Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
278,52 KB
Nội dung
CHAPTER FUNDAMENTAL CONCEPTS: VECTORS 1.1 K K (a) A + B = (iˆ + ˆj ) + ( ˆj + kˆ) = iˆ + ˆj + kˆ K K A + B = (1 + + 1) = K K (b) A − B = 3(iˆ + ˆj ) − 2( ˆj + kˆ) = 3iˆ + ˆj − 2kˆ K K (c) A ⋅ B = (1)(0) + (1)(1) + (0)(1) = iˆ ˆj kˆ K K (d) A × B = 1 = iˆ(1 − 0) + ˆj (0 − 1) + kˆ(1 − 0) = iˆ − ˆj + kˆ 1 K K A × B = (1 + + 1) = K K K 1.2 (a) A ⋅ ( B + C ) = 2iˆ + ˆj ⋅ iˆ + ˆj + kˆ = (2)(1) + (1)(4) + (0)(1) = )( ( K K ) K ( A + B ) ⋅ C = ( 3iˆ + ˆj + kˆ ) ⋅ ˆj = (3)(0) + (1)(4) + (1)(0) = K K K (b) A ⋅ ( B × C ) = 1 = −8 K K K K K K ( A × B ) ⋅ C = A ⋅ ( B × C ) = −8 K K K K K K K K K (c) A × ( B × C ) = ( A ⋅ C ) B − ( A ⋅ B ) C = iˆ + kˆ − ˆj = 4iˆ − ˆj + 4kˆ K K K K K K ( ) ( ) K K K K K K ( A × B ) × C = −C × ( A × B ) = − ( C ⋅ B ) A − ( C ⋅ A) B = − 0 ( 2iˆ + ˆj ) − ( iˆ + kˆ ) = 4iˆ + 4kˆ K K 5a A ⋅ B (a )(a ) + (2a )(2a) + (0)(3a) 1.3 cos θ = = = AB a 14 5a 14a θ = cos −1 ≈ 53° 14 1.4 K (a) A = iˆ + ˆj + kˆ K K A = A⋅ A K (b) B = iˆ + ˆj K K B = B⋅B : body diagonal = iˆ ⋅ iˆ + ˆj ⋅ ˆj + kˆ ⋅ kˆ = : face diagonal = iˆ ˆj kˆ K K K (c) C = A × B = 1 1 K K A⋅ B 1−1 (d) cos θ = = =0 AB 1.5 ∴θ = 90D K K K B = B = A × C = AC sin θ K K A ⋅ C = AC cos θ = u K K A C = Cx + A u K = A+ A 1.6 B A u ∴ Cx = C cos θ = A ∴ C y = C sin θ = K K K K B× A u K B× A B K K Cy = A + A AB A B× A K K B× A A2 K dA ˆ d d d = i (α t ) + ˆj ( β t ) + kˆ (γ t ) = iˆα + ˆj β t + kˆ3γ t dt dt dt dt K d2A ˆ = j β + kˆ6γ t dt 2 K K = A ⋅ B = ( q )( q ) + ( 3)( − q ) + (1)( ) = q − 3q + 1.7 ( q − ) ( q − 1) = , q = or K K2 K K K K K K A + B = ( A + B ) ⋅ ( A + B ) = A2 + B + A ⋅ B 1.8 K K A + B = A2 + B + AB K K Since A ⋅ B = AB cosθ ≤ AB , K K K K A+ B ≤ A + B K K K K K K A ⋅ B = AB cosθ = A B cosθ ≤ A B B cos θ ≤ B K K K K K K K K K Show A × ( B × C ) = ( A ⋅ C ) B − ( A ⋅ B ) C 1.9 iˆ K A × Bx Cx or kˆ K K Bz = ( Ax Cx + Ay C y + Az Cz ) B − ( Ax Bx + Ay By + Az Bz ) C Cz ˆj By Cy = ( Ax BxCx + Ay Bx C y + Az Bx Cz − Ax Bx Cx − Ay By Cx − Az Bz Cx ) iˆ + ( Ax By Cx + Ay By C y + Az By Cz − Ax Bx C y − Ay By C y − Az Bz C y ) ˆj + ( Ax Bz Cx + Ay Bz C y + Az Bz C z − Ax BxCz − Ay By Cz − Az Bz Cz ) kˆ ( A B C + A B C − A B C − A B C ) iˆ = + ( A B C + A B C − A B C − A B C ) ˆj + ( A B C + A B C − A B C − A B C ) kˆ y x y z x z y y x z z x x y x z y z x x y z z y x z x y z y x x z y y z iˆ Ax By Cz − Bz C y iˆ ( Ay Bx C y − Ay By Cx − Az Bz Cx + Az Bx Cz ) kˆ Az = + ˆj ( Az By Cz − Az Bz C y − Ax Bx C y + Ax By Cx ) Bx C y − By Cx + kˆ A B C − A B C − A B C + A B C ( x z x x x z y y z y z y) ˆj Ay Bz Cx − Bx Cz 1.10 y = A sin θ 1 Α = xy + y ( B − x ) = xy + yB − xy = AB sin θ 2 K K Α = A× B 1.11 iˆ K K K K A ⋅ ( B × C ) = A ⋅ Bx Cx 1.12 x G u kˆ Ax Bz = Bx Cz Cx ˆj By Cy Ay By Cy Bx Az Bz = − Ax Cz Cx By Ay Cy Bz K K K Az = − B ⋅ ( A × C ) Cz z G A G C x G B G K K Let A = (Ax,Ay,Az), B = (0,By,0) and C = (0,Cy,Cz) K K G G G Cz is the perpendicular distance between the plane A , B and its opposite u = B x C is G G G G directed along the x-axis since the vectors B , C are in the y,z plane u x = B x C = ByCz G G is the area of the parallelogram formed by the vectors B , C Multiply that area times the K K height of plane A , B = Ax to get the volume of the parallopiped G G G V = Ax u x = Ax By Cz = A • B x C ( ) 1.13 For rotation about the z axis: iˆ ⋅ iˆ′ = cos φ = ˆj ⋅ ˆj ′, kˆ ⋅ kˆ′ = iˆ ⋅ ˆj ′ = − sin φ ˆj ⋅ iˆ′ = sin φ For rotation about the y′ axis: iˆ ⋅ iˆ′ = cos θ = kˆ ⋅ kˆ′, iˆ ⋅ kˆ′ = sin θ kˆ ⋅ iˆ′ = − sin θ cos θ I T = sin θ ˆj ⋅ ˆj ′ = − sin θ cos φ − sin φ cosθ sin φ cos φ 0 cos θ cos φ = − sin φ sin θ cos φ cosθ sin φ cos φ sin θ sin φ − sin θ cosθ 1.14 iˆ ⋅ iˆ′ = cos 30D = ˆj ⋅ iˆ′ = sin 30D = kˆ ⋅ iˆ′ = iˆ ⋅ ˆj ′ = − sin 30D = − ˆj ⋅ ˆj ′ = cos 30D = kˆ ⋅ ˆj ′ = ˆj ⋅ kˆ′ = iˆ ⋅ kˆ′ = 3 0 3+ 2 Ax′ 3 A = − y′ 2 = − 1 −1 Az ′ −1 K A = 3.232iˆ′ + 1.598 ˆj ′ − kˆ′ kˆ ⋅ kˆ′ = 1.15 Rotate thru φ about z-axis φ = 45D Rφ Rotate thru θ about x’-axis Rθ Rotate thru ψ about z’-axis θ = 45 ψ = 45D Rφ = − 2 1 Rθ = 0 − D 0 0 1 2 0 2 Rψ = − 0 2 1 1 + 2− 2 2 1 − + R (ψ ,θ , φ ) = Rψ Rθ Rφ = − − 2 2 2 1 − 2 1 K where x′ = and 0 2 we have: ψ + β + α = K K Condition is: x′ = Rx K K Since x ⋅ x = After a lot of algebra: α = 1.16 Rψ 1 α or = R (ψ ,θ , φ ) β 0 γ 2 α K x =β γ 2 − , β= + , γ = 4 K v = vτˆ = ctτˆ v2 c 2t K a = vτˆ + nˆ = cτˆ + nˆ b ρ b K , v = τˆ bc and c K K v ⋅a c bc cos θ = = = va bc 2c K a = cτˆ + cnˆ at t = θ = 45D 1.17 K ˆ ω sin (ω t ) + ˆj 2bω cos (ω t ) v ( t ) = −ib 1 K v = ( b 2ω sin ω t + 4b 2ω cos ω t ) = bω (1 + 3cos ω t ) K ˆ ω cos ω t − ˆj 2bω sin ω t a ( t ) = −ib K a = bω (1 + 3sin ω t ) 1.18 K v = 2bω ; t = 0, at at t= π , 2ω K v = bω K ˆ ω cos ω t − ˆjbω sin ω t + kˆ 2ct v ( t ) = ib K ˆ ω sin ω t − ˆjbω cos ω t + kˆ 2c a ( t ) = −ib 1 K a = ( b 2ω sin ω t + b 2ω cos ω t + 4c ) = ( b 2ω + 4c ) 1.19 K ˆr + rθeˆθ = bke kt eˆr + bce kt eˆθ v = re K a = r − rθ eˆr + rθ + 2rθ eˆθ = b ( k − c ) e kt eˆr + 2bcke kt eˆθ K K b k ( k − c ) e kt + 2b c ke kt v ⋅a = cos φ = 1 va kt 2 kt 2 2 2 be ( k + c ) be ( k − c ) + 4c k ( cos φ = 1.20 ) ( ) k ( k + c2 ) (k +c 2 ) (k +c k = ) (k +c 2 ) , a constant K − Rφ ) eˆ + ( Rφ + Rφ ) eˆ + a = (R zeˆz R φ K a = −bω eˆR + 2ceˆz K a = ( b 2ω + 4c ) 1.21 1.22 K r ( t ) = iˆ (1 − e − kt ) + ˆje kt K ˆ − kt + ˆjkekt r ( t ) = ike K ˆ e − kt + ˆjk ekt r ( t ) = −ik K v = eˆr r + eˆφ rφ sin θ + eˆθ rθ π π K v = eˆφ bω sin 1 + cos ( 4ω t ) − eˆθ b ω sin ( 4ω t ) 2 π K π v = eˆφ bω cos cos ( 4ω t ) − eˆθ bω sin ( 4ω t ) 8 2 K π π v = bω cos cos 4ω t + sin 4ω t 8 Path is sinusoidal oscillation about the equator 1.23 K K v ⋅ v = v2 K K dv K K dv ⋅v + v ⋅ = 2vv dt dt K K 2v ⋅ a = 2vv K K v ⋅ a = vv 1.24 1.25 K d K K K dr K K K d K K r ⋅ ( v × a ) = ⋅ (v × a ) + r ⋅ (v × a ) dt dt dt K K K K K K dv K K da = v ⋅ ( v × a ) + r ⋅ × a + v × dt dt K K K = + r ⋅ 0 + ( v × a ) d K K K K K K r ⋅ ( v × a ) = r ⋅ ( v × a ) dt K K v = vτˆ and a = aτ τˆ + an nˆ K K v ⋅a K K v ⋅ a = vaτ , so aτ = v a = aτ2 + an2 , so an = ( a − aτ2 ) 1.26 For 1.14, aτ = −b 2ω cos ω t ⋅ sin ω t + b 2ω sin ω t ⋅ cos ω t + 4c 2t (b ω aτ = cos ω t + b 2ω sin ω t + 4c 2t ) 4c 2t (b ω 2 2 + 4c t ) 2 2 16c 4t 2 a n = b ω + 4c − 2 b ω + 4c t b k ( k − c ) e kt + 2b c ke kt kt 2 = bke ( k + c ) For 1.15, aτ = kt 2 be ( k + c ) 1 2 an = b e kt ( k + c ) − b k e kt ( k + c ) = bce kt ( k + c ) 1.27 v K K v = vτˆ , a = vτˆ + nˆ ρ v v3 K K v × a = v ⋅ an = v = ρ ρ 1.28 K ˆ sin θ + ˆjb cos θ rD P = ib K ˆ θ cos θ − ˆjbθ sin θ vrel = ib K ˆ θ cosθ − θ sin θ − ˆjb θ sin θ + θ cosθ arel = ib ( ) at the point θ = π K So, vrel = bθ = v ( ) K K , vrel = −v v aD = b b v2 v2 K Now, arel = vrelτˆ + rel nˆ = aDτˆ + nˆ ρ b θ = v b θ = v4 K arel = aD + b K K K K K K vP = v + vrel and aP = aD + arel a a v2 v2 K aP = iˆ aD + b D cos θ − sin θ − ˆjb D sin θ + cosθ b b b b 2 v4 2v K aP = aD + cos θ + 2 − sin θ aD b aDb K aP is a maximum at θ = , i.e., at the top of the wheel 2v −2sin θ − cosθ = aDb v2 aDb θ = tan −1 − 0 x -x x x x = x x − x x = x Therefore, x = 1.29 RR 0 1 0 1 0 The transformation represents a rotation of 45o about the z-axis (see Example 1.8.2) 10 1.30 (a) a θ b φ a = iˆ cos θ + ˆj sin θ b = iˆ cos ϕ + ˆj sin ϕ ( )( a ⋅ b = cos (θ − ϕ ) = iˆ cos θ + ˆj sin θ ⋅ iˆ cos ϕ + ˆj sin ϕ ) cos (θ − ϕ ) = cos θ cos ϕ + sin θ sin ϕ (b) ( ) ( b × a = kˆ sin (θ − ϕ ) = iˆ cos θ + ˆj sin θ × iˆ cos ϕ + ˆj sin ϕ ) sin (θ − ϕ ) = sin θ cos ϕ − cos θ sin ϕ 11