1. Trang chủ
  2. » Giáo Dục - Đào Tạo

phần 2 image marked image marked

68 130 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 2,12 MB

Nội dung

Câu 795 (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy hình bình hành Gọi M, N trung điểm AD BC Giao tuyến (SMN) (SAC) là: A SD B SO (O trọng tậm ABCD) C SF (F trung điểm CD) D SG (F trung điểm AB) Đáp án B Gọi O tâm hình bình hành ABCD suy O  MN O  AC Vậy (SMN )  (SAC) = SO Câu 796 (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABC có SA ⊥ ( ABC) , đáy ABC vuông A Mệnh đề sau sai: A góc (SBC) (SAC) góc SCB B (SAB) ⊥ (SAC) C (SAB) ⊥ ( ABC) D Vẽ AH ⊥ BC , H thuộc BC Góc (SBC) (ABC) góc AHS Đáp án A Ta có (SBC)  (SAC) = SC suy góc hai mặt phẳng (SBC) (SAC) khơng phải góc SCB Câu 797 (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy ABCD hình thang vng A B, AD = 2BC, SA ⊥ ( ABCD) Gọi E, M trung điểm AD SD K hình chiếu E SD Góc (SCD) A góc AMC B góc EKC C góc AKC (SAD) là: D góc CSA Đáp án B AE = BC Ta có  suy AECB hình bình hành Do ABC = 900 nên AECB hình chữ AE / /BC  nhật Suy CE ⊥ AD mà SA ⊥ CE  CE ⊥ (SAD)  CE ⊥ SD Ta lại có EK ⊥ SD  SD ⊥ ( EKM )  SD ⊥ CK Suy góc hai mặt phẳng Câu 798 (SAD) (SCD) góc EKC (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABC có đáy ABC tam giác cân C, (SAB) ⊥ ( ABC) , SA = SB , I trung điểm AB Mệnh đề sau sai: A Góc (SAB) (ABC) góc SIC B SAC = SBC D SI ⊥ ( ABC) C IC ⊥ (SAB) Đáp án A Ta có SA = SB CA = CB nên SAC = SBC  IC ⊥ AB Ta có  suy IC ⊥ (SAB) ( ABC ) ⊥ ( SAB ) Chứng minh tương tự ta có SI ⊥ ( ABC) Câu 799: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có SA ⊥ (ABCD) , đáy ABCD hình chữ nhật có BA = a 2, BA = a Khoảng cách SD BC bằng: A 2a B a C 3a D a Đáp án B CD ⊥ AD  CD ⊥ ( SAD ) suy Ta có  CD ⊥ SA CD ⊥ SD  CD ⊥ BC Vậy khoảng cách SD BC d (SD; BC ) = CD = AB = a Câu 800 (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABC có ABC tam giác vuông B, AB = a, BC = 2a Biết SA ⊥ AB, SC ⊥ BC , góc SC (ABC) 600 Độ dài cạnh SB bằng: A 2a Đáp án B B 2a C 3a D 2a (ABC) Khi SD ⊥ ( ABC) Gọi D hình chiếu S Do hình chiếu SC (ABC) CD Suy góc SC (ABC) SCD BC ⊥ SC AB ⊥ SA Ta có   BC ⊥ CD,   AB ⊥ AD BC ⊥ SD AB ⊥ SD Vậy ABCD hình chữ nhật Theo đề SCD = 600 Ta tính BD = AC = a 5, DS = CD = a Vậy SB = SD2 + BD2 = 8a = 2a Câu 801 (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có SA ⊥ ( ABCD ) , ABCD hình chữ nhật tâm O Gọi I trung điểm SC Mệnh đề sau sai: A SD ⊥ DC B BD ⊥ (SAC) C BC ⊥ SB D OI ⊥ ( ABCD) Đáp án B CD ⊥ SA  CD ⊥ SD  CD ⊥ AD BC ⊥ AB  BC ⊥ ( SAB)  BC ⊥ SA OI || SA  OI ⊥ ( ABCD )  SA ⊥ ( ABCD ) Do ABCD hình chữ nhật nên khơng đảm bảo AC ⊥ BD , khơng đảm bảo BD ⊥ (SAC) Câu 802: (THPT Thuận Thành Số1- Bắc Ninh): Cho tứ diện ABCD Gọi G trọng tâm tam giác ABD, M điểm thuộc cạnh BC cho MB = 2MC Mệnh đề sau đúng? A MG || ( BCD) B MG || ( ACD) C MG || ( ABD) Đáp án B Lấy điểm N cạnh BD cho NB = 2ND Khi ta có MN || DC Gọi I trung điểm BD ta có G  AI IG = IA Mặt khác ta có DN = DB = DI  IN = ID 3 Từ (2) (3) suy NG || AD D MG || ( ABC) Từ (1) (4) suy ( GMN ) || ( ACD) GM || ( ACD) Nhận xét: Có thể loại đáp án sai cách nhận xét đường thẳng GM cắt mặt phẳng (BCD), (ABD), Câu 803: (ABC) (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy ABCD hình bình hành tâm O Gọi M, N trung điểm SA, SB Giao tuyến ( MNC) ( ABD ) là: A OM B CD C OA D ON Đáp án B Dễ thấy MN || AB nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến đường thẳng qua C song song với AB Vậy giao tuyến (MNC) (ABD) đường thẳng CD Nhận xét: Có thể nhận thấy O  ( CMN ) nên OM, ON OA giao tuyến (OMN) với mặt phẳng (ABCD) Câu 804: (THPT Thuận Thành Số1- Bắc Ninh): Cho tứ diện ABCD có AB = x, tất cạnh lại có độ dài Gọi S diện tích tam giác ABC, h khoảng cách từ D đến mp (ABC).Với giá trị x biểu thức V = S.h đạt giá trị lớn A x = B x = C x = D x = Đáp án B Gọi K trung điểm AB, ∆CAB ∆DAB hai tam giác cân chung cạnh đáy AB nên CK ⊥ AB  AB ⊥ ( CDK )  DK ⊥ AB Kẻ DH ⊥ CK ta có DH ⊥ ( ABC) 11 11   Vậy V = S.h =  CK.AB  DH =  CK.DH  AB 3 3   Suy V = AB.SKDC Dễ thấy CAB = DAB  CK = DK hay KDC cân K Gọi I trung điểm CD, suy KI ⊥ CD KI = KC2 − CI2 = AC2 − AK − CI2 = − x2 −1 = 12 − x Suy SKDC = Vậy V = 1 KI.CD = 12 − x 2 1 x + 12 − x x 12 − x  = Dấu đẳng thức xảy 6 x = 12 − x hay x = Câu 805: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy ABCD hình thang có đáy lớn AB Gọi M trung điểm SC Giao điểm BC với mp (ADM) là: A giao điểm BC AM B giao điểm BC SD C giao điểm BC AD D giao điểm BC DM Đáp án C Dễ thấy cặp đường thẳng BC AM, BC SD, BC DM cặp đường thẳng chéo nên chúng không cắt Theo giả thiết, BC AD cắt Ta gọi F giao điểm BC AD Do F  AD nên F  ( ADM ) , từ suy F giao điểm đường thẳng BC mặt phẳng Câu 806: (ADM) (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có SA ⊥ ( ABCD ) , ABCD hình chữ nhật có AB = a, AD = 2a, SA = a Tính tan góc hai mặt phẳng (SBD) A 5 B (ABCD) C 15 D 15 Đáp án D Kẻ AH ⊥ BD với H  BD ta có SH ⊥ BD , từ suy SHA góc hai mặt phẳng (SBD) (BACD) Ta có 1 1 2a = + = + =  AH = 2 AH AB AD a 4a 4a Vậy tan SHA = Câu 807: SA a 15 = = 2a AH (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy ABCD hình vng tâm O, cạnh a 2, SA = 2a Cơsin góc (SAC) bằng: (SDC) 21 14 A B 21 C 21 D 21 Đáp án D Ta có AC = 2a = SA = SC suy tam giác SAC đều, SO = 2a = a Vẽ DJ ⊥ SC, J  SC Khi BJ vng góc với SC Ta có: (SCD)  (SCA) = SC, JD ⊥ SC, JB ⊥ SC Đặt  = DJB Vì JD = JB nên JO đường cao tam giác cân DJB, suy JO đường phân giác Do góc (SDC) (SAC) DIO =   Ta có SC ⊥ ( DJB) , mà OJ  ( DJB) nên OJ ⊥ SC Trong DJO ta có: OJ = OD.cot Trong SOC ta có: Do đó: a cot  sin Mà cos   1 1 1 = +  = 2+ 2 2  OJ OS OA 3a a a cot 2 =    cot =  + cot = 3a 4 =    sin =  cos = 7   nên từ (1) ta có cos  21 = Vậy cơsin góc (SDC) (SAC) 21 Câu 808: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, SA ⊥ ( ABCD) , SA = 2a, AB = a, BC = 2a Cơsin góc SC DB bằng: A Đáp án C B −1 C D ( ) Ta có: SC.BD = SA + AC BD = SA.BD + AC.BD = AC.BD = AC.BD.cos DOC = AC2 = AC2 OD2 + OC2 − DC2 2OD.OC OD2 + OC2 − DC2 = ( 2OC2 − DC2 ) 2OC  5a  = 2 − a  = 3a   ( ) Do đó: cos SC, BD = SC.BD 3a = = SC.BD 3a.a 5 ( ) Vậy cos (SC, BD ) = cos SC, BD = Câu 809: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình lập phương ABCD.A’B’C’D’ Gọi M, N trung điểm AA’ CD Góc hai đường thẳng BM C’N bằng: A 450 B 300 C 600 D 900 Đáp án D Gọi E trung điểm A’B’ Khi ANC’E hình bình hành Suy C’N song song với AE Như góc hai đường thẳng BM C’N góc hai đường thẳng BM AE Ta có MAB = EA’A ( c − g − c ) suy A'AE = ABM (hai góc tương ứng) Do đó: A 'AE + BMA = ABM + BMA = 900 Suy hai đường thẳng BM AE vng góc với nên góc gữa chúng 900 Vậy góc hai đường thẳng BM C’N 900 Câu 810: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, AD = 2a, AA’ = 3a Gọi M, N, P trung điểm BC, C’D’ DD’ Tính khoảng cách từ A đến mp (MNP) A 15 a 22 B a 11 C a D 15 a 11 Đáp án D Gọi E giao điểm NP CD Gọi G giao điểm NP CC’ Gọi K giao điểm MG B’C’ Gọi Q giao điểm ME AD Khi mặt phẳng (MNP) (MEG) Gọi d1 ,d khoảng cách từ C, A đến mặt phẳng mặt phẳng (MEG) điểm H AC cắt (như hình vẽ) nên (MEG) Do d1 HC = Do tứ diện CMEG tứ diện d HA vuông C nên 1 1 = + + 2 d1 CM CE CG Ta có GC ' C ' N = = GC CE Suy GC = Như vậy: 9a CC ' = 2 1 4 = 2+ 2+ d1 a 9a 81a Từ d12 = QD ED a 81a = =  QD =  d1 = Ta có MC EC 3 12 11 Ta có HCM đồng dạng với HAQ nên: d HC MC a 3 5.9a 15a = = =  =  d = d1 = = HA AQ 2a − a d2 3.11 11 Câu 811: (THPT Thuận Thành Số1- Bắc Ninh): Cho hình vng ABCD có tâm O ,cạnh 2a Trên đường thẳng qua O vng góc với mp (ABCD) lấy điểm S Biết góc SA (ABCD) 450 Độ dài SO bằng: A SO = 2a B SO = 3a C SO = a D SO = a 2 Đáp án A Do SO vng góc với phẳng (ABCD) nên hình chiếu SA mặt (ABCD) AO, góc SA (ABCD) góc SA AO, hay SAO = 450 Do ABCD hình vng cạnh 2a nên: AO = 1 AC = 2a = 2a 2 Do SAO vuông O nên tan SAO = SO AO Độ dài đoạn thẳng SO là: SO = AO tan SAO = a tan 450 = 2a (THPT Thuận Thành Số1- Bắc Ninh): Cho hình lăng trụ ABC.A’B’C’ Câu 812: Gọi M, M’, I trung điểm BC, B’C’ AM Khoảng cách đường thẳng BB’ mp (AMM’A’) độ dài đoạn thẳng: A BM’ B BI C BM D BA Đáp án C Vì ABC.A’B’C’ lăng trụ nên BC ⊥ BB’ , tam giác ABC tam giác  AM ⊥ BC Mặt khác M M’ trung điểm BC B’C’ nên MM’BB’, suy BC ⊥ MM’ Từ ta BC ⊥ (AMM’A’) BB’|| ( AMM’A’) Vậy khoảng cách đường thẳng BB’ mp (AMM’A’) khoảng cách từ điểm B đến mặt phẳng (AMM’A’), độ dài đoạn thẳng BM (THPT Thuận Thành Số1- Bắc Ninh): Cho hình chóp S.ABCD có cạnh Câu 813: đáy 2a, cạnh bên 3a Khoảng cách từ A đến mp (SCD) bằng: A a 14 B a 14 C a 14 D a 14 Đáp án C Gọi I trung điểm CD suy ra: SI ⊥ CD Vì OI || AD nên CD ⊥ AD  CD ⊥ OI Vậy CD ⊥ (SOI ) Dựng đường cao OH tam giác vuông SOI  CD ⊥ OH Mặt khác OH ⊥ SI nên OH ⊥ (SCD) Ta có: d ( A, (SCD) ) = 2d ( O, (SCD) ) = 2OH Xét tam giác vng SOC có SO = SC − OC = 2 ( 3a )  2a  −   = a   Xét tam giác vuông SOI có OI = AD = a 1 1 a 14 = + = + =  OH = 2 OH SO OI 7a a 7a Vậy d ( A, ( SCD ) ) = a 14 Câu 814: (THPT ĐK-HBT) Cho khối chóp có đáy đa giác gồm n cạnh Chọn mệnh đề mệnh đề sau: A Số mặt khối chóp 2n B Số đỉnh khối chóp 2n+1 C Số cạnh khối chóp n+1 D Số mặt khối chóp số đỉnh Đáp án D Câu 815: (THPT ĐK-HBT) Khối mười hai mặt khối đa diện loại: B 3;5 A 4;3 C 2; 4 D 5;3 Đáp án D Câu 816: (THPT ĐK-HBT) Cho hình chóp S.ABCD có đáy ABCD hình vng với đường chéo AC = 2a , SA vng góc với mặt phẳng (ABCD) Khoảng cách hai đường thẳng SB CD là: A a B a C a D a Đáp án C d (SB;CD ) = d ( CD; (SAB) ) = BC = Câu 817: (THPT ĐK-HBT) Cho hình hộp đứng ABCD.A' B' C' D' có đáy hình thoi, AC = 6a, BD = 8a Chu vi đáy lần chiều cao khối hộp Thể tích khối hộp ABCD.A' B' C' D' là: A 240a Đáp án B Chi vi đáy: 20  h = S= AC BD = 24 V=120 B 120a C 40a D 80a S a A B 600 Þ S A BCD = 2S A BC = O C có: S A BC = Ta D ·BC = a.a sin 60° = a BA BC sin A 2 a2 Thể tích khối chóp S BCD là: V S BCD = Câu 902 1 1 a2 a3 SA S BCD = SA S A BCD = a = 3 2 (THPT Chu Văn An – Hà Nội)Tìm số cạnh hình đa diện có mặt A cạnh B cạnh C cạnh D cạnh Đáp án C • Số cạnh mặt Số mặt số cạnh khối đa diện nên suy số cạnh khối đa diện số cạnh mặt Số mặt /2 • Số cạnh mặt tối thiểu ta có số cạnh khối đa diện ³ 3.5 = 7, suy số cạnh khối đa diện mặt cạnh Câu 903 (THPT Chu Văn An – Hà Nội) Một khối chóp tam giác có độ dài cạnh đáy 6,8,10 Một cạnh bên có độ dài tạo với đáy góc 60 Tính thể tích khối chóp hình chóp A 16 B C 16 D 16 Đáp án A S 600 10 A C H B Ta có tam giác vng A BC B S = 24 Chiều cao SH = SC s in 300 = Thể tích V = 24.2 = 16 3 Câu 904: (THPT Chu Văn An – Hà Nội)Cho hình hộp ABCD.A ' B ' C ' D ' gọi O giao điểm AC BD Tính tỉ số thể tích khối chóp O.ABC khối hộp ABCD.A ' B ' C ' D ' A B C D 12 Đáp án C A' D' C' B' A D O B Ta có: V O A ¢B ¢C ¢ = C 1 V ; V = V ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ O A B C D O A B C D A BCD A ¢B ¢C ¢D ¢ V 1 O A ¢B ¢C ¢ V = V ị = O A ÂB ÂC ¢ A BCD A ¢B ¢C ¢D ¢ V A BCD A ¢B ¢C ¢D ¢ (THPT Chu Văn An – Hà Nội) Cho tứ diện ABCD có Câu 905: AB = 2, AC = 3, AD = BC = 4, BD = 5, CD = Khoảng cách hai đường thẳng AC BD gần với giá trị sau A B C D Đáp án C D G A E C B F Ta có: AD + AC = DC nên tam giác A DC vuông A hay A D ^ A C AD + AB = DB nên tam giác A DB vuông A hay A D ^ A B Khi A D ^ (A BC ) Dựng hình bình hành A CBE Khi A C / / (BDE ) ( ) ( ) Suy d (A C , BD ) = d A C , (BDE ) = d A, (BDE ) Kẻ A F ^ BE Khi BE ^ (DA F ) Kẻ A G ^ DF A G ^ (DBE ) pA BE = 15 Þ S A BE = = A F BE Þ A F = 1 = + Þ AG = 2 AG AF DA Câu 906: 15 240 79 (THPT Chu Văn An – Hà Nội)Cho hình chóp tứ giác S.ABCD , có cạnh a3 Gọi J điểm cách tất mặt hình chóp Tính khoảng cách d từ J đến mặt phẳng đáy đáy a tích V = A d = a B d = a C d = a D d = a Đáp án C S J A D N M O B C Gọi O tâm hình vng A BCD Ta có đường cao hình chóp SA BCD SO V SA BCD = SO S A BCD Û 3 3 a = SO a Þ SO = a 2 Xét tam giác SMO ta có SM = SO + OM = ỉ ÷ ỉa ư2 çç ÷ ÷ + ççç ÷ = a çç a ữ ữ ữ ữ ữ ỗố ứ ố2 ứ Gọi M , N trung điểm A B ,CD Khi J tâm đường tròn nội tiếp tam giác SMN Khi ta có MJ đường phân giác tam giác SMN Suy : SJ MS a = = = Þ SJ = 2JO JO MO a Mà SO = SJ + JO = Câu 907 3 a a Û 3JO = a Û JO = 2 (THPT C Nghĩa Hưng)Từ tờ giấy hình tròn bán kính 5cm , ta cắt hình chữ nhật có diện tích lớn ( cm ) ? A 25 Đáp án B B 50 C 25 D 100 A B O C D Hình chữ nhật ln nội tiếp đường tròn, nên hình chữ nhật lớn cắt nội tiếp đường tròn bán kính 5cm Xét hình chữ nhật ABCD nội tiếp ( 0;5cm) ta có S ABCD = AB.BC  AB + BC AC 102 = = = 50cm2 2 Câu 908: (THPT C Nghĩa Hưng)Khối đa diện loại 5;3 thuộc loại nào? A Khối hai mươi mặt B Khối lập phương C Khối bát diện D Khối mười hai mặt Đáp án D Khối đa diện loại 5;3 khối đa diện mặt có cạnh mối đỉnh có cạnh qua Đây khối mười hai mặt Câu 909: định sai? (THPT C Nghĩa Hưng)Cho hình đa diện Khẳng định sau khẳng A Mỗi đỉnh đỉnh chung ba cạnh B Mỗi đỉnh đỉnh chung ba mặt C Mỗi cạnh cạnh chung ba mặt D Mỗi mặt có ba cạnh Đáp án C Đáp án C sai chẳng hạn tứ diện lồi cạnh cạnh chung hai mặt Câu 910 (THPT C Nghĩa Hưng): Mặt phẳng thành khối đa diện nào? (AB’C’) chia khối lăng trụ ABC.A’B’C’ A Một khối chóp tam giác khối chóp tứ giác B Hai khối chóp tam giác C Một khối chóp tam giác khối chóp ngũ giác D Hai khối chóp tứ giác Đáp án A Mặt phẳng ( AB ' C ') chia lăng trụ thành A B C B' A' C' Mặt phẳng ( AB ' C ') chia lăng trụ thành khối chóp tam giác AA' B ' C ' khối chóp tứ giác ABB ' C ' C Câu 911 (THPT C Nghĩa Hưng): Cho hình chóp S.ABCD có đáy hình vng cạnh a , cạnh bên SA vng góc với mặt phẳng đáy SA = a Tính thể tích V khối chóp S.ABCD A V = a3 6 B V = a3 C V = a3 D V = a Đáp án C S a A B a D C 1 a3 VSABCD = SA.dt ABCD = a 6.a = 3 Câu 912: (THPT C Nghĩa Hưng)Khối lăng trụ có chiều cao 20 cm diện tích đáy 125cm thể tích A 2500cm B 2500 cm C 2500cm3 D 5000cm3 Đáp án C Vlt = h.S = 20.125 = 2500 ( cm3 ) Câu 913: (THPT C Nghĩa Hưng)Thể tích khối hộp chữ nhật có kích thước a, 2a, 3a B 6a A 6a C 2a D 3a Đáp án A Thể tích hình hộp chữ nhật tích ba kích thước V = a.2a.3a = 6a Câu 914: (THPT C Nghĩa Hưng) Cho hình chóp S.ABCD có đáy hình chữ nhật có cạnh AB = 2a, AD = a Hai mặt bên SAB SAD vng góc với đáy SC = a 14 Tính theo a thể tích khối chóp S.ABCD A V = 6a Đáp án C B V = 3a C V = 2a D V = a S a 14 A 2a B a C D Hai mặt ( SAB ) ( SAD ) ⊥ đáy  SA ⊥ ( ABCD ) SA = SC − AC = SC − AB − AD = 14a − 4a − a = 3a Ta có 1  VSABCD = SA.dt ABCD = SA AB AD = 3a.2a.a = 2a 3 3 Câu 915: (THPT C Nghĩa Hưng) Hình chóp S.ABC có đáy tam giác có AB = BC = CA = 2a;SA ⊥ ( ABC) SA = a Thể tích hình chóp S.ABC A a a3 B 12 a3 D a3 C Đáp án A S a A B 2a M C Gọi M trung điểm BC  AM = 2a 1 = 3a dt ABC = AM BC = a 3.2a = 3a 2 2 1 Vậy VSABC = SA.dt ABC = a 3a = a 3 Câu 916: (THPT C Nghĩa Hưng)Kim tự tháp Kê-ốp Ai Cập có dạng khối chóp tứ giác đều, biết cạnh đáy dài 230m chiều cao 147m Thể tích khối kim tự tháp A 2592100 m B 7776300 m C 25921000 m D 2592100 m Đáp án D 1 Ta có V = h.S = 147.230.230 = 2592100m3 3 Câu 917: (THPT C Nghĩa Hưng) Hình lăng trụ có số cạnh số sau đây? A 2015 B 2016 C 2017 D 2018 Đáp án B Số cạnh hình lăng trụ 3n nghĩa số chia hết cho Câu 918: xứng? A (THPT C Nghĩa Hưng)Hình lăng trụ tam giác có mặt phẳng đối B C D.Vô số Đáp án B B E M N A C P B' Q O M' E' A' C' N' Hình lăng trụ tam giác có bốn mặt đối xứng là: ( A ' AMM ') , ( B ' BNN ') , ( C ' CEE ') (OPQ ) (với O, P, Q trung điểm cạnh AA ', BB ', CC ' Câu 919: (THPT C Nghĩa Hưng) Xét khối hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD hình vng diện tích tồn phần hình hộp 32 Thể tích lớn khối hộp ABCD.A’B’C’ bao nhiêu? A V = 56 70 64 80 B V = C V = D V = 9 9 Đáp án C B C A D b B' C' a A' D' a Ta có diện tích tồn phần hình hộp chữ nhật S = 32 = 2a + 4ab = ( a + ab + ab )  2.3 a ab.ab = ( a 2b ) = V 2 32 64  16   V  V    =  3 Câu 920: (THPT C Nghĩa Hưng) Hình chóp tứ giác S.ABCD có cạnh đáy có độ dài a Mặt phẳng (P) qua A vng góc với SC cắt SB, SC, SD B’, C’, D’ cho SB’ = 2BB’ Tỉ số thể tích hình chóp S.AB’C’D’ thể tích hình chóp S.ABCD A B C D 27 Đáp án C S B' C' G D' B A O C D Gọi O = AC  BD, G = AO  AC ' Ta có AC ⊥ ( SBD )  AC ⊥ B ' D ' mặt khác SC ⊥ B ' D '  B ' D ' ⊥ ( SAC )  B ' D '/ / BD Theo Định lý Talet ta có SB ' SD ' SG = = =  G trọng tâm SAC  C ' trung B ' B D ' D GO điểm SC VSAB 'C ' D ' VSAB 'C ' + VSAC ' D '  VSAB 'C ' VSAC ' D '   SB '.SC ' SC '.SD '  = =  + + =   VSABCD VSABCD  VSABC VSACD   SB.SC SC.SD  Vậy 12 1 2 =  + = 23 2 3 Câu 921: (THPT C Nghĩa Hưng) Cho khối chóp S.ABC có đáy ABC tam giác cân A, AB = a, BAC = 120,SBA = SCA = 90 Biết góc SB đáy 60 Tính thể tích V khối chóp S.ABC A V = Đáp án C a3 B V = 3a 3 C V = a3 D V = 3a S x H 600 C B M a A Gọi M trung điểm BC BC ⊥ ( SAM ) AB = AC SB = SC Trong ( SAM ) kẻ SH ⊥ AM ta có SH ⊥ ABC  góc SBH = 600 , đặt SB = SC = x ta có: AM = AB.sin 300 = dt ABC = a BM = AB.cos 600 = a , 1a AM BC = a = a2 22  BC = a 3 , 3x 2 = x + 4a , SH = SB.sin 600 = x , , SA = SB2 + AB2 = x + a , SM = SB − BM = x − MH = SM − SH = x − Ta có : AH − MH = AM  a2 , AH = SA2 − SH = x + a − 3a 3x 2 − = x − 3a 4 2 x + 4a − x − 3a = a  x + 4a = x − 3a + a 2  3a = x2 − 3a2  x2 = 12a2  x = 2a  SH = 3a 1 3 = a3 Như VSABC = SH dt ABC = 3a.a 3 4 Câu 922: (THPT C Nghĩa Hưng)Cho khối chóp S.ABC có đáy ABC tam giác vng cân đỉnh B, AB = 4,SA = SB = SC = 12 Gọi M, N trung điểm AC, BC Trên cạnh SA, SB lấy điểm E, F cho A 16 34 B 17 SE BF = = Tính thể tích khối tứ diện MNEF SA BS C 34 D 34 Đáp án C S S F G F B N C E B M E N C H M A A K K B A K ABC vuông cân SM = SB = SC  SM ⊥ ( ABC ) Ta có FE  AB = K FH = , kẻ B nên FG / / BA M tâm đường tròn ngoại tiếp FH / / SM  FH ⊥ ( ABC ) 2 SM = SA2 − AM = 122 − = 34 3 3 ta có: dt KMN = dt BNMK − dt BNK = 1 1 ( MN + BK ) BN − KB.BN = MN BN = 2.2 = 2 2 FGE = KAE ( C.G.C )  FE = FK VFMNE FE 1 1 4 34 = =  VFMNE = VFMNK = FH dt KMN = 34.2 = VFMNK FK 2 (THPT C Nghĩa Hưng) Cho hình hộp ABCD.A’B’C’D’ có Câu 923: AB = a, B'C ' = a 5, đường thẳng A’B B’C tạo với mặt phẳng (ABCD) góc 45 , tam giác A’AB vng B, tam giác A’CD vng D Tính thể tích khối hộp ABCD.A’B’C’D’ theo a A 2a B 2a 3 C a3 D a3 6 Đáp án A B' C' A' A' D' B 450 450 H B C H A D D AA ' B ⊥ AB ⊥ A ' B Theo giả thết ta có:   AB ⊥ ( A ' BD )  AB ⊥ BD A ' CD ⊥ CD ⊥ A ' D  AB ⊥ A ' D  BD = AD2 − AB2 = 5a2 − a2 = 2a  S ABCD = 2S ABD = AB AD = a.2a = 2a Kẻ đường cao AH A ' BD  A ' H ⊥ ( ABCD ) , góc AB ' ( ABCD ) góc A ' BH = 450 Do B ' C / / A'D nên góc B ' C  A' H = ( ABCD ) góc A ' DH = 450  A ' BD vuông cân BD 2a = = a từ tính VABCD A ' B 'C ' D ' = A ' H S ABCD = a.2a = 2a 2 ... đường chéo hình hộp chữ nhật có ba kích thước a,b,c A a2 + b2 − c2 Đáp án B B a2 + b2 + c2 C 2a2 + 2b2 − c2 D a2 + b2 − 2c2 (THPT Quế Võ Số 2) Cho hình chóp tứ giác S.ABCD có khoảng cách từ A Câu... 2a, AB = a, BC = 2a Cơsin góc SC DB bằng: A Đáp án C B −1 C D ( ) Ta có: SC.BD = SA + AC BD = SA.BD + AC.BD = AC.BD = AC.BD.cos DOC = AC2 = AC2 OD2 + OC2 − DC2 2OD.OC OD2 + OC2 − DC2 = ( 2OC2... điểm CD, suy KI ⊥ CD KI = KC2 − CI2 = AC2 − AK − CI2 = − x2 −1 = 12 − x Suy SKDC = Vậy V = 1 KI.CD = 12 − x 2 1 x + 12 − x x 12 − x  = Dấu đẳng thức xảy 6 x = 12 − x hay x = Câu 805: (THPT

Ngày đăng: 11/08/2018, 11:48