xin bày tỏ lòng biết ơn sâu sắc tới Thầy Bùi Công Cường, người định hướng, giúp đỡ tận tình, tỉ mỉ suốt thời gian học tập hồn thành luận án Tơi xin gửi lời cảm ơn chân thành đến Thầy Đỗ Trung Tuấn, người tận tâm hỗ trợ học trò mặt suốt năm làm nghiên cứu sinh, từ ngày bắt đầu có tới thủ tục bảo vệ cuối Học trò chân thành cảm ơn GS TSKH Phạm Thế Long, PGS TS Đặng Văn Chuyết, PGS TS Lê Bá Long, PGS TS Nguyễn Hà Nam, TS Nguyễn Thị Minh Huyền, TS Đỗ Thanh Hà, TS Vũ Như Lân, PGS TS Trần Đình Khang, PGS TS Ngơ Thành Long, PGS TS Nguyễn Hữu Điển, TS Nguyễn Hải Vinh nhiều Thầy Cơ khác đóng góp q báu q trình nghiên cứu hồn thiện luận án Nghiên cứu sinh xin chân thành gửi lời cảm ơn đến Ban Giám hiệu, Phòng Sau đại học, lãnh đạo Khoa Toán - Cơ - Tin học, Thầy Cô Bộ môn Tin học Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội tạo điều kiện thuận lợi để nghiên cứu sinh hồn thành chương trình học tập luận án Tơi xin cảm ơn Ban Giám hiệu, Khoa Công nghệ Thông tin, Bộ mơn Tốn học Trường Đại học Xây dựng nơi công tác bạn bè, đồng nghiệp ln tạo điều kiện, động viên, khuyến khích hỗ trợ tối đa để tơi hồn thành chương trình học tập luận án Tơi xin cảm ơn riêng PGS TS Lê Hoàng Sơn, người bạn thân thiết, đồng hành đường nghiên cứu thời điểm khó khăn Cuối cùng, xin cảm ơn Gia đình ln đồng hành, thường xuyên động viên công việc, học tập nghiên cứu ii Hà Nội, tháng 05 năm 2018 Nghiên cứu sinh Phạm Hồng Phong iii MỤC LỤC Trang Lời cam đoan i Lời cảm ơn ii Mục lục iv Danh sách hình vẽ vi Danh sách bảng vii Danh mục ký hiệu chữ viết tắt xi Mở đầu Chương Tổng quan lý thuyết mờ tính tốn với từ 1.1 Sơ lược lý thuyết mờ mờ trực cảm 1.1.1 Tập mờ, số mờ biến ngôn ngữ 1.1.2 Tập mờ trực cảm giá trị mờ trực cảm 1.2 Toán tử gộp thông tin cho từ 1.2.1 Gộp dựa thứ tự từ 1.2.2 Gộp dựa Nguyên lý Suy rộng 1.2.3 Gộp dựa số từ 1.2.4 Gộp dựa biểu diễn theo cặp ngôn ngữ 1.2.5 Gộp từ với số liên tục 1.2.6 Gộp thơng tin cho từ có yếu tố trực cảm 1.2.7 Ra định với thông tin cho từ 1.3 Phân lớp dựa độ tương tự mờ 1.3.1 Phân lớp liệu 1.3.2 Độ tương tự mờ 1.3.3 Độ tương tự mờ trực cảm 1.4 Kết luận chương iv 7 10 13 13 15 16 18 19 20 25 32 32 33 35 36 Chương Từ trực cảm gộp từ trực cảm 2.1 Tập từ trực cảm số phép toán 2.2 Toán tử gộp từ trực cảm 2.2.1 Giá trị lớn giá trị nhỏ từ trực cảm 2.2.2 Trung vị từ trực cảm 2.2.3 Tổ hợp lồi từ trực cảm 2.2.4 Toán tử OWA cho từ trực cảm 2.2.5 Các toán tử gộp cho từ trực cảm mở rộng 2.2.6 Ứng dụng toán tử gộp cho từ trực cảm vào toán định 2.3 So sánh từ trực cảm với giá trị ngôn ngữ trực cảm số ngôn ngữ trực cảm 2.3.1 So sánh phương diện lý thuyết 2.3.2 So sánh phương diện thực hành 2.4 Kết luận chương 37 38 42 42 44 46 48 50 53 59 59 68 71 Chương Một số độ tương tự ứng dụng vào tốn phân lớp thơng tin 73 3.1 Độ tương tự từ, độ tương tự véc-tơ từ ứng dụng 74 3.1.1 Độ tương tự từ 75 3.1.2 Độ tương tự véc-tơ từ 76 3.1.3 Ứng dụng cho tốn phân lớp với thơng tin cho từ 81 3.2 Độ tương tự giá trị mờ trực cảm, độ tương tự véc-tơ mờ trực cảm ứng dụng 85 3.2.1 Độ tương tự giá trị mờ trực cảm 86 3.2.2 Độ tương tự véc-tơ mờ trực cảm 87 3.2.3 Ứng dụng cho toán phân lớp 88 3.3 Thực nghiệm 93 3.3.1 Thực nghiệm với liệu Car Evaluation 95 3.3.2 Thực nghiệm với liệu Mushroom 98 3.3.3 Thực nghiệm với liệu Iris 99 3.4 Kết luận chương 102 Kết luận kiến nghị 108 Danh mục cơng trình khoa học tác giả liên quan đến luận án 111 Tài liệu tham khảo 112 v Danh sách hình vẽ 1.1 Biến ngôn ngữ “Heịght” 11 1.2 Tập từ mở rộng 20 1.3 Các bước toán định tập thể 26 1.4 CW toán đinh tập thể 26 2.1 So sánh thời gian thực thi (giây) Quy trình 1.1 2.1 Trục hoành thể số phương án (đồng thời số chuyên gia), trục tung thể thời gian tính tốn (tính giây) 70 2.2 So sánh thời gian thực thi (giây) Quy trình 1.2 2.2 Trục hoành thể số phương án (cũng số tiêu chí, số chuyên gia), trục tung thể thời gian tính tốn (tính giây) 71 3.1 So sánh thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Car Evaluation Trục tung thể giá trị số recall, fp-rate, precision f-measure (lấy trung bình lớp) với đơn vị phần trăm (%) 97 3.2 So sánh thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Mushroom Trục tung thể giá trị số recall, fp-rate, precision f-measure (lấy trung bình lớp) với đơn vị phần trăm (%) 99 3.3 So sánh thuật toán LCA IFVSM với thuật toán NFS, RBFNN ANFIS liệu Iris Trục tung thể giá trị số recall, fp-rate, precision f-measure (lấy trung bình lớp) với đơn vị phần trăm (%) 101 vi Danh sách bảng 1.1 Ma trận định R1 30 1.2 Ma trận định R2 31 1.3 Ma trận định R3 31 1.4 αik nằm hàng i, cột k đánh giá tổng hợp chuyên gia dk phương án xi (i = 1, 2, 3, 4; k = 1, 2, 3) 31 2.1 2.2 2.3 2.4 Ma trận định P˜1 Ma trận định P˜2 Ma trận P˜ Ma trận định R˜ 55 55 55 57 2.6 Ma trận định R˜ 57 Ma trận định R˜ 58 2.7 Đánh giá tổng hợp α˜ ik phương án xi cho chuyên gia dk (i = 2.5 1, 2, 3, 4; k = 1, 2, 3) 58 2.8 So sánh thời gian thực thi (giây) Quy trình 1.1 2.1 69 2.9 So sánh thời gian thực thi (giây) Quy trình 1.2 2.2 70 3.1 Bộ liệu Car Evaluation 74 3.2 Ví dụ cho thuật tốn LCA 84 3.3 Ví dụ cho thuật tốn IFVSM 91 3.4 Gán nhãn cho liệu Car Evaluation 96 3.5 So sánh thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Car Evaluation 97 3.6 So sánh chi tiết thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Car Evaluation (%) 104 3.7 Bộ liệu Mushroom 105 vii 3.8 So sánh thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Mushroom 105 3.9 So sánh chi tiết thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Mushroom (%) 106 3.10 So sánh thuật toán LCA IFVSM với thuật toán NFS, RBFNN ANFIS liệu Iris 106 3.11 So sánh chi tiết thuật toán LCA IFVSM với thuật toán NFS, RBFNN ANFIS liệu Iris (%) 107 viii Bảng 3.7: Bộ liệu Mushroom Thuộc tính Giá trị Cap Color green, purple, cinnamon, white, gray, brown, red, pink, yellow, bu f f Odor almond, anise, none, creosote, f ishy, f oul, musty, pungent, spicy Stalk Surface Below Ring f ibrous, scaly, smooth, silky Stalk Color Above Ring gray, orange, red, white, pink, brown, cinnamon, bu f f , yellow Spore Print Color bu f f , orange, purple, yellow, brown, black, white, chocolate, green Habitat waste, meadows, grasses, woods, leaves, urban, paths Edible or Poisonous edible (51.8%), poisonous (48.2%) Bảng 3.8: So sánh thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Mushroom Thuật toán accuracy(%) RMSE LCA 100 0.0000 NFS 99.8 0.0792 RBFNN 98.2 0.1316 ANFIS 95.4 0.1873 105 Bảng 3.9: So sánh chi tiết thuật toán LCA với thuật toán NFS, RBFNN ANFIS liệu Mushroom (%) Thuật toán Các phân lớp recall fp-rate precision f-measure LCA Edible 100 100 100 Poisonous 100 100 100 Trung bình có trọng số 100 100 100 Edible 99.9 2.1 99.9 99.9 Poisonous 99.8 1.3 99.8 99.8 Trung bình có trọng số 99.8 1.2 99.8 99.8 Edible 98.9 2.7 97.5 98.2 Poisonous 97.3 1.1 98.8 98.1 Trung bình có trọng số 97.3 3.1 97.2 97.2 Edible 99.3 8.8 92.4 95.7 Poisonous 91.2 0.7 99.2 95.0 Trung bình có trọng số 95.4 4.9 95.6 95.4 NFS RBFNN ANFIS Bảng 3.10: So sánh thuật toán LCA IFVSM với thuật toán NFS, RBFNN ANFIS liệu Iris Thuật toán accuracy (%) RMSE LCA 94.6 0.2202 IFVSM 95.8 0.1948 NFS 96.7 0.1415 RBFNN 83.3 0.3333 ANFIS 95.5 0.2897 106 Bảng 3.11: So sánh chi tiết thuật toán LCA IFVSM với thuật toán NFS, RBFNN ANFIS liệu Iris (%) Thuật toán Các phân lớp recall fp-rate precision f-measure LCA Iris-setosa 100 100 100 Iris-versicolor 94.4 5.1 90.4 92.1 Iris-virginica 89.7 2.9 93.8 91.5 Trung bình có trọng số 94.6 2.6 95.0 94.6 Iris-setosa 100 100 100 Iris-versicolor 94.4 3.5 93.0 93.5 Iris-virginica 92.9 2.7 94.2 93.4 Trung bình có trọng số 95.8 2.0 96.0 95.8 Iris-setosa 99.9 0.7 98.9 99.9 Iris-versicolor 99.8 1.5 90.9 95.2 Iris-virginica 88.9 2.9 89.9 94.1 Trung bình có trọng số 96.7 2.3 97.0 96.6 Iris-setosa 99.9 0.7 99.9 99.9 Iris-versicolor 52.9 0.5 99.9 66.7 Iris-virginica 99.9 23.8 64.3 78.3 Trung bình có trọng số 83.3 7.1 89.3 82.4 Iris-setosa 99.9 0.7 99.9 99.9 Iris-versicolor 99.8 6.9 88.9 94.1 Iris-virginica 86.7 0.5 99.9 92.9 Trung bình có trọng số 95.6 3.7 96.0 95.5 IFVSM NFS RBFNN ANFIS 107 KẾT LUẬN VÀ KIẾN NGHỊ Luận án liên quan đến cơng trình khoa học tác giả, bao gồm đóng góp sau Nghiên cứu quy trình gộp thơng tin cho từ, có yếu tố trực cảm Trong phần này, tác giả luận án đề xuất khái niệm từ trực cảm (ILL) Các toán tử gộp ILL cung cấp sở lý thuyết cho tốn định với thơng tin từ có yếu tố trực cảm biểu diễn dạng ILL Khi so sánh ILL với biểu diễn thơng tin cho từ có yếu tố trực cảm giá trị ngôn ngữ trực cảm (ILV) số ngơn ngữ trực cảm (ILN), ta thấy: • Thứ nhất, khái niệm ILL tương đương với ILV ILN Điều có nghĩa là, tốn định, thay ILV hay ILN, ta hồn tồn dùng ILL; • Thứ hai, toán định, sử dụng ILL cho kết hoàn toàn tương tự thời gian ngắn so với ILV hay ILN Đề xuất độ tương tự từ véc-tơ từ Các khái niệm sử dụng để xây dựng thuật toán LCA (linguistic classification algorithm) giúp phân loại thông tin cho từ LCA thực nghiệm liệu rời rạc có thứ tự, liệu rời rạc chưa có thứ tự liệu liên tục Đưa độ tương tự giá trị mờ trực cảm véc-tơ mờ trực cảm Thuật toán IFVSM (Intuitionistic Fuzzy Vector Similarity Measure Based Classification Algorithm) đề xuất ứng dụng tốn phân lớp với thơng tin liên tục Trên sở kết đạt nghiên cứu liên quan đến luận án, nghiên cứu sinh tiếp tục hoàn thiện mở rộng kết theo hướng sau 108 Trước hết vấn đề chưa giải mặt thực nghiệm Chương Trong q trình tính tốn có sai số, dẫn đến quy trình cho kết khác so với lý thuyết Đánh giá, so sánh sai số dùng ILL, ILV ILN quy trình định làm cho nghiên cứu đầy đủ thuyết phục Đây vấn đề tồn đọng, cần giải tiếp Vẫn Chương 2, tác giả nhận thấy hạn chế ILL so sánh với ILN Đối với ILN, tập từ S đóng vai trò khơng gian Còn ILL, tập từ S lại miền chân lý, thể độ thuộc độ không thuộc Do đó, ILN ILL, khó có tương đương nghĩa có tương đương mặt toán học Câu hỏi đặt là, tập S phải thỏa mãn điều phải xây dựng tập S để chuyển ILN thành ILL, ILL có nghĩa Đây vấn đề chưa xem xét luận án cần nghiên cứu tiếp Trong thuật toán LCA IFVSM (Chương 3), vấn đề cần nghiên cứu tiếp phân tích liên quan các tham số thuật toán (các độ đo, số k) với liệu cần phân lớp, từ xây dựng phương pháp hiệu để xác định độ tương tự k thích hợp với liệu Cũng Chương 3, ta thấy thiếu tổng quát áp dụng thuật toán LCA IFVSM để phân lớp liệu Như nêu Nhận xét 3.2 (Trang 96), 3.3 (Trang 98) 3.4 (Trang 101), với liệu, tùy vào đặc tính nó, ta lại có cách thực thi thuật toán khác liên quan đến việc gán nhãn cho giá trị thuộc tính Vấn đề gán nhãn cho liệu thực cần phải tiếp tục nghiên cứu sâu Việc gán nhán thuận với thông tin cho từ tổng quát thơng tin có thứ tự Bài tốn phân lớp liệu với đặc trưng phi tuyến vượt ngồi phạm vi ứng dụng thuật tốn đưa luận án Vẫn Chương 3, với thuật toán IFVSM, ta chuyển giá trị thực thành véc-tơ mờ trực cảm Việc chuyển thực thông qua biến ngôn ngữ, từ biến ngôn ngữ gán với cặp 109 hàm: hàm thuộc hàm không thuộc số mờ dạng hình thang Ta cần bàn thêm số điểm sau: • Nên chọn biến ngơn ngữ có từ; • Hàm thuộc hàm không thuộc ứng với từ nên chọn Luận án cố định biến ngôn ngữ thực thi thuật toán IFVSM, chưa bàn tới ảnh hưởng việc chọn biến ngôn ngữ đến chất lượng thuật toán Tương tự, áp dụng thuật tốn LCA cho liệu Iris, chúng tơi chuyển liệu số thành từ nhờ hàm LABEL [5] Việc sử dụng hàm chuyển khác phân tích ảnh hưởng tới chất lượng thuật tốn chưa quan tâm tới Đây vấn đề cần nghiên cứu thêm 110 DANH MỤC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN CT B C Cuong, P H Phong, New composition of intuitionistic fuzzy relations, Advances in Intelligent Systems and Computing 244, 123-136, 2014 (Proceedings of the Fifth International Conference KSE 2013, Springer) CT B C Cuong, P H Phong, Max - composition of linguistic intuitionistic fuzzy relations and application in medical diagnosis, VNU Journal of Science: Computer Science and Communication Engineering 30 (4), 57-65, 2014 CT D T Tuan, P H Phong, R T Ngan, Linguistic Approach in Medical Diagnosis, Proceedings of the Eighth International Conference on Knowledge and Systems Engineering, 37-42, 2016 (IEEE) CT L H Son, P H Phong, On the performance evaluation of intuitionistic vector similarity measures for medical diagnosis, Journal of Intelligent and Fuzzy Systems 31 (3), 1597-1608, 2016 (SCIE) CT P H Phong, B C Cuong, Some intuitionistic linguistic aggregation operators, Journal of Computer Science and Cybernetics 30 (3), 216-226, 2014 CT P H Phong, B C Cuong, Symbolic computational models for intuitionistic linguistic information, Journal of Computer Science and Cybernetics 32 (1), 30-44, 2016 CT P H Phong, B C Cuong, L T T Thuy, Intuitionistic linguistic label: an equivalent form of intuitionistic linguistic number, Proceedings of the 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science, 119-124, 2016 (IEEE) CT P H Phong, B C Cuong, Multi-criteria Group Decision Making with Picture Linguistic Numbers, VNU Journal of Science: Computer Science and Communication Engineering 32 (3), 38-51, 2016 CT P H Phong, L H Son, Linguistic vector similarity measures and applications to linguistic information classification, International Journal of Intelligent Systems 32 (1), 67-81, 2017 (SCIE) 111 Tài liệu tham khảo [1] L Abdullah, L Najib, A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process, Expert Systems with Applications 41 (7), 3297-3305, 2014 [2] K T Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96, 1986 [3] L Baccour, A M Alimi, R I John, Some Notes on Fuzzy Similarity Measures and Application to Classification of Shapes, Recognition of Arabic Sentences and Mosaic, IAENG International Journal of Computer Science 41 (2), 81-90, 2014 [4] L Baccour, A M Alimi, R I John, Intuitionistic Fuzzy Similarity Measures and Their Role in Classification, Journal of Intelligent Systems 25 (2), 221-237, 2016 [5] G Bordogna, G Pasi, A fuzzy linguistic approach generalizing boolean information retrieval: a model and its evaluation, Journal of the American Society for Information Science 44 (2), 70-82, 1993 [6] P P Bonissone, K S Decker, Selecting uncertainty calculi and granularity: An experiment in trading-off precision and complexity, in: Uncertainty in artificial intelligence (Eds L H Kanal and J F Lemmer), Amsterdam: NorthHolland, 217-247, 1986 [7] K S Candan, W S Li, M L Priya, Similarity-based ranking and query processing in multimedia databases, Data & Knowledge Engineering 35, 259-298, 2000 [8] P Chang, Y Chen, A fuzzy multicriteria decision making method for technology transfer strategy selection in biotechnology, Fuzzy Sets and Systems 63, 131-139, 1994 112 [9] S M Chen, J M Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems 67, 163-172, 1994 [10] Z C Chen, P H Liu, Z Pei, An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers, International Journal of Computational Intelligence Systems (4), 747 - 760, 2015 [11] F Chiclana, F Herrera, E Herrera-Viedma, Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations, Fuzzy Sets and Systems 122, 277-291, 2001 [12] B C Cuong, On group decision making under linguistic assessments, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (4), 301-308, 1999 [13] B C Cuong, D T Long, N T Huy, P H Phong, New computing procedure in multi-criteria analysis, using fuzzy collective solution, Proceeding of The 10th International Conference on Intelligent Technologies, Guangxi Normal University, Guilin, China, Dec 12-15, 2009 [14] B C Cuong, V Kreinovich, Picture fuzzy sets - a new concept for computational intelligence problems, Proceedings of The 3rd world congress on information and communication technologies, 1-6, 2013 [15] M Delgado, J L Verdegay, M A Vila, On aggregation operators of linguistic labels, International Journal of Intelligent Systems 8, 351-370, 1993 [16] M Delgado, F Herrera, E Herrera-Viedma, Combining numerical and linguistic information in group decision making, Information Sciences 107, 177-194, 1998 [17] S Ghosh, S Biswas, D.Sarkar, P P Sarkar, A novel Neuro-fuzzy classification technique for data mining, Egyptian Informatics Journal 15, 129-147, 2014 [18] F Herrera, J L Verdegay, Linguistic assessments in group decision, in: Proceedings of the First European Congress on Fuzzy and Intelligent Technologies, Aachen, 941-948, 1993 113 [19] F Herrera, E Herrera-Viedma, Aggregation operators for linguistic weighted information, IEEE Transactions on Systems, Man, and Cybernetics-Part A 27, 646-656, 1997 [20] F Herrera F, L Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Transactions on Fuzzy Systems 8, 746-752, 2000 [21] F Herrera , E Herrera-Viedma, Choice functions and mechanisms for linguistic preference relations, European Journal of Operational Research 120, 144-161, 2000 [22] F Herrera, E Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems under lingusitic information, Fuzzy Sets and Systems 115, 6782, 2000 [23] E Herrera-Viedma, Modelling the retrieval process for an information retrieval system using an ordinal fuzzy linguistic approach, Journal of the American Society for Information Science and Technology 52 (6), 460-475, 2001 [24] D H Hong, C H Choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems 114, 103-113, 2000 [25] V T Hue, H T M Chau, P H Phong, Fuzzy Linguistic Number and Fuzzy Linguistic Vector: New Concepts for Computational Intelligence, Proc of 4th INDIA 2017, 806-815, 2017 (Springer) [26] V T Hue, P H Phong, Similarity measures for intuitionistic linguistic numbers, intuitionistic linguistic vectors and application, Proceedings of the 4th National Foundation for Science and Technology Development Conference on Information and Computer Science, 1-6, 2017 (IEEE) [27] V T Hue, P H Phong, On integration linguistic factors to fuzzy similarity measures and intuitionistic fuzzy similarity measures, International Journal of Synthetic Emotions, 2018 (accepted) [28] K J Hunt , R Haas, R Murray-Smith, Extending the functional equivalence of radial basis function networks and fuzzy inference systems, IEEE Trans Neural Networks (3), 776-781, 1996 114 [29] C M Hwang, M S Yang, W L Hung, M G Lee, A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition, Information Sciences 189, 93-109, 2012 [30] SR Jang , CT Sun , E Mizutani, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, USA: Prentice Hall, 333-393, 1997 [31] P Julian, K C Hung, S J Lin, On the Mitchell similarity measure and its application to pattern recognition, Pattern Recognition Letters 33, 1219-1223, 2012 ă Ucal, S E Turanoglu, [32] C Kahramana, B Oztaysia, I Fuzzy analytic hierarchy ˇ process with interval type-2 fuzzy sets, Knowledge-Based Systems 59, 48-57, 2014 [33] G J Klir, B Yuan, Fuzzy sets and fuzzy logic: theory and applications, published by Prentice Hall PTR, 1995 [34] C K Law, Using fuzzy numbers in educational grading systems, Fuzzy Sets and Systems 83, 311-323, 1996 [35] H M Lee, Applying fuzzy set theory to evaluate the rate of aggregative risk in software development, Fuzzy Sets and Systems 80, 323-336, 1996 [36] P D Liu, X Y Qin, Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple attribute decision making, Journal of Experimental & Theoretical Artificial Intelligence 29 (6), 1173-1202, 2017 [37] P D Liu, P Wang, Some Improved Linguistic Intuitionistic Fuzzy Aggregation Operators and Their Applications to Multiple-Attribute Decision Making, International Journal of Information Technology & Decision Making 16 (3), 817-850, 2017 [38] J M Mendel, A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words, Granular Computing (1), 59-69, 2016 115 [39] S C Ngan, A type-2 linguistic set theory and its application to multi-criteria decision making, Computers & Industrial Engineering 64, 721-730, 2013 [40] R X Nie, J Q Wang, L Li, A shareholder voting method for proxy advisory firm selection based on 2-tuple linguistic picture preference relation, Applied Soft Computing 60, 520-539, 2017 [41] R M Rodríguez, L Martínez, F Herrera, Hesitant fuzzy linguistic terms sets for decision making, IEEE Transactions on Fuzzy Systems 20, 109-119, 2012 [42] E Szmidt, J Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Notes on intuitionistic fuzzy sets 10 (4), 61-69, 2004 [43] T Tanino, On Group Decision Making Under Fuzzy Preferences, in: Multiperson Decision Making Using Fuzzy Sets and Possibility Theory, J Kacprzyk and M Fedrizzi (Eds.), Kluwer Academic Publishers, Dordrecht, 172-185, 1990 [44] V Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems 25 (6), 529-539, 2010 [45] I B Turksen , Z Zhong, An approximate analogical reasoning approach based on similarity measures, IEEE Transactions on Systems, Man, and Cybernetics 18, 1049-1056, 1988 [46] J Q Wang, H B Li, Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers, Control and Decision 25 (10), 1571-1574, 1584, 2010 [47] X F Wang, J Q Wang, W E Yang, Multi-criteria group decision making method based on intuitionistic linguistic aggregation operators, Journal of Intelligent and Fuzzy Systems 26, 115-125, 2014 [48] J Wang, J Q Wang, H Y Zhang, X H Chen, Multi-criteria decision-making based on hesitant fuzzy linguistic term sets: An outranking approach, KnowledgeBased Systems 86, 224-236, 2015 116 [49] H Wang, Z S Xu, X J Zeng, Hesitant fuzzy linguistic term sets for linguistic decision making: Current developments, issues and challenges, Information Fusion 43, 1-12, 2018 [50] C P Wei , N Zhao, X J Tang, Operators and Comparisons of Hesitant Fuzzy Linguistic Term Sets, IEEE Transactions on Fuzzy Systems 22 (3), 575 - 585, 2014 [51] G W Wei, Picture 2-Tuple Linguistic Bonferroni Mean Operators and Their Application to Multiple Attribute Decision Making, International Journal of Fuzzy Systems 19 (4), 997-1010, 2017 [52] M M Xia, Z .S Xu, Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 21, 865-897, 2013 [53] Z S Xu, Uncertain Multiple Attribute Decision Making: Methods and Applications, Tsinghua University Press, Beijing, China, 2004 [54] Z S Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Information Sciences 166, 19-30, 2004 [55] Z S Xu, An overview of methods for determining OWA weights, International Journal of Intelligent Systems 20, 843-865, 2005 [56] Z S Xu, On generalized induced linguistic aggregation operators, International Journal of General Systems 35, 17-28, 2006 [57] Z S Xu, R R Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General Systems 35, 417-433, 2006 [58] Z S Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems 15, 1179-1187, 2007 [59] Z S Xu, Intuitionistic preference relations and their application in group decision making, Information Sciences 177, 2363-2379, 2007 117 [60] Z S Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optimum Decision Making 6, 109121, 2007 [61] R R Yager, A new methodology for ordinal multi objective decisions based on fuzzy sets, Decision Sciences 12, 589-600, 1981 [62] R R Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transactions on Systems, Man, and Cybernetics 18, 183-190, 1988 [63] R R Yager, Applications and extensions of OWA aggregations, International Journal of Man-Machine Studied 37, 103-132, 1992 [64] R R Yager, L S Goldstein, E Mendels, FUZMAR: An approach to aggregating market research data based on fuzzy reasoning, Fuzzy Sets and Systems 68, 1-11, 1994 [65] R R Yager, An approach to ordinal decision making, International Journal of Approximate Reasoning 12, 237-261, 1995 [66] R R Yager, A Rybalov, Understanding the median as a fusion operator, International Journal of General Systems 26, 239-263, 1997 [67] R R Yager, Fusion of ordinal information using weighted median aggregation, International Journal of Approximate Reasoning 18, 35-52, 1998 [68] L A Zadeh, Fuzzy sets, Information and Control 8, 338-353, 1965 [69] L A Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics SMC3(1), 28-44, 1973 [70] L A Zadeh, The concept of a linguistic variable and its application to approximate reasoning – I, Information Information Sciences 8, 199-249, 1975 [71] Y Zhang, H X Ma, B H Liu, J Liu, Group decision making with 2-tuple intuitionistic fuzzy linguistic preference relations, Soft Computing 16, 1439-1446, 2012 118 [72] M Bohanec’s Data, 1997 (http://archive.ics.uci.edu/ml/machine-learningdatabases/car/car.data) [73] J Schlimmer’s Data, 1987 (http://archive.ics.uci.edu/ml/machine- learning-databases/mushroom/agaricus-lepiota.data) [74] R A Fisher’s Data, 1988 (http://archive.ics.uci.edu/ml/machine-learningdatabases/iris/iris.data) 119 ... Chương Từ trực cảm gộp từ trực cảm 2.1 Tập từ trực cảm số phép toán 2.2 Toán tử gộp từ trực cảm 2.2.1 Giá trị lớn giá trị nhỏ từ trực cảm 2.2.2 Trung vị từ trực. .. gộp cho từ trực cảm vào toán định 2.3 So sánh từ trực cảm với giá trị ngôn ngữ trực cảm số ngôn ngữ trực cảm 2.3.1 So sánh phương diện... xạ từ tập ILV (Π) sang tập ILL (S) F (X) Họ tất tập mờ X h Điểm (của giá trị mờ trực cảm, từ trực cảm số ngôn ngữ trực cảm, tùy trường hợp) H Độ chắn (của giá trị mờ trực cảm, từ trực cảm số ngôn