Analytical mechanics solutions manual fowles01

11 74 0
Analytical mechanics solutions manual fowles01

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CHAPTER FUNDAMENTAL CONCEPTS: VECTORS 1.1 K K (a) A + B = (iˆ + ˆj ) + ( ˆj + kˆ) = iˆ + ˆj + kˆ K K A + B = (1 + + 1) = K K (b) A − B = 3(iˆ + ˆj ) − 2( ˆj + kˆ) = 3iˆ + ˆj − 2kˆ K K (c) A ⋅ B = (1)(0) + (1)(1) + (0)(1) = iˆ ˆj kˆ K K (d) A × B = 1 = iˆ(1 − 0) + ˆj (0 − 1) + kˆ(1 − 0) = iˆ − ˆj + kˆ 1 K K A × B = (1 + + 1) = K K K 1.2 (a) A ⋅ ( B + C ) = 2iˆ + ˆj ⋅ iˆ + ˆj + kˆ = (2)(1) + (1)(4) + (0)(1) = )( ( K K ) K ( A + B ) ⋅ C = ( 3iˆ + ˆj + kˆ ) ⋅ ˆj = (3)(0) + (1)(4) + (1)(0) = K K K (b) A ⋅ ( B × C ) = 1 = −8 K K K K K K ( A × B ) ⋅ C = A ⋅ ( B × C ) = −8 K K K K K K K K K (c) A × ( B × C ) = ( A ⋅ C ) B − ( A ⋅ B ) C = iˆ + kˆ − ˆj = 4iˆ − ˆj + 4kˆ K K K K K K ( ) ( ) K K K K K K ( A × B ) × C = −C × ( A × B ) = − ( C ⋅ B ) A − ( C ⋅ A) B  = − 0 ( 2iˆ + ˆj ) − ( iˆ + kˆ )  = 4iˆ + 4kˆ   K K 5a A ⋅ B (a )(a ) + (2a )(2a) + (0)(3a) 1.3 cos θ = = = AB a 14 5a 14a θ = cos −1 ≈ 53° 14 1.4 K (a) A = iˆ + ˆj + kˆ K K A = A⋅ A K (b) B = iˆ + ˆj K K B = B⋅B : body diagonal = iˆ ⋅ iˆ + ˆj ⋅ ˆj + kˆ ⋅ kˆ = : face diagonal = iˆ ˆj kˆ K K K (c) C = A × B = 1 1 K K A⋅ B 1−1 (d) cos θ = = =0 AB 1.5 ∴θ = 90D K K K B = B = A × C = AC sin θ K K A ⋅ C = AC cos θ = u K K A C = Cx + A u K = A+ A 1.6 B A u ∴ Cx = C cos θ = A ∴ C y = C sin θ = K K K K B× A u K B× A B  K K Cy = A +   A AB  A  B× A K K B× A A2 K dA ˆ d d d = i (α t ) + ˆj ( β t ) + kˆ (γ t ) = iˆα + ˆj β t + kˆ3γ t dt dt dt dt K d2A ˆ = j β + kˆ6γ t dt 2 K K = A ⋅ B = ( q )( q ) + ( 3)( − q ) + (1)( ) = q − 3q + 1.7 ( q − ) ( q − 1) = , q = or K K2 K K K K K K A + B = ( A + B ) ⋅ ( A + B ) = A2 + B + A ⋅ B 1.8 K K  A + B  = A2 + B + AB   K K Since A ⋅ B = AB cosθ ≤ AB , K K K K A+ B ≤ A + B K K K K K K A ⋅ B = AB cosθ = A B cosθ ≤ A B B cos θ ≤ B K K K K K K K K K Show A × ( B × C ) = ( A ⋅ C ) B − ( A ⋅ B ) C 1.9 iˆ K A × Bx Cx or kˆ K K Bz = ( Ax Cx + Ay C y + Az Cz ) B − ( Ax Bx + Ay By + Az Bz ) C Cz ˆj By Cy = ( Ax BxCx + Ay Bx C y + Az Bx Cz − Ax Bx Cx − Ay By Cx − Az Bz Cx ) iˆ + ( Ax By Cx + Ay By C y + Az By Cz − Ax Bx C y − Ay By C y − Az Bz C y ) ˆj + ( Ax Bz Cx + Ay Bz C y + Az Bz C z − Ax BxCz − Ay By Cz − Az Bz Cz ) kˆ ( A B C + A B C − A B C − A B C ) iˆ = + ( A B C + A B C − A B C − A B C ) ˆj + ( A B C + A B C − A B C − A B C ) kˆ y x y z x z y y x z z x x y x z y z x x y z z y x z x y z y x x z y y z iˆ Ax By Cz − Bz C y iˆ ( Ay Bx C y − Ay By Cx − Az Bz Cx + Az Bx Cz ) kˆ Az = + ˆj ( Az By Cz − Az Bz C y − Ax Bx C y + Ax By Cx ) Bx C y − By Cx + kˆ A B C − A B C − A B C + A B C ( x z x x x z y y z y z y) ˆj Ay Bz Cx − Bx Cz 1.10 y = A sin θ 1  Α =  xy  + y ( B − x ) = xy + yB − xy = AB sin θ 2  K K Α = A× B 1.11 iˆ K K K K A ⋅ ( B × C ) = A ⋅ Bx Cx 1.12 x G u kˆ Ax Bz = Bx Cz Cx ˆj By Cy Ay By Cy Bx Az Bz = − Ax Cz Cx By Ay Cy Bz K K K Az = − B ⋅ ( A × C ) Cz z G A G C x G B G K K Let A = (Ax,Ay,Az), B = (0,By,0) and C = (0,Cy,Cz) K K G G G Cz is the perpendicular distance between the plane A , B and its opposite u = B x C is G G G G directed along the x-axis since the vectors B , C are in the y,z plane u x = B x C = ByCz G G is the area of the parallelogram formed by the vectors B , C Multiply that area times the K K height of plane A , B = Ax to get the volume of the parallopiped G G G V = Ax u x = Ax By Cz = A • B x C ( ) 1.13 For rotation about the z axis: iˆ ⋅ iˆ′ = cos φ = ˆj ⋅ ˆj ′, kˆ ⋅ kˆ′ = iˆ ⋅ ˆj ′ = − sin φ ˆj ⋅ iˆ′ = sin φ For rotation about the y′ axis: iˆ ⋅ iˆ′ = cos θ = kˆ ⋅ kˆ′, iˆ ⋅ kˆ′ = sin θ kˆ ⋅ iˆ′ = − sin θ  cos θ I  T =  sin θ  ˆj ⋅ ˆj ′ = − sin θ   cos φ    − sin φ cosθ   sin φ cos φ 0   cos θ cos φ    =  − sin φ   sin θ cos φ cosθ sin φ cos φ sin θ sin φ − sin θ    cosθ  1.14 iˆ ⋅ iˆ′ = cos 30D = ˆj ⋅ iˆ′ = sin 30D = kˆ ⋅ iˆ′ = iˆ ⋅ ˆj ′ = − sin 30D = − ˆj ⋅ ˆj ′ = cos 30D = kˆ ⋅ ˆj ′ = ˆj ⋅ kˆ′ = iˆ ⋅ kˆ′ =   3  0  3+   2     Ax′       3  A  = −   y′   2    =  − 1   −1  Az ′       −1         K A = 3.232iˆ′ + 1.598 ˆj ′ − kˆ′ kˆ ⋅ kˆ′ = 1.15 Rotate thru φ about z-axis φ = 45D Rφ Rotate thru θ about x’-axis Rθ Rotate thru ψ about z’-axis θ = 45 ψ = 45D     Rφ =  −     2  1   Rθ =    0 −  D  0   0  1          2   0  2     Rψ =  − 0 2   1      1  +  2− 2 2  1  − + R (ψ ,θ , φ ) = Rψ Rθ Rφ =  − − 2 2 2  1  −  2  1 K   where x′ =   and 0   2 we have: ψ + β + α = K K Condition is: x′ = Rx K K Since x ⋅ x = After a lot of algebra: α = 1.16 Rψ    1 α     or   = R (ψ ,θ , φ )  β   0 γ         2 α  K   x =β  γ    2 − , β= + , γ = 4 K v = vτˆ = ctτˆ v2 c 2t K a = vτˆ + nˆ = cτˆ + nˆ b ρ b K , v = τˆ bc and c K K v ⋅a c bc cos θ = = = va bc 2c K a = cτˆ + cnˆ at t = θ = 45D 1.17 K ˆ ω sin (ω t ) + ˆj 2bω cos (ω t ) v ( t ) = −ib 1 K v = ( b 2ω sin ω t + 4b 2ω cos ω t ) = bω (1 + 3cos ω t ) K ˆ ω cos ω t − ˆj 2bω sin ω t a ( t ) = −ib K a = bω (1 + 3sin ω t ) 1.18 K v = 2bω ; t = 0, at at t= π , 2ω K v = bω K ˆ ω cos ω t − ˆjbω sin ω t + kˆ 2ct v ( t ) = ib K ˆ ω sin ω t − ˆjbω cos ω t + kˆ 2c a ( t ) = −ib 1 K a = ( b 2ω sin ω t + b 2ω cos ω t + 4c ) = ( b 2ω + 4c ) 1.19 K  ˆr + rθeˆθ = bke kt eˆr + bce kt eˆθ v = re K a =  r − rθ eˆr + rθ + 2rθ eˆθ = b ( k − c ) e kt eˆr + 2bcke kt eˆθ K K b k ( k − c ) e kt + 2b c ke kt v ⋅a = cos φ = 1 va kt 2 kt  2 2 2 be ( k + c ) be ( k − c ) + 4c k   ( cos φ = 1.20 ) ( ) k ( k + c2 ) (k +c 2 ) (k +c k = ) (k +c 2 ) , a constant K  − Rφ ) eˆ + ( Rφ + Rφ ) eˆ +  a = (R zeˆz R φ K a = −bω eˆR + 2ceˆz K a = ( b 2ω + 4c ) 1.21 1.22 K r ( t ) = iˆ (1 − e − kt ) + ˆje kt K ˆ − kt + ˆjkekt r ( t ) = ike K ˆ e − kt + ˆjk ekt r ( t ) = −ik K v = eˆr r + eˆφ rφ sin θ + eˆθ rθ π  π K  v = eˆφ bω sin  1 + cos ( 4ω t )   − eˆθ b ω sin ( 4ω t )  2  π K π  v = eˆφ bω cos  cos ( 4ω t )  − eˆθ bω sin ( 4ω t ) 8   2 K π  π v = bω cos  cos 4ω t  + sin 4ω t  8    Path is sinusoidal oscillation about the equator 1.23 K K v ⋅ v = v2 K K dv K K dv ⋅v + v ⋅ = 2vv dt dt K K 2v ⋅ a = 2vv K K v ⋅ a = vv 1.24 1.25 K d K K K dr K K K d K K  r ⋅ ( v × a )  = ⋅ (v × a ) + r ⋅ (v × a ) dt dt dt K K K K K K  dv K   K da   = v ⋅ ( v × a ) + r ⋅  × a  +  v ×   dt      dt K  K K  = + r ⋅ 0 + ( v × a ) d K K K K K K  r ⋅ ( v × a )  = r ⋅ ( v × a ) dt K K v = vτˆ and a = aτ τˆ + an nˆ K K v ⋅a K K v ⋅ a = vaτ , so aτ = v a = aτ2 + an2 , so an = ( a − aτ2 ) 1.26 For 1.14, aτ = −b 2ω cos ω t ⋅ sin ω t + b 2ω sin ω t ⋅ cos ω t + 4c 2t (b ω aτ = cos ω t + b 2ω sin ω t + 4c 2t ) 4c 2t (b ω 2 2 + 4c t )  2 2 16c 4t 2 a n =  b ω + 4c − 2  b ω + 4c t   b k ( k − c ) e kt + 2b c ke kt kt 2 = bke ( k + c ) For 1.15, aτ = kt 2 be ( k + c ) 1 2 an = b e kt ( k + c ) − b k e kt ( k + c )  = bce kt ( k + c )   1.27 v K K v = vτˆ , a = vτˆ + nˆ ρ v v3 K K v × a = v ⋅ an = v = ρ ρ 1.28 K ˆ sin θ + ˆjb cos θ rD P = ib K ˆ θ cos θ − ˆjbθ sin θ vrel = ib K ˆ θ cosθ − θ sin θ − ˆjb θ sin θ + θ cosθ arel = ib ( ) at the point θ = π K So, vrel = bθ = v ( ) K K , vrel = −v v aD = b b v2 v2 K Now, arel = vrelτˆ + rel nˆ = aDτˆ + nˆ ρ b θ = v b θ =  v4  K arel =  aD +  b   K K K K K K vP = v + vrel and aP = aD + arel  a  a  v2 v2 K aP = iˆ  aD + b  D cos θ − sin θ   − ˆjb  D sin θ + cosθ  b b b  b    2 v4 2v K aP = aD  + cos θ + 2 − sin θ  aD b aDb   K aP is a maximum at θ = , i.e., at the top of the wheel 2v −2sin θ − cosθ = aDb  v2    aDb  θ = tan −1  − 0  x -x   x x   x       = x x − x x = x  Therefore, x = 1.29 RR      0 1 0 1  0      The transformation represents a rotation of 45o about the z-axis (see Example 1.8.2) 10 1.30 (a) a θ b φ a = iˆ cos θ + ˆj sin θ b = iˆ cos ϕ + ˆj sin ϕ ( )( a ⋅ b = cos (θ − ϕ ) = iˆ cos θ + ˆj sin θ ⋅ iˆ cos ϕ + ˆj sin ϕ ) cos (θ − ϕ ) = cos θ cos ϕ + sin θ sin ϕ (b) ( ) ( b × a = kˆ sin (θ − ϕ ) = iˆ cos θ + ˆj sin θ × iˆ cos ϕ + ˆj sin ϕ ) sin (θ − ϕ ) = sin θ cos ϕ − cos θ sin ϕ 11

Ngày đăng: 25/08/2018, 09:35

Mục lục

  • CHAPTER 1

Tài liệu cùng người dùng

Tài liệu liên quan