1. Trang chủ
  2. » Khoa Học Tự Nhiên

Ultrafast IR and raman spectroscopy 2001 fayer

702 197 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • DK1709_FM.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • PRACTICAL SPECTROSCOPY, A SERIES

      • Preface

      • Table of Contents

      • Contributors

  • DK1709_CH01.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 01: Ultrafast Coherent Raman and Infrared Spectroscopy of Liquid Systems

        • I. COHERENT ANTI-STOKES RAMAN SPECTROSCOPY OF SIMPLE LIQUIDS

          • A. Introduction

          • B. General Considerations

          • C. Experimental Aspects

          • D. Results and Discussion

            • 1. Reorientational Motion of Liquid Molecules in Time-Domain CARS

            • 2. Time Scale of the Dominant Dephasing Mechanism

            • 3. Measurements of Specific Dephasing Channels

            • 4. Resonant Vibrational Dephasing

            • 5. Vibrational Dephasing in the Intermediate Case

        • II. TIME-RESOLVED IR SPECTROSCOPY OF STRONGLY ASSOCIATED LIQUIDS

          • A. Introduction

          • B. General Considerations

          • C. Experimental Aspects

          • D. Alcohols in Solutions

            • 1. Monomers in an Apolar Solution

            • 2. Ethanol Oligomers in Solution: Spectral Holes and Vibrational Lifetime Shortening

            • 3. Fully Associated Ethanol in Isotopic Mixtures

              • a. Diluted Isotopic Mixture (1 vol% protonated ethanol)

              • b. Concentrated Isotopic Mixture (50 vol% protonated ethanol)

            • 4. H-Bonded Dimers: Librational Substructure of the OH Band of Proton Donors

          • E. Investigations of Isotopic Water Mixtures

        • III. CONCLUSIONS

        • REFERENCES

  • DK1709_CH02.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 02: Probing Bond Activation Reactions with Femtosecond Infrared

        • I. INTRODUCTION

        • II. BACKGROUND

        • III. C­H BOND ACTIVATION BY n3-TpRh(CO)2

          • A. The Dynamics of Reaction Intermediates — Vibrational Relaxation and Molecular Morphology Change

          • B. The Activation Barrier — The Bond-Breaking Step

          • C. The Reaction Mechanism

        • IV. Si–H BOND ACTIVATION BY n5-CpM(CO)3, (M= Mn, Re)

          • A. The Reaction Intermediates — Solvation-Partitioned Pathways and Intersystem Crossing

          • B. The Reaction Barrier — Solvent Molecule Rearrangement

          • C. The Reaction Mechanism — Resolving a Convolved Chemical Reaction

        • V. C–Cl BOND ACTIVATION BY THE Re(CO)5 RADICAL

          • A. Clarification of the Reaction Pathway

          • B. The Nature of the Reaction Barrier — Atom Transfer

        • VI. CLOSING REMARKS

        • ACKNOWLEDGMENT

        • REFERENCES

  • DK1709_CH03.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 03: Applications of Broadband Transient Infrared Spectroscopy

        • I. INTRODUCTION

        • II. EXPERIMENTAL TECHNIQUES

          • A. Ultrafast Broadband Infrared Pulse Generation

          • B. Broadband Up-conversion with CCD Detection

          • C. Direct Broadband Detection Using Infrared Focal Plane Arrays

        • III. APPLICATIONS OF BROADBAND INFRARED SPECTROSCOPY

          • A. Hydrogen Bond Dynamics in Model Systems—Motivation

          • B. Dynamics of Hydrogen-Bonded (Et)3SiOH and Pyrrole Complexes

          • C. Vibrational Population Conservation During Hydrogen-Bonding Reactions

          • D. IR Spectral Hole-Burning of 1:1 Hydrogen-Bonded Complexes

          • E. Vibrational Coherent Control with Chirped Picosecond Infrared Excitation

          • F. Ultraviolet Photochemistry: Self-Association Reactions of Mn(CO)3CpR Species and [CpFe(CO)2]2 in Solution

          • G. Primary Electron Transfer Dynamics of Dye-Sensitized Semiconductor Solar Cell Devices

        • IV. CONCLUSIONS AND FUTURE DIRECTIONS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH04.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 04: The Molecular Mechanisms Behind the Vibrational Population Relaxation of Small Molecules in Liquids

        • I. INTRODUCTION

        • II. VIBRATIONAL FRICTION

          • A. Vibrational Energy Relaxation and Vibrational Friction

          • B. The Instantaneous Vibrational Friction and the Instantaneous Normal Modes of the Solvent

          • C. Deducing Molecular Mechanisms from Instantaneous-Normal-Mode Theory

        • III. HOW COLLECTIVE IS VIBRATIONAL ENERGY RELAXATION?

          • A. Basic Features

          • B. Mechanistic Investigation

        • IV. HOW DOES DIELECTRIC FRICTION EFFECT VIBRATIONAL ENERGY RELAXATION?

        • V. VIBRATIONAL ENERGY RELAXATION AT HIGH FREQUENCIES

        • VI. CONCLUDING REMARKS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH05.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 05: Time-Resolved Infrared Studies of Ligand Dynamics in Heme Proteins

        • I. INTRODUCTION

        • II. EXPERIMENTAL

          • A. Sample Preparation

          • B. Time-Resolved Near- and Mid-IR Spectrometer

        • III. THEORY

          • A. Vibrational Spectrum of Orientationally Constrained CO

          • B. Orientation of CO via Photoselection

        • IV. RESULTS

          • A. Laser Photolysis: A Sledgehammer or a Scalpel?

            • 1. Near-IR Study of Heme Relaxation

            • 2. Mid-IR Study of CO Relaxation

          • B. Evidence for a Ligand Docking Site in the Heme Pockets of Mb and Hb

            • 1. Temperature Dependence of B-State Spectra

            • 2. Relationship Between B-State Spectra and CO Motional Dynamics

          • C. Orientation of Bound and ‘‘Docked’’ CO

          • D. Ligand Translocation Trajectories

          • E. Origin of the Barrier to CO Rebinding

        • V. CONCLUSIONS

        • REFERENCES

  • DK1709_CH06.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 06: Infrared Vibrational Echo Experiments

        • I. INTRODUCTION

        • II. THE VIBRATIONAL ECHO METHOD AND EXPERIMENTAL PROCEDURES

          • A. The Vibrational Echo Method

          • B. Experimental Procedures

        • III. VIBRATIONAL ECHO STUDIES OF DYNAMICS IN LIQUIDS AND CLASSES

          • A. Liquid/Glass Results

          • B. Liquid/Glass Dephasing Mechanisms

            • 1. Low-Temperature Pure Dephasing of Rh (CO) 2 acac

            • 2. High-Temperature Pure Dephasing of Rh (CO) 2 acac

        • IV. VIBRATIONAL ECHO SPECTRA

          • A. Vibrational Echo Spectroscopy Theory

          • B. Model Calculation

          • C. Experimental Demonstrations of VES

        • V. VIBRATIONAL ECHO STUDIES OF PROTEIN DYNAMICS

          • A. Vibrational Echo Results and Dephasing Mechanisms

          • B. Coupling of Protein Fluctuations to the CO Ligand at the Active Site

        • VI. CONCLUDING REMARKS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH07.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 07: Structure and Dynamics of Proteins and Peptides: Femtosecond Two-Dimensional Infrared Spectroscopy

        • I. INTRODUCTION

        • II. IR LIGHT SOURCE

        • III. SPECTRAL DIFFUSION OF VIBRATIONAL TRANSITIONS

          • A. Theory of Vibrational Third-Order Nonlinear Spectroscopy

          • B. Limitations of the Stochastic Model

          • C. Comparison of Stimulated Photon Echoes of Vibrational and Electronic Transitions

          • D. The Three-Pulse Photon Echo Experiment

          • E. Spectral Diffusion of Small Molecules in Water

          • F. Spectral Diffusion of Vibrational Probes in Enzyme-Binding Pockets

          • G. Spectral Resolution of the Echo

        • IV. STRUCTURE AND DYNAMICS OF THE AMIDE I BAND OF SMALL PEPTIDES

          • A. An Excitonic Model for the Amide I Band

          • B. Response for N Coupled Oscillators

          • C. Two-Dimensional IR Spectroscopy on the Amide I Band

          • D. Spectral Diffusion of the Amide I Band

          • E. 2D-IR Spectroscopy Using Semi-Impulsive Methods

        • Can Peptide Structures Be Determined by Nonlinear 2D-IR Spectroscopy?

        • APPENDIX: DIAGONAL AND OFF-DIAGONAL ANHARMONICITY IN THE WEAK COUPLING LIMIT

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH08.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 08 Two-Dimensional Coherent Infrared Spectroscopy of Vibrational Excitons in Polypeptides

        • I. INTRODUCTION

        • II. THREE-PULSE MULTIDIMENSIONAL FEMTOSECOND OPTICAL SPECTROSCOPIES

        • III. THE THIRD-ORDER RESPONSE OF VIBRATIONAL EXCITONS

        • IV. VIBRATIONAL EXCITONS IN CYCLIC PENTAPEPTIDE

        • V. 2D PHOTON ECHOES OF A CYCLIC PENTAPEPTIDE

          • A. Absolute Value of the 2D Signal

          • B. Real and Imaginary Parts of the 2D Signal

        • VI. DISCUSSION

        • ACKNOWLEDGMENTS

        • APPENDIX A: SUM-OVER-STATE REPRESENTATION OF THE THIRD-ORDER RESPONSE

        • APPENDIX B: GREEN-FUNCTION REPRESENTATION OF THE THIRD-ORDER SUSCEPTIBILITY

        • REFERENCES

  • DK1709_CH09.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 09: Vibrational Dephasing in Liquids: Raman Echo and Raman Free-Induction Decay Studies

        • I. INTRODUCTION

        • II. OVERVIEW OF VIBRATIONAL DEPHASING AND COHERENT RAMAN SPECTROSCOPY

          • A. One-Dimensional Measurements: Raman Line Shape and Free Induction Decays

          • B. A Two-Dimensional Measurement: The Raman Echo

          • C. Vibrational Dephasing Mechanisms

            • 1. Connecting Frequency Fluctuations to Solvent Motion

            • 2. Fast Modulation Pure Dephasing Theories

            • 3. Slow Modulation Pure Dephasing Theories

            • 4. “Impure” Dephasing

        • III. IMPLEMENTING COHERENT RAMAN EXPERIMENTS

          • A. Raman FID

          • B. Raman Echo

          • C. Special Problems of Seventh-Order Spectroscopy

          • D. Experimental Equipment

        • IV. RECENT VIBRATIONAL DEPHASING RESULTS

          • A. Concentration Fluctuations in CH3I:CDCl3

          • B. Density Fluctuations in Acetonitrile

          • C. Stress Fluctuations in Toluene

          • D. A Viscoelastic Theory of Vibrational Dephasing

          • E. Solvent-Assisted IVR in Ethanol

        • V. SUMMARY

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH10.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 10: Fifth-Order Two-Dimensional Raman Spectroscopy of the Intermolecular and Vibrational Dynamics in Liquids

        • I. INTRODUCTION

        • II. THEORETICAL BACKGROUND

          • A. General: Nonresonant Nonlinear Optical Response

          • B. Direct Fifth-Order Electrically Nonresonant Scattering

          • C. Cascaded Fifth-Order Electronically Nonresonant Scattering

          • D. The Total Nonresonant Fifth-Order Raman Signal

        • III. SIMULATIONS: THE BROWNIAN OSCILLATOR MODEL

          • A. Intermolecular Motions in CS2

          • B. Intramolecular Vibrations in Carbon Tetrachloride

        • IV. EXPERIMENTS

          • A. Experimental Setup

          • B. Intermolecular Motions in CS2

          • C. Intramolecular Vibrations in Carbon Tetrachloride and Chloroform

          • D. Future Experimental Directions

        • V. CONCLUDING REMARKS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH11.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 11: Nonresonant Intermolecular Spectroscopy of Liquids

        • 1. INTRODUCTION

        • I. THEORY

        • III. EXPERIMENTAL TECHNIQUE

        • IV. DATA ANALYSIS

        • V. SYMMETRIC-TOP LIQUIDS: ORIENTATIONAL DIFFUSION

        • VI. SYMMETRIC-TOP LIQUIDS: INTERMOLECULAR SPECTRA

        • VII. CONCLUSIONS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH12.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 12: Lattice Vibrations that Move at the Speed of Light: How to Excite Them, How to Monitor Them, and How to Image Them Before They Get Away

        • I. INTRODUCTION

        • II. BACKGROUND

          • A. What are Phonon-Polaritons?

          • B. Impulsive Phonon-Polariton Excitation

        • III. RECENT ADVANCES

          • A. Crossing Femtosecond Pulses

          • B. Heterodyne Detection

          • C. Spatiotemporal Phonon-Polariton Imaging

        • IV. SUMMARY AND FUTURE PROSPECTS

        • APPENDIX: PHONON-POLARITON EXCITATION: EQUATIONS OF MOTION

        • REFERENCES

  • DK1709_CH13.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 13: Vibrational Energy Redistribution in Polyatomic Liquids: Ultrafast IR-Raman Spectroscopy

        • I. INTRODUCTION

        • II. THEORETICAL SECTION

          • A. Hamiltonian

          • B. Force Correlation Function Approach

          • C. Perturbation Approach

          • D. Vibrational Cascade

        • III. THE IR-RAMAN TECHNIQUE

          • A. The Method

          • B. The Laser

          • C. Experimental Setup

          • D. Optical Background

          • E. Pumping Vibrations

          • F. Probing Vibrations

          • G. Coherent Artifacts

        • IV. EXAMPLES FROM CURRENT RESEARCH

          • A. Vibrational Energy Redistribution in Acetonitrile

          • B. Pseudo-vibrational Cascade in Nitromethane

          • C. Dynamics of Doorway Vibrations

          • D. Monitoring the Bath

          • E. Fermi Resonance and Overtones

          • F. Multiple Vibrational Excitations

          • G. Spectral Evolution in Associated Liquids

        • V. SUMMARY AND CONCLUSIONS

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH14.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 14: Coulomb Force and Intramolecular Energy Flow Effects for Vibrational Energy Transfer for Small Molecules in Polar Solvents

        • I. INTRODUCTION

        • II. COULOMBIC FORCE EFFECTS ON VET

        • III. SOLUTE INTRAMOLECULAR EFFECTS ON VET

        • IV. SOME PERSPECTIVES

        • ACKNOWLEDGMENTS

        • REFERENCES

  • DK1709_CH15.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 15: Vibrational Relaxation of Polyatomic Molecules in Supercritical Fluids and the Gas Phase

        • I. INTRODUCTION

        • II. EXPERIMENTAL PROCEDURES

        • III. RESULTS

          • A. Density Dependence

          • B. Gas Phase Vibrational Dynamics

        • IV. THEORY OF T1 IN SUPERCRITICAL FLUIDS

        • V. COMPARISON OF THEORY AND EXPERIMENT

          • A. Density Dependence

          • B. Temperature Dependence

        • VI. CONCLUDING REMARKS

        • ACKNOWLEDGMENTS

        • APPENDIX

        • REFERENCES

  • DK1709_CH16.PDF

    • Ultrafast Infrared and Raman Spectroscopy

      • Table of Contents

      • Chapter 16: Vibrational Energy Relaxation in Liquids and Supercritical Fluids

        • I. INTRODUCTION

        • II. GENERAL THEORY OF VIBRATIONAL ENERGY RELAXATION

        • III. I2 IN LIQUID AND SUPERCRITICAL XENON

        • IV. NEAT LIQUID O2

        • V. W(CO)6 IN SUPERCRITICAL ETHANE

        • VI. CONCLUSION

        • ACKNOWLEDGMENT

        • REFERENCES

Nội dung

Ngày đăng: 07/07/2018, 09:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN