Analytical mechanics solutions manual fowles07

18 69 0
Analytical mechanics solutions manual fowles07

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chapter Dynamics of Systems of Particles 7.1 z ∑ mi ri m i From eqn 7.1.1, rcm = ( ) 1 ( r1 + r2 + r3 ) = iˆ + ˆj + ˆj + kˆ + kˆ 3 ˆ rcm = i + ˆj + 2kˆ d 1 vcm = rcm = ( v1 + v2 + v3 ) = 2iˆ + ˆj + iˆ + ˆj + kˆ dt 3 vcm = 3iˆ + ˆj + kˆ From eqn 7.1.3, p = ∑ mi vi = v1 + v2 + v3 rcm = ( ) ( ( ) ) i p = iˆ + ˆj + kˆ 7.2 (a) From eqn 7.2.15, T = ∑ mi vi2 i T =  22 + 12 + (12 + 12 + 12 )  = (b) From Prob 7.1, vcm = iˆ + ˆj + kˆ 1 mvcm = × × ( + 22 + 12 ) = 2 (c) From eqn.7.2.8, L = ∑ ri × mvi ( ( ) ( i ) ) ( ) L =  iˆ + ˆj × 2iˆ  +  ˆj + kˆ × ˆj  +  kˆ × iˆ + ˆj + kˆ        ˆ ˆ L = −2k + −iˆ + ˆj − iˆ = −2iˆ + ˆj − 2k ( ) ( ) ( 7.3 ) v = vb − vg Since momentum is conserved and the bullet and gun were initially at rest: = mvb + Mvg vg = −γ vb , v = (1 + γ ) vb vb = γ= m M v 1+ γ y x vg = − 7.4 γv 1+ γ v  mv = m   + Mvblk 2 m vblk = γ v γ= M 2 2 1  v   γ v   Ti − T f = mv −  m   + M          Momentum is conserved: 2 1 γ2  = mv 1 − − M    m Ti − T f γ = − 4 Ti 7.5 v0 / At the top of the trajectory: ˆ cos 60 = iˆ v v = iv Momentum is conserved: ˆ v = ˆj  m   v  + m v2 im    ˆ − ˆj v v2 = iv  v  −  Direction: θ = tan −1   = 26.6 below the horizontal  v      v 2  Speed: v2 =  v +    = 1.118 v     7.6 When a ball reaches the floor, As a result of the bounce, mv = mgh v′ =ε v The height of the first bounce: mgh′ = mv′2 v ′2 ε v = = ε 2h 2g 2g Similarly, the height of the second bounce, h′′ = ε h′ = ε h h′ = v0 60 o θ ∞   Total distance = h + 2ε h + 2ε h + … = h  −1 + ∑ 2ε n  n=0   ∞ a , r , so the positive square root is used ( v′p = ) v′p = 0.9288 v v′px = v′py = v′p = 0.657 v 1 v v − v′p2 ) = (1 − 9288 ) ( 2 vα′ = 0.1853v v′p v′p 9288 = tan φ = = v′p 2v − v′p − 9288 v − −1 φ = tan 1.9134 = 62.41 vα′ x = vα′ cos φ = 0.086 v vα′ y = −vα′ sin φ = −0.164 v vα′ = 7.15 Conservation of energy: 1 11  m p v = m p v′p2 + 4m p vα′ +  m p v  2 42  2 16vα′ = 3v − 4v′p From the conservation of momentum eqn of Prob 7.14: 16vα′ = v − 2v v′p + v′p2 Subtracting: = −2v − 2v v′p + 5v′p2 2v ± 2v + 40v v ± 42 = 10 10 Using the positive square root, since v′p > : ( v′p = ) v′p = 0.7895 v v′px = v′py = v′p = 0.558 v 1  2 v vα′ =  v − v′p2  = (.75 − 7895 )   16 vα′ = 0.1780v From the conservation of momentum eqns of Prob 7.14: v′p 7895 tan φ = = 2v − v′p − 7895 φ = tan −1 1.2638 = 51.65 vα′ x = vα′ cos φ = 0.110 v vα′ y = −vα′ sin φ = −0.140 v 7.16 sin θ φ1 and θ are the scattering angles in γ + cosθ the Lab and C.M frames respectively m From eqn 7.6.16, for Q = 0, γ = m2 sin θ tan 45 =1 = + cos θ + cos θ = sin θ and squaring … 1 + cos θ + cos θ = − cos θ 16 15 cos θ + cosθ − = 16 1 15 − ± + = −.125 ± 696 cosθ = From eqn 7.6.14, Since < θ < 7.17 π , tan φ = θ = cos −1 571 ≈ 55.2 From eqn 7.6.14, tan φ = m From eqn 7.6.18, γ = m2 sin θ γ + cosθ  Q  m1   1 − 1 +   T  m2   − − 1    γ = 1 − 1 +   = 0.3015    sin θ tan 45 = 3015 + cosθ 3015 + cosθ = sin θ (since sin θ > cos θ , θ > 45 ) 2 3015 = sin θ − 2sin θ cosθ + cos θ Using the identity 2sin θ cos θ = sin 2θ sin 2θ = − 30152 = 0.9091 Since θ > 45 , 2θ > 90 : 2θ = sin −1 9091 = 114.62 θ = 57.3 P1’ 7.18 Conservation of momentum: P1 = P1′ cos φ + P2′ cos (ψ − φ φ ψ P1 ) = P1′ sin φ − P2′ sin (ψ − φ ) From Appendix B for sin (α + β ) and cos (α + β ) : P2’ P1 = P1′ cos φ + P2′ ( cosψ cos φ + sinψ sin φ ) = P1′ sin φ − P2′ ( sin ψ cos φ − cosψ sin φ ) P12 = P1′2 cos φ + P2′2 ( cos ψ cos φ + cosψ cos φ sin φ sinψ + sin ψ sin φ ) +2 P1′ P2′ ( cos φ cosψ + cos φ sinψ sin φ ) = P1′2 sin φ + P2′2 ( sin ψ cos φ − 2sin ψ cos φ cosψ sin φ + cos ψ sin φ ) −2 P1′ P2′ ( sin φ sinψ cos φ − cosψ sin φ ) Adding: P12 = P1′2 + P2′2 + P1′ P2′ cosψ Conservation of energy: P12 P1′2 P2′2 = + +Q 2m 2m 2m 1 P1′ P2′ cosψ Q= P12 − P1′2 − P2′2 ) = ( 2m 2m P′ P ′ cosψ Q= m ( ) 1 m1v12 T1′ = m1v1′ 2 2 T ′ v′ let r = = 12 … ratio of scattered particle to incident particle energy T1 v1 Looking at Figure 7.6.2 … v1′ ⋅ v1′ = ( v1′ − vcm ) ⋅ ( v1′ − vcm ) 7.19 T1 = v1′ = v1′ + vcm − 2v1′ vcm cos φ1 + 2v1′vcmγ hence v1′ = v1′ − vcm 2v′v γ v1′ v − + 2cm v1 v v1 v1′ = v1 but scattered particle are the same ∴r = where γ = cos φ1 cm v1′ m2 α = = v1 m2 + m1 + α …the center of mass speeds of the incident and …from equation 7.6.12 where α = m2 m1 vcm m1 = = Equation 7.6.11 v1 m2 + m1 + α Thus α2 2γ v1′ α2 2γ r2 r= − + = − + 2 2 1 + α v α + ( ) ( ) α α + + 1 1 + α + α ( ) ( ) ( ) ( ) Simplifying 2γ 12  − α  r− r + =0 1+α  1+α  Let x = r and solving the resulting quadratic for x γ 2   + γ − (1 − α )  x= 1+α 1+α  Squaring   2 2 2γ + α − + 2γ (γ + α − 1)  r=x =  (1 + α )     2 2 2 + − + + − γ α γ γ α ( )     And, after a little algebra, we get the desired solution ∆T1 2γ  = − γ + γ + α − 1   T1 + α (1 + α ) Now 7.20 ∆T1 = 1− r = 1− T1 (1 + α ) From Equation 7.6.15 … γ = m1v1 m1 v1 = v1′ ( m1 + m2 ) m2 (1 + m1 m2 ) v1′ v1 … v1′ Now we solve for  2T  v1 =   and now solving for v1′ starting with Equation 7.6.9 …  m1  m2 1 v1 we get … µ v1′2 = µ v12 − Q and using v1′ = 2 m1 + m2 1 T = m1v12 −Q = −Q (1 + m1 m2 ) (1 + m1 m2 )   T − Q  m1 (1 + m1 m2 )  (1 + m1 m2 )  Thus, solving for γ … v1′2 = 10 γ= m1 m2 ( 2T m1 ) 2 ( m1 ) (1 + m1   T m2 )  − Q  (1 + m1 m2 )  2 Finally… γ= 7.21 m1 m2 1  Q (1 + m1 m2 )  1 −  T   The time of flight, τ = constant—so τ = r but from problem 7.19 above v1′ v1 τ  γ + γ + α − 1   1+α As an example, let v1 τ = and we have r1 = γ α =1 r2 = γ + γ +  α =2  3 r3 = γ + γ + 15  α =4  5 r4 = γ + γ + 143  α = 12  13  Below is a polar plot of these four curves r = v1′ τ = 7.22 pp scattering p–D p – He p–C From eqn 7.7.6, Fu − Fg = mv + vm since v = constant, v = m = λ z = λv , λ = mass per unit length Fg = ( λ z ) g  v2  Fu = λ zg + ( λ v ) v = g λ  z +  g  Fu is equal to the weight of a length z + 11 v2 of chain g 7.23 m = π r3ρ m = 4π r ρ r ∝ π r z where v = z r = kz k a constant of proportionality r = r + kz From eqn 7.7.6, mg = mv + vm 4 π r ρ g = π r ρ z + 4π r ρ ( kz ) z 3 3kz g = z+ r 3z z=g− r z+ k 3z For r = , z = g − z A series solution is used for this differential equation: ∞ z = ∑ an z n n=0 z= dz dz dz dz d ( z ) = ⋅ =z = dt dz dt dz dz d (z ) = ∑ an nz n −1 dz n z2 = ∑ an z n −1 z n ∴ z = ∑ an nz n −1 = g − 3∑ an z n −1 n n For n = : a1 = g − 3a1 2 a1 = g For n ≠ : nan = −3an Since n is an integer, an = for n ≠ z2 = g z 32  g z = g −  g z = z7  12 7.24 From eqn 7.7.6, mg = mv + vm , where m and v refer to the portion of the chain hanging over the edge of the table m = λ z and v = z where λ is the mass per unit length of chain m = λ z and v = z dz dz dz dz d ( z ) = ⋅ =z = dt dz dt dz dz  d (z )  λ z g = λ z  + z (λ z )  dz  z= d (z2 ) z2 =g− z dz Because of the initial condition z = b ≠ , a normal power series solution to this differential equation (…as in Prob 7.22) does not work Instead, we use the Method of Frobenius … z= ∞ z = ∑ an z n + s n=0 d (z ) = ∑ an ( n + s ) z n + s −1 dz n z2 = ∑ an z n + s −1 z n z = ∑ an ( n + s ) z n + s −1 = g − ∑ an z n + s −1 n n Equality can be attained for an ≠ at n = and n = n ≠ 0,3 …otherwise an = a s = −a s = −2 z = ∑ an ( n − ) z n −3 = g − ∑ an z n −3 n n For n = , a3 = g − a3 2 a3 = g For all n ≠ , 3: an ( n − ) = − an an = , n ≠ 0,3 z = a z −2 + gz For n = , 13 At t = , z = , and z = b a gb 0= + b a = − gb3 b3 z = − g + gz z  b3  g At z = a , z = g  a −  = ( a − b3 ) a  3a   2g 2 z =  ( a − b3 )   3a  7.25 Initially, the upward buoyancy force balances the weight of the balloon and sand FB − ( M + m ) g = (1) Let m = m ( t ) − the mass of sand at time t where ≤ t ≤ t  t (2) m = m 1 −   t  The velocity of sand relative to the balloon is zero upon release so V = in equation 7.7.5 … there is no upward “rocket-thrust.” As sand is released, the net upward force is the difference between the initial buoyancy force, FB, and the weight of the balloon and remaining sand Let y be the subsequent displacement of the balloon, so equation 7.7.5 reduces to F = ma dv FB − ( M + m ) g = ( M + m ) dt and using (1) and (2) above we get ( M + m ) gt dv m gt = = −g + dt ( M + m ) t − m t (M + m )t − m t whose solution is: ( M + m ) gt ln 1 − m t  dy v= = − gt −   dt m  (M + m )t  g m   y = C − ∫  gt + ln (1 − kt )  dt , k= k t (M + m   gt tdt = C − gt − ln (1 − kt ) − g ∫ k − kt Integrating by parts 14 ) gt g   gt − ln (1 − kt ) − ∫  −1 +  dt k k  − kt  gt gt g = C − gt − ln (1 − kt ) + + ln (1 − kt ) k k k g gt = C − gt + (1 − kt ) ln (1 − kt ) + k k but y = at t = so C = gt g y = − gt + (1 − kt ) ln (1 − kt ) k k and at t = t =C− (a) (b) (c)  M gt  2M + m ) m + 2M ( M + m ) ln  ( 2m  M +m (M + m ) − m  gt  v= ( M + m ) ln  m  M  H= letting ε =    m

Ngày đăng: 25/08/2018, 09:36

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan