1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số mở rộng của bất đẳng thức Euler và ứng dụng (Luận văn thạc sĩ)

69 309 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 69
Dung lượng 336,05 KB
File đính kèm Luận văn Full.rar (614 KB)

Nội dung

Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)Một số mở rộng của bất đẳng thức Euler và ứng dụng (LV thạc sĩ)

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - HOÀNG MINH AN MỘT SỐ MỞ RỘNG CỦA BẤT ĐẲNG THỨC EULER ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - HOÀNG MINH AN MỘT SỐ MỞ RỘNG CỦA BẤT ĐẲNG THỨC EULER ỨNG DỤNG Chuyên ngành: Phương pháp Toán cấp Mã số: 8460113 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS Tạ Duy Phượng THÁI NGUYÊN - 2018 Mục lục Lời cảm ơn Lời nói đầu Bất đẳng thức Euler số mở rộng 1.1 Một số kiến thức bổ trợ 1.1.1 Một số định lý tam giác 1.1.2 Một số bất đẳng thức 1.1.3 Tứ giác nội tiếp 1.1.4 Tứ giác ngoại tiếp 1.1.5 Tứ giác hai tâm 1.2 Bất đẳng thức Euler 1.3 Một số mở rộng bất đẳng thức Euler 11 1.3.1 Mở rộng bất đẳng thức Euler cho tam giác 11 1.3.2 Mở rộng bất đẳng thức Euler cho tứ giác hai tâm 32 1.3.3 Mở rộng bất đẳng thức Euler cho đa diện 41 Một số ứng dụng bất đẳng thức Euler 51 2.1 Ứng dụng bất đẳng thức Euler chứng minh bất đẳng thức tam giác 51 2.2 Ứng dụng bất đẳng thức Euler chứng minh bất đẳng thức tứ giác 59 Kết luận 65 Tài liệu tham khảo 66 Lời cảm ơn Luận văn thực hoàn thành Trường Đại học Khoa học, Đại học Thái Nguyên hướng dẫn PGS TS Tạ Duy Phượng Xin gửi lời cảm ơn chân thành sâu sắc tới Thầy, người tận tình hướng dẫn đạo tác giả tập dượt nghiên cứu khoa học suốt trình tìm hiểu tài liệu, viết hoàn thiện Luận văn Đồng thời xin chân thành cảm ơn quý thầy cô Bộ mơn tốn, Khoa Khoa học Tự nhiên, Thầy Cơ Viện Tốn học tận tình giảng dạy, quan tâm tạo điều kiện thuận lợi thủ tục hành để em hồn thành khóa học bảo vệ luận văn Thạc sĩ Tôi chân thành cảm ơn gia đình, bạn bè quan, đồn thể nơi tơi cơng tác Trường Trung học Phổ thông Bạch Đằng, Sở Giáo dục Đào tạo Hải Phòng, tạo điều kiện vật chất lẫn tinh thần trình học tập, nghiên cứu viết luận văn Xin cảm ơn thầy giáo Hồng Minh Qn cho phép tơi tham khảo sử dụng thảo thầy Thái Nguyên, tháng 05 năm 2018 Tác giả Hồng Minh An Lời nói đầu Năm 1897, thi toán Hội Toán học Vật lý Loránd Eotvos, Giáo sư L F Fejér, vào thời điểm sinh viên, sử dụng hệ thú vị sau định lý hình học cấp tiếng Euler: Nếu R bán kính đường tròn ngoại tiếp r bán kính đường tròn nội tiếp tam giác R ≥ 2r Bất đẳng thức gọi bất đẳng thức Euler Bất đẳng thức dễ dàng suy từ định lý Euler d2 = R2 − 2Rr với d khoảng cách hai tâm đường tròn ngoại tiếp nội tiếp tam giác Vì d2 ≥ nên R ≥ 2r Đẳng thức xảy hai đường tròn đồng tâm, tức tam giác tam giác Bất đẳng thức Euler chất, thể mối quan hệ bán kính đường tròn ngoại tiếp bán kính đường tròn nội tiếp tam giác Bất đẳng thức Euler có nhiều ứng dụng Ngồi ra, bất đẳng thức Euler mở rộng theo nhiều hướng khác nhau: tam giác (thay bất đẳng thức Euler bất đẳng thức tổng quát hơn), mở rộng cho tứ giác, tứ diện, Luận văn "Một số mở rộng bất đẳng thức Euler ứng dụng" có mục đích khai thác, tổng hợp, chứng minh bất đẳng thức Euler mở rộng bất đẳng thức này, đồng thời trình bày ứng dụng bất đẳng thức Euler chứng minh hệ thức hình học tam giác tứ giác Chương Bất đẳng thức Euler số mở rộng 1.1 Một số kiến thức bổ trợ Cho tam giác ABC, với cạnh a = BC, b = AC, c = AB Kí hiệu a) O, I theo thứ tự tâm đường tròn ngoại tiếp, nội tiếp tam giác tam giác b) R r theo thứ tự bán kính đường tròn ngoại tiếp, đường tròn nội tiếp tam giác c) , rb , rc theo thứ tự bán kính đường tròn bàng tiếp, tiếp xúc với cạnh BC, AC, AB tương ứng d) Ký hiệu S diện tích s = 1.1.1 a+b+c nửa chu vi tam giác Một số định lý tam giác Định lý 1.1 (Định lý hàm số cosin) Trong tam giác ABC, ta có a2 = b2 + c2 − 2bc cos A, b2 = a2 + c2 − 2ac cos B, c2 = a2 + b2 − 2ab cos C Hệ 1.1 Từ Định lý 1.1, ta có cos A = b2 + c2 − a2 , 2bc c2 + a2 − b2 cos B = , 2ca cos C = a2 + b2 − c2 2ab Định lý 1.2 Trong tam giác ABC ta có a b c = = = 2R sin A sin B sin C Định lý 1.3 Diện tích S tam giác ABC tính theo công thức sau: 1 S = aha = bhb = chc , 2 1 S = ab sin C = bc sin A = ca sin B, 2 S = abc , 4R S = 2R2 sin A sin B sin C, S = sr, s(s − a)(s − b)(s − c), S = S = S = √ rra rb rc , arb rc brc cra rb = = , rb + rc rc + ra + rb Định lý 1.4 Trong tam giác ABC, ta có r = (p − a) tan 1.1.2 B C S A = (p − b) tan = (p − c) tan = 2 p Một số bất đẳng thức Định lý 1.5 (Bất đẳng thức AM-GM) Giả sử a1 , a2 , , an số thực khơng âm, ta có √ a1 + a2 + · · · + an ≥ n a1 a2 an n Đẳng thức xảy a1 = a2 = · · · = an Hệ 1.2 Với số thực dương a1 , a2 , , an , ta có √ n n a1 a2 an ≥ 1 a1 + a2 + · · · + an Đẳng thức xảy a1 = a2 = · · · = an Hệ 1.3 Với số thực dương a1 , a2 , , an , ta có 1 n2 + + ··· + ≥ a1 a2 an a1 + a2 + · · · + an Đẳng thức xảy a1 = a2 = · · · = an Định lý 1.6 (Bất đẳng thức Cauchy-Schwarz) Cho hai dãy số thực a1 , a2 , , an b1 , b2 , , bn Khi (a1 b1 + a2 b2 + · · · + an bn )2 ≤ (a21 + a22 + · · · + a2n )(b21 + b22 + · · · + b2n ) Đẳng thức xảy 1.1.3 a1 a2 an = = ··· = b1 b2 bn Tứ giác nội tiếp 1.1.3.1 Định nghĩa tính chất Xét tứ giác lồi ABCD Định nghĩa 1.1 Tứ giác ABCD có bốn đỉnh A, B, C, D nằm đường tròn gọi tứ giác nội tiếp Tứ giác ABCD tứ giác nội tiếp thỏa mãn điều kiện sau Tính chất 1.1 Tứ giác ABCD tứ giác nội tiếp đường tròn (O; R) OA = OB = OC = OD Tính chất 1.2 Tứ giác ABCD tứ giác nội tiếp hai đỉnh kề nhìn cạnh đối góc Tính chất 1.3 Tứ giác ABCD tứ giác nội tiếp tổng hai góc đối diện 1800 Tính chất 1.4 Giả sử tứ giác ABCD có hai đường thẳng chứa hai cạnh AB CD cắt I Khi điều kiện cần đủ để tứ giác ABCD tứ giác nội tiếp IA.IB = IC.ID Tính chất 1.5 Giả sử tứ giác ABCD có hai đường chéo cắt K Khi điều kiện cần đủ để tứ giác ABCD tứ giác nội tiếp KA.KC = KB.KD Luận văn đủ file: Luận văn full ... 1.3.3 Mở rộng bất đẳng thức Euler cho đa diện 41 Một số ứng dụng bất đẳng thức Euler 51 2.1 Ứng dụng bất đẳng thức Euler chứng minh bất đẳng thức tam giác 51 2.2 Ứng dụng. .. 1.2 Bất đẳng thức Euler 1.3 Một số mở rộng bất đẳng thức Euler 11 1.3.1 Mở rộng bất đẳng thức Euler cho tam giác 11 1.3.2 Mở rộng bất đẳng thức Euler. .. (thay bất đẳng thức Euler bất đẳng thức tổng quát hơn), mở rộng cho tứ giác, tứ diện, Luận văn "Một số mở rộng bất đẳng thức Euler ứng dụng" có mục đích khai thác, tổng hợp, chứng minh bất đẳng thức

Ngày đăng: 31/08/2018, 14:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN