Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 113 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
113
Dung lượng
2,26 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN NGHĨA NGHIÊNCỨUTÍNHCHẤTQUANGCỦACẤUTRÚCMỘTCHIỀUZnSCHẾTẠOBẰNGPHƯƠNGPHÁPBỐCBAYNHIỆTLUẬNÁNTIẾNSĨ KHOA HỌC VẬT LIỆU Hà Nội - 2018 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN NGHĨA NGHIÊNCỨUTÍNHCHẤTQUANGCỦACẤUTRÚCMỘTCHIỀUZnSCHẾTẠOBẰNGPHƯƠNGPHÁPBỐCBAYNHIỆT Ngành: Khoa học vật liệu Mã số: 9440122 LUẬNÁNTIẾNSĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN DUY HÙNG TS NGUYỄN DUY CƯỜNG Hà Nội - 2018 LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiêncứu riêng hướng dẫn Tiếnsĩ Nguyễn Duy Hùng Tiếnsĩ Nguyễn Duy Cường Các kết nghiêncứuluậnán trung thực, xác, khách quan chưa cơng bố tác giả Thay mặt tập thể hướng dẫn Hà Nội, ngày tháng năm 2018 Nghiêncứu sinh Nguyễn Văn Nghĩa TS Nguyễn Duy Hùng i LỜI CẢM ƠN Dân tộc ta có câu “Khơng thầy đố mày làm nên” Lời đầu tiên, từ đáy lòng em xin chân thành cảm ơn tập thể hướng dẫn: Tiếnsĩ Nguyễn Duy Hùng Tiếnsĩ Nguyễn Duy Cường, người thầy bên hỗ trợ em suốt bốn năm nhà AIST yêu dấu Tiến sỹ Nguyễn Duy Hùng người định hướng đường khoa học cho em, theo sát trình học tập, thí nghiệm, cung cấp cho em kiến thức khoa học hổng, đặt yêu cầu khắt khe ln khuyến khích em sáng tạo, tìm khoa học Tiến sỹ Nguyễn Duy Cường với góp ý sâu sắc phươngphápnghiêncứu Các thầy gương sáng cho em học hỏi tác phong khoa học, kiến thức chuyên ngành, nhiệt huyết nghiêm túc công việc Em bày tỏ biết ơn đến tất thầy cô Viện Tiêntiến Khoa học Công nghệ (AIST), Trường Đại học Bách Khoa Hà Nội dạy dỗ giúp đỡ em suốt thời gian học tập Viện Đặc biệt, em bày tỏ kính yêu cảm ơn đến PGS.TS Phạm Thành Huy, thầy người em gặp Viện người trao cho em hội để vào nhóm nghiêncứu TS Nguyễn Duy Hùng Để có kết nghiêncứu này, không kể đến giúp đỡ tạo điều kiện tối đa quan em công tác Em xin gửi lời cảm ơn sâu sắc đến Ban Giám hiệu Trường Đại học Thủy Lợi, Phòng Tổ chức cán bộ, Phòng Tài vụ, Ban chủ nhiệm khoa Năng lượng toàn thể anh chị em đồng nghiệp môn Vật lý hỗ trợ em vật chấttinh thần, tạo điều kiện cho em xếp cơng việc hài hòa giảng dạy nghiên cứu, giúp em có đủ thời gian để hồn thành luậnán Nếu khơng có hậu phương vững thật khó có chiến thắng vẻ vang Xin cảm ơn gia đình nội ngoại hai bên ln động viên em suốt thời gian nghiêncứu Đặc biệt, hy sinh thầm lặng người bạn phòng Nguyễn Thị Huyền Anh Người ta nói đằng sau thành cơng người đàn ơng ln có bóng dáng người phụ nữ, câu nói thật Cảm ơn Huyền Anh hai Nguyễn Nguyên Phong Nguyễn Nguyên Thăng, người vừa điểm tựa, vừa chất xúc tác cho nỗ lực phấn đấu em sống Sẽ không trọn vẹn thiếu lời cảm ơn gửi tới bạn bè anh chị em đồng môn Em xin bày tỏ biết ơn đến Tiếnsĩ Đỗ Quang Trung, người anh trước, vơ tư, nhiệt tình, cho em động tác thí nghiệm ngày đầu bỡ ngỡ Anh người thầy thứ ba hướng dẫn em bước đường nghiêncứu khoa học Xin cảm ơn anh chị em ii nghiêncứu sinh, học viên cao học, sinh viên Viện AIST đồng hành em bước đường nghiên cứu, cho em giây phút ấm cúng năm tháng quên Em xin gửi lời cảm ơn đến bạn bè ngồi Viện ln động viên em suốt trình học tập, nghiêncứu sống Hà Nội, ngày tháng năm 2018 Tác giả luậnán Nguyễn Văn Nghĩa iii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii DANH MỤC KÝ TỰ VIẾT TẮT vii DANH MỤC CÁC BẢNG viii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ viii MỞ ĐẦU 1 Lý chọn đề tài Nhiệm vụ nghiêncứu 3 Phươngphápnghiêncứu Ý nghĩa khoa học đề tài Những đóng góp luậnán Bố cục luậnán CHƯƠNG 1: TỔNG QUAN VỀ CÁC CẤUTRÚC THẤP CHIỀUZnS 1.1 Giới thiệu chung vật liệu ZnS 1.2 Các phươngphápchếtạocấutrúc thấp chiềuZnS 1.2.1 Các phươngpháp hóa học 1.2.2 Các phươngpháp vật lý 10 1.2.3 Cơ chế mọc cấutrúc thấp chiềuchếtạophươngphápbốcbaynhiệt 11 1.3 Tínhchấtquangcấutrúc thấp chiềuZnS 14 1.3.1 Phát xạ vùng - vùng cấutrúc thấp chiềuZnS 14 1.3.2 Các phát xạ vùng nhìn thấy cấutrúc thấp chiềuZnS 16 1.4 Tínhchấtquangcấutrúc nano lai hóa ZnS với ZnO 19 1.5 Tínhchấtquangcấutrúc thấp chiềuZnS pha tạp kim loại chuyển tiếp 21 1.6 Kết luận chương 24 CHƯƠNG 2: PHƯƠNGPHÁPBỐCBAYNHIỆT VÀ MỘT SỐ PHƯƠNGPHÁP KHẢO SÁT CÁC ĐẶC TÍNHCỦA VẬT LIỆU 27 iv 2.1 Phươngphápbốcbaynhiệt 27 2.2 Phươngpháp đo phổ huỳnh quang (PL) phổ kích thích huỳnh quang (PLE) 29 2.3 Phươngpháp đo giản đồ nhiễu xạ tia X (XRD) 29 2.4 Phươngpháp đo phổ tán xạ Raman 31 2.5 Phươngpháp chụp ảnh nhờ kính hiển vi điện tử truyền qua (TEM) 32 2.6 Phươngpháp chụp ảnh nhờ kính hiển vi điện tử quét (SEM) 32 2.7 Phổ tán sắc lượng tia X (EDS) 33 2.8 Phổ quang điện tử tia X (XPS) 33 2.9 Kết luận chương 35 CHƯƠNG 3: NGHIÊNCỨU ẢNH HƯỞNG CỦA CÁC ĐIỀU KIỆN CHẾTẠO LÊN TÍNHCHẤTQUANGCỦACẤUTRÚC THẤP CHIỀUZnS 36 3.1 Đặt vấn đề 36 3.2 Nghiêncứu ảnh hưởng lớp SiO2 đế silic lên hình thái, thành phần, cấutrúctínhchất huỳnh quangZnS 37 3.2.1 Các thơng số thí nghiệm 37 3.2.2 Hình thái thành phần cấutrúcZnSchếtạo đế Si đế Si/SiO2 38 3.2.3 Nghiêncứu pha đai micro mọc đế Si Si/SiO2 40 3.2.4 Tínhchấtquang đai ZnSchếtạo đế Si Si/SiO2 42 3.3 Ảnh hưởng nhiệt độ đế khoảng cách bốcbay lên hình thái, cấutrúctínhchấtquangcấutrúc thấp chiềuZnS 47 3.4 Ảnh hưởng nhiệt độ bốcbay vị trí đặt đế lên tínhchất huỳnh quangcấutrúcZnS 52 3.5 Ảnh hưởng thời gian bốcbay lên tínhchất huỳnh quangcấutrúcZnS 54 3.6 Khảo sát cấutrúc dạng đai dây ZnS cho phát xạ mạnh chuyển mức vùngvùng 55 3.7 Kết luận chương 60 CHƯƠNG 4: NGHIÊNCỨU SỰ TĂNG CƯỜNG HUỲNH QUANG VÀ PHÁT XẠ LAZE CỦACẤUTRÚC LAI HÓA ZnS-ZnO 62 v 4.1 Đặt vấn đề 62 4.2 Các thơng số thí nghiệm 63 4.3 Pha đai ZnS-ZnO chếtạophươngphápbốcbaynhiệt 63 4.4 Hình thái thành phần đai ZnS - ZnO 65 4.5 Liên kết nguyên tố đai ZnS-ZnO 67 4.6 Tínhchấtquang đai micro ZnS-ZnO 68 4.7 Kết luận chương 72 CHƯƠNG 5: NGHIÊNCỨU ẢNH HƯỞNG CỦA CÁC ION Mn2+ VÀ Cu2+ LÊN CÁC PHÁT QUANG DO SAI HỎNG TRONG MẠNG NỀN ZnS 73 5.1 Đặt vấn đề 73 5.2 Các thơng số thí nghiệm 74 5.3 Hình thái thành phần cấutrúc ZnS:Mn ZnS:Cu 74 5.4 Pha thành phần đai micro ZnS không pha tạp pha tạp Mn Cu 77 5.5 Ảnh hưởng Mn2+ Cu2+ lên tínhchấtquang đai micro ZnS 78 5.6 Kết luận chương 82 KẾT LUẬN CHUNG VÀ KIẾN NGHỊ 83 TÀI LIỆU THAM KHẢO 85 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦALUẬNÁN 100 vi DANH MỤC KÝ TỰ VIẾT TẮT TT KÍ HIỆU TÊN TIẾNG ANH TÊN TIẾNG VIỆT VLS Vapor - Liquid – Solid Hơi-lỏng-rắn VS Vapor – Solid Hơi-rắn CVD Chemical Vapor Deposition Lắng đọng hóa học MOCVD Metalorganic Chemical Vapor Lắng đọng hóa học hữu kim Deposition loại FESEM Field Emission Scanning Electron Microscopy Kính hiển vi điện tử quét phát xạ trường HRTEM High-resolution Transmission Kính hiển vi điện tử truyền qua độ Electron Microscopy phân giải cao EDS Energy DispersiveX-ray Spectroscopy Phổ tán sắc lượng tia X XRD X-ray Diffraction Nhiễu xạ tia X PL Photoluminescence Spectrum Phổ huỳnh quang 10 PLE Photoluminescence Excitation Spectrum Phổ kích thích huỳnh quang 11 XPS X-ray PhotoelectronSpectroscopy Phổ kế quang điện tử tia X 12 TO Transverse Optical Quang ngang 13 LO Longitude Optical Quang dọc 14 TA Transverse Acoustic Âm ngang 15 LA Longitudinal Acoustic Âm dọc 16 SAED Selected Area Electron Diffraction Nhiễu xạ điện tử vùng lựa chọn vii DANH MỤC CÁC BẢNGBảng 1.1 Bảng thống kê cấutrúc nano thấp chiềuZnSchếtạophươngpháp hóa học, vùng nhiệt độ chếtạo tài liệu tham khảo tương ứng Bảng 1.2 Bảng thống kê số phươngpháp vật lý để chếtạocấutrúc nano ZnS thấp chiều, vùng nhiệt độ chếtạo tài liệu tham khảo tương ứng 10 Bảng 1.3: Liệt kê phát xạ vùng nhìn thấy số nhóm nghiêncứu giải thích nguồn gốc gây nên phát xạ 17 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Mơ hình khác cấutrúctinh thể lục giác lập phương: (a,c,e): lục giác; (b,d,f): lập phương [158] Hình 1.2 Cấutrúc vùng lượng ZnS (mức Fermi đặt 0) [68] Hình 1.3 Một số hình thái điển hình cấutrúc nano ZnSchiềuchế tạo: (a) ống nano, (b) nano, (c) dây nano, (d) đai hay băng nano, (e) cáp nano [44] Hình 1.4 Quá trình mọc tinh thể Si theo chế hơi-lỏng-rắn: a) Điều kiện ban đầu: Giọt hợp kim Au-Si lỏng hình thành đế silic; b) Tinh thể Si mọc với giọt chất lỏng đầu [133] 12 Hình 1.5 Các trình xảy mọc xúc tác: (a) hạt xúc tác đáy dây nano, (b) hạt xúc tác đỉnh dây nano, (c) mọc đa nhánh, (d) mọc đơn nhánh [72] 13 Hình 1.6 Phổ huỳnh quang catốt cấutrúc nano ZnSchếtạophươngpháp hóa ướt: a) băng nano; b) dây nano; c) ống nano [87] 15 Hình 1.7 Phổ huỳnh quang dây nano ZnSchếtạophươngpháp a) bốcbaynhiệt [47] b) chuyển pha áp suất thấp [91] 15 Hình 1.8 Phổ PL dây nano ZnS đo nhiệt độ phòng kích thích nguồn laze xung (266 nm) [143]; 16 Hình 1.9 (a) Ảnh SEM (b) phổ PL cấutrúc nano dạng dùi ZnS [161]; (c) ảnh TEM (d) phổ PL đai nano ZnS [168] 17 Hình 1.10 (a) Phổ huỳnh quang dây nano lõi-vỏ ZnO/ZnS [123]; (b) Phổ huỳnh quangbăng nano hai mặt ZnS/ZnO [38]; (c) Phổ huỳnh quang catốt đai nano ZnS/ZnO hai trục song song [148]; (d) Phổ huỳnh quang dây nano ZnO phủ ZnS [84] 20 Hình 1.11 (a) Phổ huỳnh quang dây nano ZnO ZnO phủ MgO [149]; (b) phổ huỳnh quang đai nano lai hóa ZnO/ZnS [150] 21 viii yellow-orange light emission Journal of Alloys and Compounds, 486, pp 890–894 [12] Chai, L., Du, J., Xiong, S., Li, H., Zhu, Y., & Qian, Y (2007), Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique Journal of Physical Chemistry C, 111, pp 12658–12662 [13] Chan, S K., Lok, S K., Wang, G., Cai, Y., Wang, N., Wong, K S., & Sou, I K (2008), MBE-Grown Cubic ZnS Nanowires Journal of Electronic Materials, 37, pp 1433–1437 [14] Chang, S S S and I (2018), Review of Production Routes of Nanomaterials Springer International Publishing AG, pp 15–19 [15] Chang, Y., Wang, M., Chen, X., Ni, S., & Qiang, W (2007), Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth Solid State Communications, 142, pp 295–298 [16] Chantada-Vázquez, M P., de–Becerra-Sánchez, C., Fernández–del-Río, A., SánchezGonzález, J., Bermejo, A M., Bermejo-Barrera, P., & Moreda-Piñeiro, A (2018), Development and application of molecularly imprinted polymer – Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum Talanta, 181, pp 232–238 [17] Chen, Q., Ma, S Y., Xu, X L., Jiao, H Y., Zhang, G H., Liu, L W., & Yao, H H (2018), Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres Sensors and Actuators, B: Chemical, 264, pp 263–278 [18] Chen, R., Li, D., Liu, B., Peng, Z., Gurzadyan, G G., Xiong, Q., & Sun, H (2010), Optical and excitonic properties of crystalline ZnS nanowires: Toward efficient ultraviolet emission at room temperature Nano Letters, 10, pp 4956–4961 [19] Chen, R., Ye, Q L., He, T., Ta, V D., Ying, Y., Tay, Y Y., & Sun, H (2013), Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires Nano Letters, 13, pp 734–739 [20] Chen, X., Xu, H., Xu, N., Zhao, F., Lin, W., Lin, G., & Wu, M (2003), Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network Inorganic Chemistry, 42, pp 3100–3106 [21] Chen, Y., Zhou, Q., Zhang, X., Su, Y., Jia, C., Li, Q., & Kong, W (2009), GaCatalyzed Growth and Optical Properties of Ternary Si-ZnS & DESIGN 2009 Crystal Growth & Design, 9, pp 728–731 [22] Chen, Z.-G., Cheng, L., & Zou, J (2011), Growth and optical properties of stacked- 86 pyramid zinc sulfide architectures CrystEngComm, 13, pp 5885 [23] Chen, Z G., Zou, J., Lu, G Q., Liu, G., Li, F., & Cheng, H M (2007), ZnS nanowires and their coaxial lateral nanowire heterostructures with BN Applied Physics Letters, 90, pp 21–24 [24] Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., & Liu, J (2011), Electrically pumped waveguide lasing from ZnO nanowires Nature Nanotechnology, 6, pp 506–510 [25] Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., & Sberveglieri, G (2009), Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors Progress in Materials Science, 54, pp 1–67 [26] Corrado, C., Jiang, Y., Oba, F., & Kozina, M (2009), Synthesis, structural, and optical properties of stable ZnS: Cu, Cl nanocrystals J Phys Chem A, 113, pp 3830–3839 [27] Dai, J., Song, X., Zheng, H., & Wu, C (2016), Excitonic photoluminescence and photoresponse of ZnS nanowires Materials Chemistry and Physics, 174, pp 204–208 [28] Datta, A., Panda, S K., & Chaudhuri, S (2008), Phase transformation and optical properties of Cu-doped ZnS nanorods Journal of Solid State Chemistry, 181, pp 2332–2337 [29] Derbali, A., Attaf, A., Saidi, H., Benamra, H., Nouadji, M., Aida, M S., & Ezzaouia, H (2018), Investigation of structural, optical and electrical properties of ZnS thin films prepared by ultrasonic spray technique for photovoltaic applications Optik, 154, pp 286–293 [30] Ding, J X., Zapien, J A., Chen, W W., Lifshitz, Y., Lee, S T., & Meng, X M (2004), Lasing in ZnS nanowires grown on anodic aluminum oxide templates Applied Physics Letters, 85, pp 2361–2363 [31] Ding, K., Zhang, X., Ning, L., Shao, Z., Xiao, P., Ho-Baillie, A., & Jie, J (2018), Hue tunable, high color saturation and high-efficiency graphene/silicon heterojunction solar cells with MgF2/ZnS double anti-reflection layer Nano Energy, 46, pp 257– 265 [32] Ding, Y., Wang, X D., & Wang, Z L (2004), Phase controlled synthesis of ZnS nanobelts: Zinc blende vs wurtzite Chemical Physics Letters, 398, pp 32–36 [33] Djurisic, A B., & Leung, Y H (2006), Optical properties of ZnO nanostructures Small, 2, pp 944–961 87 [34] Do Quang Trung, Nguyen Tu, P T T and P T H (2018), A versatile approach to synthesise optically active hierarchical ZnS / ZnO heterostructures Nanotechnology, 15, pp 222–232 [35] Dong, B., Cao, L., Su, G., Liu, W., Qu, H., & Zhai, H (2010), Water-soluble ZnS:Mn/ZnS core/shell nanoparticles prepared by a novel two-step method Journal of Alloys and Compounds, 492, pp 363–367 [36] Fallert, J., Dietz, R J B., Sartor, J., Schneider, D., Klingshirn, C., & Kalt, H (2009), Co-existence of strongly and weakly localized random laser modes Nature Photonics, 3, pp 279–282 [37] Fallert, J., Stelzl, F., Zhou, H., Reiser, A., Thonke, K., Sauer, R., & Kalt, H (2008), Lasing dynamics in single ZnO nanorods Optics Express, 16, pp 1125 [38] Fan, X., Zhang, M L., Shafiq, I., Zhang, W J., Lee, C S., & Lee, S T (2009), ZnS/ZnO heterojunction nanoribbons Advanced Materials, 21, pp 2393–2396 [39] Fang, X., Bando, Y., Ye, C., & Golberg, D (2007), Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission Chemical Communications, 1, pp 3048–3050 [40] Fang, X S., Ye, C H., Peng, X S., Wang, Y H., Wu, Y C., & Zhang, L De (2004), Large-scale synthesis of ZnS nanosheets by the evaporation of ZnS nanopowders Journal of Crystal Growth, 263, pp 263–268 [41] Fang, X S., Ye, C H., Zhang, L De, Wang, Y H., & Wu, Y C (2005), Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders Advanced Functional Materials, 15, pp 63–68 [42] Fang, X., Wei, Z., Chen, R., Tang, J., Zhao, H., Zhang, L., & Wang, X (2015), Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires ACS Applied Materials and Interfaces, 7, pp 10331– 10336 [43] Fang, X., Zhai, T., Gautam, U K., Li, L., Wu, L., Bando, Y., & Golberg, D (2011), ZnS nanostructures: From synthesis to applications Progress in Materials Science, 56, pp 175–287 [44] Fang, X., & Zhang, L (2006), One-Dimensional (1D) ZnS Nanomaterials and Nanostructures J Mater Sci Technol., 22, pp 721–736 [45] Feng, Q J., Shen, D Z., Zhang, J Y., Liang, H W., Zhao, D X., Lu, Y M., & Fan, X W (2005), Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition Journal of Crystal Growth, 285, pp 561–565 88 [46] Futsuhara, M., Yoshioka, K., & Takai, O (1998), Optical properties of zinc oxynitride thin films Thin Solid Films, 317, pp 322–325 [47] Geng, B Y., Liu, X W., Du, Q B., Wei, X W., & Zhang, L D (2006), Structure and optical properties of periodically twinned ZnS nanowires Applied Physics Letters, 88, pp 16–19 [48] Geng, B Y., Zhang, Y G., Wang, G., Xie, T., Meng, G W., & Zhang, L D (2004), Growth of single-crystal ZnS nanobelts through a low-temperature thermochemistry route and their optical properties Applied Physics A: Materials Science and Processing, 79, pp 1761–1763 [49] Ghosh, P K., Maiti, U N., Jana, S., & Chattopadhyay, K K (2006), Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique Applied Surface Science, 253, pp 1544–1550 [50] Gibbons, D J., & Spear, W (1966), Abstracts of Articles to be Published in the Journal of the Physics and Chemistry of Solids Solid State Communications, 4, pp 1966 [51] Gomathi, P T., Sahatiya, P., & Badhulika, S (2017), Large-Area, Flexible Broadband Photodetector Based on ZnS–MoS2Hybrid on Paper Substrate Advanced Functional Materials, 27, pp 1–9 [52] Goudarzi, A., Aval, G M., Park, S S., Choi, M.-C., Sahraei, R., Ullah, M H., & Ha, C.-S (2009), Low-Temperature Growth of Nanocrystalline Mn-Doped ZnS Thin Films Prepared by Chemical Bath Deposition and Optical Properties Chemistry of Materials, 21, pp 2375–2385 [53] Hafeez, M., Rehman, S., Manzoor, U., Khan, M A., & Bhatti, A S (2013), Catalyst driven optical properties of the self – assembled ZnS nanostructures Physical Chemistry Chemical Physics, 15, pp 9726 [54] Hajimazdarani, M., Naderi, N., Yarmand, B., Kolahi, A., & Sangpour, P (2018), Enhanced optical properties of ZnS–rGO nanocomposites for ultraviolet detection applications Ceramics International [55] Han, N S., Shim, H S., Seo, J H., Park, S M., Min, B K., Kim, J., & Song, J K (2011), Optical properties and lasing of ZnO nanoparticles synthesized continuously in supercritical fluids Chemical Physics Letters, 505, pp 51–56 [56] Hao, X J., Podhorodecki, A P., Shen, Y S., Zatryb, G., Misiewicz, J., & Green, M A (2009), Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films Nanotechnology, 20, pp 485703 89 [57] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy [58] Hu, P a, Liu, Y Q., Cao, L C., & Zhu, D B (2004), Self-assembled growth of ZnS nanobelt networks Journal Of Physical Chemistry B, 108, pp 936–938 [59] Hu, X., Deng, F., Huang, W., Zeng, G., Luo, X., & Dionysiou, D D (2018), The band structure control of visible-light-driven rGO/ZnS-MoS2for excellent photocatalytic degradation performance and long-term stability Chemical Engineering Journal, 350, pp 248–256 [60] Ivanov, S A., Nanda, J., Piryatinski, A., Achermann, M., Balet, L P., Bezel, I V, & Klimov, V I (2004), Light Amplification Using Inverted Core Shell Nanocrystals Towards Lasing in the Single-Exciton Regime Journal of Physical Chemistry B, 108, pp 10625–10630 [61] Jeevanandam, J., Barhoum, A., Chan, Y S., Dufresne, A., & Danquah, M K (2018), Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations Beilstein Journal of Nanotechnology, 9, pp 1050–1074 [62] Jiang, J., Xu, H., Zhu, L., Niu, W., Guo, Y., Li, Y., & Ye, Z (2014), Structural and optical properties of ZnSO alloy thin films with different S contents grown by pulsed laser deposition Journal of Alloys and Compounds, 582, pp 535–539 [63] Jiang, Y., Meng, X M., Liu, J., Xie, Z Y., Lee, C S., & Lee, S T (2003), Hydrogenassisted thermal evaporation synthesis of ZnS nanoribbons on a large scale Advanced Materials, 15, pp 323–327 [64] Jin, C Q., Ge, C H., Xu, G., Wei, Y X., Ding, Q P., Zhu, M., & Duan, H B (2015), Controllable synthesis and cathodoluminescent property of 1D wurtzite ZnS nanostructures Journal of Alloys and Compounds, 648, pp 481–487 [65] Kang, Z T., Arnold, B., Summers, C J., & Wagner, B K (2006), Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting Nanotechnology, 17, pp 4477–4482 [66] Kar, S., Biswas, S., & Chaudhuri, S (2005), Catalytic growth and photoluminescence properties of ZnS nanowires Nanotechnology, 16, pp 737–740 [67] Kar, S., & Chaudhuri, S (2005), Synthesis and optical properties of single and bicrystalline ZnS nanoribbons Chemical Physics Letters, 414, pp 40–46 [68] Karazhanov, S Z., Ravindran, P., Kjekshus, A., Fjellvåg, H., & Svensson, B G (2007), Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study Physical Review B, 75, pp 155104 [69] Kim, H W., Kim, H S., Na, H G., Yang, J C., Choi, R., Jeong, J K., & Kim, D Y 90 (2010), One-step fabrication and characterization of silica-sheathed ITO nanowires Journal of Solid State Chemistry, 183, pp 2490–2495 [70] Kim, J H., Rho, H., Kim, J., Choi, Y J., & Park, J G (2012), Raman spectroscopy of ZnS nanostructures Journal of Raman Spectroscopy, 43, pp 906–910 [71] Kim, J., & Yong, K (2011), Mechanism Study of ZnO Nanorod-Bundle Sensors for H S Gas Sensing The Journal of Physical Chemistry C, 115, pp 7218–7224 [72] Kolasinski, K W (2006), Catalytic growth of nanowires: Vapor-liquid-solid, vaporsolid-solid, solution-liquid-solid and solid-liquid-solid growth Current Opinion in Solid State and Materials Science, 10, pp 182–191 [73] Kolodziejczak-Radzimska, A., & Jesionowski, T (2014), Zinc oxide-from synthesis to application: A review Materials, 7, pp 2833–2881 [74] Kumbhojkar, N., Nikesh, V V., Kshirsagar, A., & Mahamuni, S (2000), Photophysical properties of ZnS nanoclusters Journal of Applied Physics, 88, pp 6260 [75] Kuppayee, M., Vanathi Nachiyar, G K., & Ramasamy, V (2011), Synthesis and characterization of Cu 2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents Applied Surface Science, 257, pp 6779–6786 [76] La Porta, F A., Nogueira, A E., Gracia, L., Pereira, W S., Botelho, G., Mulinari, T A., & Longo, E (2017), An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles Journal of Physics and Chemistry of Solids, 103, pp 179–189 [77] Lee, G J., & Wu, J J (2017), Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review Powder Technology, 318, pp 8– 22 [78] Lee, S H., Goto, T., Miyazaki, H., Chang, J., & Yao, T (2010), Optical resonant cavity in a nanotaper Nano Letters, 10, pp 2038–2042 [79] Lee, W J., Cho, D H., Yoo, J., Yoo, J., Wi, J H., Han, W S., & Chung, Y D (2018), Interface and bulk properties of Cu(In,Ga)Se2solar cell with a cracker-ZnS buffer layer Current Applied Physics, 18, pp 405–410 [80] Leone, M., Agnello, S., Boscaino, R., Cannas, M., & Gelardi, F M (1999), Conformational disorder in vitreous systems probed by photoluminescence activity in SiO2 Physical Review B, 60, pp 11475–11481 [81] Li, C., Chen, H., Ivanov, M., Xie, T., Dai, J., Kou, H., & Li, J (2018), Large-scale hydrothermal synthesis and optical properties of Cr2+:ZnS nanocrystals Ceramics 91 International, 44, pp 13169–13175 [82] Li, H D., Yu, S F., Lau, S P., & Leong, E S P (2006), Simultaneous formation of visible and ultraviolet random lasings in ZnO films Applied Physics Letters, 89, pp 26–29 [83] Li, H Y., Rühle, S., Khedoe, R., Koenderink, A F., & Vanmaekelbergh, D (2009), Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires Nano Letters, 9, pp 3515–3520 [84] Li, J., Zhao, D., Meng, X., Zhang, Z., Zhang, J., Shen, D., & Fan, X (2006), Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by selfassembling method Journal of Physical Chemistry B, 110, pp 14685–14687 [85] Li, Q., & Wang, C (2003), One-step fabrication of uniform Si-core/CdSe-sheath nanocables Journal of the American Chemical Society, 125, pp 9892–9893 [86] Li, Y., Ye, C H., Fang, X S., Yang, L., Xiao, Y H., & Zhang, L D (2005), Fabrication and photoluminescence of SiO2-sheathed semiconducting nanowires: the case of ZnS/SiO2 Nanotechnology, 16, pp 501–505 [87] Liang, S., Yeming, X., & Quan, L (2009), Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures Crystal Growth and Design, 9, pp 2214–2219 [88] Limaye, M V., Gokhale, S., Acharya, S A., & Kulkarni, S K (2008), Template-free ZnS nanorod synthesis by microwave irradiation Nanotechnology, 19, pp 415602– 415607 [89] Lin, M., Sudhiranjan, T., Boothroyd, C., & Loh, K P (2004), Influence of Au catalyst on the growth of ZnS nanowires Chemical Physics Letters, 400, pp 175–178 [90] Liu, B D., Yang, B., Dierre, B., Sekiguchi, T., & Jiang, X (2014), Local defectinduced red-shift of cathodoluminescence in individual ZnS nanobelts Nanoscale, 6, pp 12414–12420 [91] Liu, K., Li, J., Liu, Q., Meng, M., Hu, L., & Xu, C (2017), Two-photon absorption induced photoluminescence from ZnS nanowires Journal of Alloys and Compounds, 718, pp 122–125 [92] Liu, X F., Yang, N., Li, H., Yu, R H., & Wei, W (2013), Magnetism and photoluminescence of Mn:ZnO/Mn:ZnS heterostructures Materials Letters, 92, pp 405–408 [93] Liu, X Y., Tian, B Z., Yu, C Z., Tu, B., & Zhao, D Y (2004), Microwave-assisted solvothermal synthesis of radial ZnS nanoribbons Chemistry Letters 92 [94] Liu, Y G., Feng, P., Xue, X Y., Shi, S L., Fu, X Q., Wang, C., & Wang, T H (2007), Room-temperature oxygen sensitivity of ZnS nanobelts Applied Physics Letters, 90, pp 2005–2008 [95] Lok, S K., Wang, G., Cai, Y., Wang, N., Zhong, Y C., Wong, K S., & Sou, I K (2009), Growth temperature dependence of the structural and photoluminescence properties of MBE-grown ZnS nanowires Journal of Crystal Growth, 311, pp 2630– 2634 [96] Lu, F., Cai, W., Zhang, Y., Li, Y., Sun, F., Heo, S H., & Cho, S O (2007), Fabrication and field-emission performance of zinc sulfide nanobelt arrays Journal of Physical Chemistry C, 111, pp 13385–13392 [97] Lu, H Y., Chu, S Y., & Chang, C C (2005), Synthesis and optical properties of well-aligned ZnS nanowires on Si substrate Journal of Crystal Growth, 280, pp 173– 178 [98] Ma, X., Chen, P., Li, D., Zhang, Y., & Yang, D (2007), Electrically pumped ZnO film ultraviolet random lasers on silicon substrate Applied Physics Letters, 91, pp 1–4 [99] Mitsui, T., Yamamoto, N., Tadokoro, T., & Ohta, S (1996), Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs (100) Journal of Applied Physics, 80, pp 6972–6979 [100] Moon, H., Nam, C., Kim, C., & Kim, B (2006), Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition Materials Research Bulletin, 41, pp 2013–2017 [101] Moore, D., Morber, J R., Snyder, R L., & Wang, Z L (2008), Growth of ultralong ZnS/SiO2 core-shell nanowires by volume and surface diffusion VLS process Journal of Physical Chemistry C, 112, pp 2895–2903 [102] Muthukumaran, S., & Ashok Kumar, M (2013), Structural, FTIR and photoluminescence properties of ZnS:Cu thin films by chemical bath deposition method Materials Letters, 93, pp 223–225 [103] Nedyalkov, N., Koleva, M., Nikov, R., Atanasov, P., Nakajima, Y., Takami, A., & Terakawa, M (2016), Laser nanostructuring of ZnO thin films Applied Surface Science, 374, pp 172–176 [104] Nilkar, M., Ghodsi, F E., & Abdolahzadeh Ziabari, A (2014), Compositional evolution and surface-related phenomena effects in ZnS–SiO2 nanocomposite films Applied Physics A: Materials Science and Processing, 118, pp 1377–1386 [105] Önsten, A., Stoltz, D., Palmgren, P., Yu, S., Claesson, T., Göthelid, M., & Karlsson, 93 U O (2013), SO2 interaction with Zn(0001) and ZnO(0001) and the influence of water Surface Science, 608, pp 31–43 [106] Park, S., An, S., Mun, Y., & Lee, C (2014), UV-activated gas sensing properties of ZnS nanorods functionalized with Pd Current Applied Physics, 14, pp S57–S62 [107] Peng, W Q., Cong, G W., Qu, S C., & Wang, Z G (2006), Synthesis and photoluminescence of ZnS:Cu nanoparticles Optical Materials, 29, pp 313–317 [108] Poornaprakash, B., Amaranatha Reddy, D., Murali, G., Madhusudhana Rao, N., Vijayalakshmi, R P., & Reddy, B K (2013), Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles Journal of Alloys and Compounds, 577, pp 79–85 [109] Prasad, N., & Balasubramanian, K (2017), Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Optical, phonon and efficient visible and infrared photocatalytic activity of Cu doped ZnS micro crystals Spectrochimica Acta Part A, 173, pp 687–694 [110] Rainsford, T., Mickan, S., & Abbott, D (2006), Direct Fabry-Pérot Effect Removal Fluctuation and Noise Letters, 6, pp 227–239 [111] Ramos, J R., Morales, C., García, G., Díaz, T., Rosendo, E., Santoyo, J., & Galeazzi, R (2018), Optical and structural analysis of ZnS core-shell type nanowires Journal of Alloys and Compounds, 736, pp 93–98 [112] Rodriguez, a, Jirsak, T., Chaturvedi, S., & Kuhn, M (1999), Reaction of SO2 with ZnO(0001)–O and ZnO powders: photoemission and XANES studies on the formation of SO3 and SO4 Surface Science, 442, pp 400–412 [113] Sapra, S., Prakash, A., Ghangrekar, A., Periasamy, N., & Sarma, D D (2005), Emission properties of manganese-doped ZnS nanocrystals Journal of Physical Chemistry B, 109, pp 1663–1668 [114] Saravana Kumar, S., Abdul Khadar, M., & Nair, K G M (2011), Analysis of the effect of annealing on the photoluminescence spectra of Cu+ ion implanted ZnS nanoparticles Journal of Luminescence, 131, pp 786–789 [115] Scholz, S M., Vacassy, R., Lemaire, L., Dutta, J., & Hofmann (1998), Nanoporous Aggregates of ZnS Nanocrystallites Applied Organometallic Chemistry, 12, pp 327– 335 [116] Shaikh, S F., Kwon, H C., Yang, W., Mane, R S., & Moon, J (2018), Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathininterfacial modification layer Journal of Alloys and Compounds, 738, pp 405–414 94 [117] Shang, L Y., Zhang, D., & Liu, B Y (2016), Influence of Cu ion implantation on the microstructure and cathodoluminescence of ZnS nanostructures Physica E: LowDimensional Systems and Nanostructures, 81, pp 315–319 [118] Shen, G., Bando, Y., & Golberg, D (2006), Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires Applied Physics Letters, 88, pp 1–4 [119] Shen, G., Bando, Y., Golberg, D., & Zhou, C (2008), Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays Journal of Physical Chemistry C, 112, pp 12299–12303 [120] Song, J K., Willer, U., Szarko, J M., Leone, S R., Li, S., & Zhao, Y (2008), Ultrafast upconversion probing of lasing dynamics in single ZnO nanowire lasers Journal of Physical Chemistry C, 112, pp 1679–1684 [121] Stefan, M., Popovici, E.-J., Pana, O., & Indrea, E (2013), Synthesis of luminescent zinc sulphide thin films by chemical bath deposition Journal of Alloys and Compounds, 548, pp 166–172 [122] Suja, M., Debnath, B., Bashar, S B., Su, L., Lake, R., & Liu, J (2018), Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices Applied Surface Science, 439, pp 525–532 [123] Sulieman, K M., Huang, X., Liu, J., & Tang, M (2007), One-step growth of ZnO/ZnS core–shell nanowires by thermal evaporation Smart Materials and Structures, 16, pp 89–92 [124] Tang, H., Kwon, B J., Kim, J., & Park, J Y (2010), Growth modes of ZnS nanostructures on the different substrates Journal of Physical Chemistry C, 114, pp 21366–21370 [125] Tian, Y., Zhao, Y., Tang, H., Zhou, W., Wang, L., & Zhang, J (2015), Synthesis of ZnS ultrathin nanowires and photoluminescence with Mn2+ doping Materials Letters, 1, pp 1–4 [126] Tiwari, A., & Dhoble, S J (2017), Critical analysis of phase evolution, morphological control, growth mechanism and photophysical applications of ZnS nanostructures (zero-dimensional to three-dimensional): A review Crystal Growth and Design, 17, pp 381–407 [127] Tolentino Dominguez, C., Gomes, M de A., Macedo, Z S., de Araújo, C B., & Gomes, A S L (2015), Multi-photon excited coherent random laser emission in ZnO powders Nanoscale, 7, pp 317–323 95 [128] Trung, D Q., Thang, P T., Hung, N D., & Huy, P T (2016), Structural evolution and optical properties of oxidized ZnS microrods Journal of Alloys and Compounds, 676, pp 150–155 [129] Trung, D Q., Tu, N., Hung, N D., & Huy, P T (2016), Probing the origin of green emission in 1D ZnS nanostructures Journal of Luminescence, 169, pp 165–172 [130] Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., & Manuspiya, H (2012), Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder Solid State Sciences, 14, pp 299–304 [131] Ummartyotin, S., & Infahsaeng, Y (2016), A comprehensive review on ZnS: From synthesis to an approach on solar cell Renewable and Sustainable Energy Reviews, 55, pp 17–24 [132] Uzar, N., & Arikan, M C (2011), Synthesis and investigation of optical properties of ZnS nanostructures IndianAcademy of Sciences, 1, pp 4–9 [133] Wagner, R S., & Ellis, W C (1964), Vapor-liquid-solid mechanism of single crystal growth Applied Physics Letters, 4, pp 89–90 [134] Wang, J., Chen, R., Xiang, L., & Komarneni, S (2018), Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review Ceramics International, 44, pp 7357–7377 [135] Wang, M., Fei, G T., Zhu, X G., Wu, B., Kong, M G., & Zhang, L De (2009), Density-controlled homoepitaxial growth of ZnS nanowire arrays Journal of Physical Chemistry C, 113, pp 4335–4339 [136] Wang, X., Huang, H., Liang, B., Liu, Z., Chen, D., & Shen, G (2013), ZnS nanostructures: Synthesis, properties, and applications Critical Reviews in Solid State and Materials Sciences, 38, pp 57–90 [137] Wang, X., Zhu, L., Zhang, L., Jiang, J., Yang, Z., Ye, Z., & He, B (2011), Properties of Ni doped and Ni-Ga co-doped ZnO thin films prepared by pulsed laser deposition Journal of Alloys and Compounds, 509, pp 3282–3285 [138] Wang, Y., Zhang, L., Liang, C., Wang, G., & Peng, X (2002), Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires Chemical Physics Letters, 357, pp 314–318 [139] Wang, Z., Daemen, L L., Zhao, Y., Zha, C S., Downs, R T., Wang, X., & Hemley, R J (2005), Morphology-tuned wurtzite-type ZnS nanobelts Nature Materials, 4, pp 922–927 [140] Wei, M., Yang, J., Yan, Y., Cao, J., Zuo, Q., Fu, H., & Fan, L (2013), The 96 investigation of the maximum doping concentration of iron in zinc sulfide nanowires, and its optical and ferromagnetic properties Superlattices and Microstructures, 54, pp 181–187 [141] Wei, M., Yang, J., Yan, Y., Yang, L., Cao, J., Fu, H., & Fan, L (2013), Influence of Mn ions concentration on optical and magnetic properties of Mn-doped ZnS nanowires Physica E: Low-Dimensional Systems and Nanostructures, 52, pp 144– 149 [142] Xing, G., Liao, Y., Wu, X., Chakrabortty, S., Liu, X., Yeow, E K L., & Sum, C T (2012), Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures ACS Nano, 6, pp 10835–10845 [143] Xiong, Q., Chen, G., Acord, J D., Liu, X., Zengel, J J., Gutierrez, H R., & Eklund, P C (2004), Optical properties of rectangular cross-sectional ZnS nanowires Nano Letters, 4, pp 1663–1668 [144] Xiong, Q., Wang, J., Reese, O., Voon, L C L Y., & Eklund, P C (2004), Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires Nano Letters, 4, pp 1991–1996 [145] Xu, J., Zhang, W., Fan, H., Cheng, F., Su, D., & Wang, G (2018), Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery Nano Energy, 51, pp 73–82 [146] Xu, X.-J., Fei, G.-T., Yu, W.-H., Wang, X.-W., Chen, L., & Zhang, L.-D (2005), Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method Nanotechnology, 17, pp 426–429 [147] Xu, X., Hu, L., Gao, N., Liu, S., Wageh, S., Al-Ghamdi, A A., & Fang, X (2015), Controlled growth from ZnS nanoparticles to ZnS-CdS nanoparticle hybrids with enhanced photoactivity Advanced Functional Materials, 25, pp 445–454 [148] Yan, J., Fang, X., Zhang, L., Bando, Y., Gautam, U K., Dierre, B., & Golberg, D (2008), Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures Nano Letters, 8, pp 2794–2799 [149] Yang, H Y., Yu, S F., Li, G P., & Wu, T (2010), Random lasing action of randomly assembled ZnO nanowires with MgO coating Optics Express, 18, pp 13647–13654 [150] Yang, H Y., Yu, S F., Yan, J., & Zhang, L D (2010), Wide bandwidth lasing randomly assembled ZnS/ZnO biaxial nanobelt heterostructures Applied Physics 97 Letters, 96, pp 94–97 [151] Yang, J., Wang, B., Cao, J., Han, D., Feng, B., Wei, M., & Wang, T (2013), Controllable photoluminescent–magnetic dual-encoded wurtzite ZnS:Cu2+Mn2+ nanowires modulated by Cu2+ and Mn2+ ions Journal of Alloys and Compounds, 574, pp 240–245 [152] Yang, J., Wang, T., Cao, J., Fan, L., Zhang, X., Han, D., & Lin, K (2014), Facile and shape-controlled growth of the wurtzite ZnS:Ni2+nanoparticles and nanowires Superlattices and Microstructures, 71, pp 217–224 [153] Yang, S H., Lial, Y J., Cheng, N J., & Ling, Y H (2010), Preparation and characteristics of yellow ZnS:Mn,Ce phosphor Journal of Alloys and Compounds, 489, pp 689–693 [154] Yang, Y., & Zhang, W (2004), Preparation and photoluminescence of zinc sulfide nanowires Materials Letters, 58, pp 3836–3838 [155] Yao, W T., Yu, S H., Pan, L., Li, J., Wu, Q S., Zhang, L., & Jiang, J (2005), Flexible wurtzite-type ZnS nanobelts with quantum-size effects: A diethylenetriamineassisted solvothermal approach Small, 1, pp 320–325 [156] Ye, C., Fang, X., Wang, M., & Zhang, L (2006), Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts Journal of Applied Physics, 99, pp 10–14 [157] Ye, Z., Kong, L., Chen, F., Chen, Z., Lin, Y., & Liu, C (2018), A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes Optik, 164, pp 345–354 [158] Yeh, C Y., Lu, Z W., Froyen, S., & Zunger, A (1992), Zinc-blendewurtzite polytypism in semiconductors Physical Review B, 46, pp 10086–10097 [159] Yu, W., Fang, P., & Wang, S (2009), Synthesis of ZnS nanorod arrays by an aquasolution hydrothermal process on pulse-plating Zn nanocrystallines Journal of Materials Research, 24, pp 2821–2827 [160] Yue, G H., Yan, P X., Yan, D., Fan, X Y., Wang, M X., Qu, D M., & Liu, J Z (2006), Hydrothermal synthesis of single-crystal ZnS nanowires Applied Physics A: Materials Science and Processing, 84, pp 409–412 [161] Zhai, T., Gu, Z., Fu, H., Ma, Y M., & Yao, J (2007), Synthesis of Single-Crystal ZnS Nanoawls via Two-Step Pressure-Controlled Vapor-Phase Deposition and Their Optical Properties Crystal Growth & Design, 7, pp 1388–1392 [162] Zhang, H., Feng, G., Zhang, H., Yang, C., Yin, J., & Zhou, S (2017), Random laser 98 based on Rhodamine 6G (Rh6G) doped poly(methyl methacrylate) (PMMA) films coating on ZnO nanorods synthesized by hydrothermal oxidation Results in Physics, 7, pp 2968–2972 [163] Zhang, Z., Wang, J., Yuan, H., Gao, Y., Liu, D., Song, L., & Xie, S (2005), Lowtemperature growth and photoluminescence property of ZnS nanoribbons Journal of Physical Chemistry B, 109, pp 18352–18355 [164] Zhao, W., Wei, Z., Zhang, L., Wu, X., Wang, X., & Jiang, J (2017), Optical and magnetic properties of Co and Ni co-doped ZnS nanorods prepared by hydrothermal method Journal of Alloys and Compounds, pp 1–11 [165] Zhao, Z., Geng, F., Cong, H., Bai, J., & Cheng, H M (2006), A simple solution route to controlled synthesis of ZnS submicrospheres, nanosheets and nanorods Nanotechnology, 17, pp 4731–4735 [166] Zhou, T Y., Yuan, X., Hong, J M., & Xin, X Q (2006), Room-temperature solidstate reaction to nanowires of zinc sulfide Materials Letters, 60, pp 168–172 [167] Zhou, X., Yang, Q., Wang, H., Huang, F., Zhang, J., & Xu, S (2018), Effects of Ni2+concentration and vacuum annealing on structure, morphology and optical properties of Ni doped ZnS nanopowders synthesized by hydrothermal method Advanced Powder Technology, 29, pp 977–984 [168] Zhu, Y C., Bando, Y., & Xue, D F (2003), Spontaneous growth and luminescence of zinc sulfide nanobelts Applied Physics Letters, 82, pp 1769–1771 [169] Zhu, Y P., Li, J., Ma, T Y., Liu, Y P., Du, G., & Yuan, Z Y (2014), Sonochemistry-assisted synthesis and optical properties of mesoporous ZnS nanomaterials Journal of Materials Chemistry A, 2, pp 1093–1101 99 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦALUẬNÁN Nguyen Van Nghia, P T Huy, and D H Nguyen (2015), Strong photoluminescence emission of ZnS nanostructures grown by thermal deposition, Hội nghị Vật lý chất rắn Khoa học vật liệu toàn quốc lần thứ - SPMS2015, ISBN 978-604-938-722-7, Tr 468472 N V Nghia, N D Dung, P T Huy, and D H Nguyen (2017), Lasing from ZnO nanocrystal in ZnO-ZnS microbelts, Journal of Electronic Materials, 46, pp 3295 - 3300 V N Nguyen, N T Khoi and D H Nguyen (2017), Thermal Evaporation Synthesis and Optical Properties of ZnS Microbelts on Si and Si/SiO2 Substrates, Journal of Electronic Materials, 46, pp 3440 – 3444 Nguyen Van Nghia, Pham Thanh Huy, Le Van Vu, Nguyen Duy Hung (2017), Study on Structures and Photoluminescence Emission of ZnS Microcrystals Grown by Thermal Deposition, VNU Journal of Science: Mathematics – Physics, Vol 33, No 3, pp 61-68 Nguyen Van Nghia, Nguyen Duy Hung (2017), Morphology, Phase and Photoluminescence of ZnS Microstructures Grown by Thermal Deposition at Different Temperature of Substrates, VNU Journal of Science: Mathematics – Physics, Vol 33, No 4, pp 67-72 Nguyen Van Nghia, Nguyen Duy Hung (2017), Photoluminescence emission of ZnS:Mn2+ microbelts grown by themal evaporation, Hội nghị Vật liệu Công nghệ Nano Tiên tiến-WANN2017, ISBN: 978-604-95-0298-9, Tr 88-92 Nguyen Van Nghia and D H Nguyen (2018), Blue, green and yellow emissions at the same time from Mn-doped ZnS microbelts, VNU Journal of Science: Mathematics – Physics, Vol 34, No 1, pp 8-13 100 ... tài Nghiên cứu tính chất quang cấu trúc chiều ZnS chế tạo phương pháp bốc bay nhiệt Nhiệm vụ nghiên cứu - Nghiên cứu chế tạo thành công vật liệu ZnS cấu trúc thấp chiều phương pháp bốc bay nhiệt. .. 1.2.3 Cơ chế mọc cấu trúc thấp chiều chế tạo phương pháp bốc bay nhiệt 11 1.3 Tính chất quang cấu trúc thấp chiều ZnS 14 1.3.1 Phát xạ vùng - vùng cấu trúc thấp chiều ZnS ... phát quang mạng ZnS Phương pháp nghiên cứu Trong nghiên cứu tác giả lựa chọn phương pháp nghiên cứu thực nghiệm Trong đó: + Chế tạo vật liệu phương pháp bốc bay nhiệt + Nghiên cứu hình thái phương