2 Gọi M trung điểm CD a 10 SO.OM MC = 48 SG = = SM Khi VS OCM = VS OCG VS OCM a 10 S OMC = 72 2 b) Ta có d (G , ( SBC )) = d ( M , ( SBC )) = d (O, ( SBC )) 3 Gọi H trung điểm BC , K hình chiếu vng góc O SH 1 4 22 Ta có = + = 2+ = 2 2 OK OH OH a 10a 5a Suy S OGC = d (O, ( SBC )) = OK = a 110 22 a 110 d (G , ( SBC )) = d (O, ( SBC )) = 33 c) Gọi I giao điểm BD AM , I tam tam giác ADC Suy IG / / SA nên góc hai đường thẳng SA BG góc hai đường thẳng IG BG a 2a a 11 Ta có IG = SA = ; BI = ; BG = 3 3 BG + IG − BI 33 cos IGB = = 2.BG.IG 11 Ta tọa độ hóa Câu 5: (2,0 điểm) Cho phương trình (m + 2) x ( x +1) − x + (m − 6) x −1 = (1) Tìm giá trị m để phương trình (1) có nghiệm thực Cho đa thức f ( x) = x + ax + bx + ax +1 có nghiệm thực Chứng minh a + b − 4b + > Lời giải Điều kiện: x ≥ - Với x = phương trình vơ nghiệm - Với x > , phương trình (1) ⇔ ( m + ) Đặt t = x2 + x2 + − +m−6 = x x t ≥ x2 + ⇒ x2 + ; x t = x Ta phương trình theo ẩn phụ: ( m + ) t − t + m − = ⇔ t − 2t + = m ( 2) t +1 ) Yêu cầu toán ⇔ ( ) có nghiệm 2; +∞ Xét hàm số f ( t ) = t = −4 ( l ) t − 2t + t + 2t − ⇒ f ′ (t ) = =0⇔ t +1 ( t + 1) t = Bảng biến thiên x y' –∞ -4 + +∞ –– + +∞ y Vậy phương trình có nghiệm ⇔ m ≥ Giả sử đa thức cho có nghiệm trường hợp a + b − 4b +1 ≤ a + b − 4b + ≤ ⇔ a + (b − 2) ≤ (1) Vì x = khơng phải nghiệm phương trình f ( x) = nên 1 1 1 1 x + ax + bx + ax + = ⇔ x + + a x + + b = ⇔ x + + a x + + b − = x x x x Đặt t = x + phương trình có nghiệm t + at + b − = có nghiệm x thoả mãn t ≥ Xét hàm số g (t ) = t + at + b − g ′ (t ) = 2t + a ; g ′ (t ) = ⇔ t = −a −a Như (1) ∉ (−2; 2) 2 Do ta có bảng biến thiên: −2a + b + ≤ (2) Phương trình có nghiệm 2a + b + ≤ (3) Những điểm M (a; b) thoả (1) nằm bên biên đường tròn tâm I (0; 2) bán kính Những điểm N ( a; b) thoả mãn (2) (3) điểm thuộc phần không chứa gốc tạo độ −2 x + y + = đường thẳng x + y + = Những phần theo hình vẽ khơng có điểm chung, ta có mâu thuẫn Ta có điều phải chứng minh: Nếu thức cho có nghiệm a + b − 4b + > Chú ý: Bài giải nhanh sau: 2 t + at + b − = ⇔ t = −at + − b ⇒ t = (−at + − b) ≤ a + (b − 2) (1 + t ) t −1 ⇒ a + (b − 2) > = t −1 ≥ ⇒ a + b − 4b + > t +1 ... ) = t = −4 ( l ) t − 2t + t + 2t − ⇒ f ′ (t ) = =0⇔ t +1 ( t + 1) t = Bảng biến thi n x y' – -4 + +∞ – – + +∞ y Vậy phương trình có nghiệm ⇔ m ≥ Giả sử đa thức cho có nghiệm trường hợp a... −a Như (1) ∉ (−2; 2) 2 Do ta có bảng biến thi n: −2a + b + ≤ (2) Phương trình có nghiệm 2a + b + ≤ (3) Những điểm M (a; b) thoả (1) nằm bên biên đường tròn tâm I (0; 2) bán kính Những