1. Trang chủ
  2. » Luận Văn - Báo Cáo

Dự báo chuỗi thời gian mờ theo tiếp cận đại số gia tử

85 113 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 85
Dung lượng 1,91 MB

Nội dung

ii LỜI CAM ĐOAN Tôi xin cam đoan: Luận văn cơng trình nghiên cứu thực cá nhân, thực hướng dẫn khoa học TS Vũ Như Lân Các số liệu, kết luận nghiên cứu trình bày luận văn trung thực chưa công bố hình thức Tơi xin chịu trách nhiệm nghiên cứu Học viên Trần Tuấn Anh Số hoá Trung tâm Học liệu – ĐHTN n iii iiii LỜI CẢM ƠN Đầu tiên xin gửi lời cảm ơn sâu sắc tới TS Vũ Như Lân, người hướng dẫn khoa học, tận tình bảo, giúp đỡ thực luận văn Tôi xin cảm ơn thầy cô trường Đại học Công nghệ thông tin truyền thông - Đại học Thái Nguyên giảng dạy truyền kiến thức cho Tôi xin chân thành cảm ơn bạn bè đồng nghiệp tạo điều kiện giúp đỡ tơi hồn thành nhiệm vụ học tập Cuối cùng, xin cảm ơn người thân bạn bè chia sẻ, giúp đỡ tơi hồn thành luận văn Mặc cố gắng hoàn thành luận văn với tất nỗ lực thân, luận văn thiếu sót Kính mong nhận ý kiến đóng góp q Thầy, Cơ bạn bè, đồng nghiệp Tôi xin chân thành cảm ơn! Việt trì ngày 10 tháng 06 năm 2015 Trần Tuấn Anh Số hoá Trung tâm Học liệu – ĐHTN n iv MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN iii DANH MỤC CÁC KÍ HIỆU, CHỮ VIẾT TẮT vii viii DANH DANH ix LỤC LỤC HÌNH MỞ BẢNG VẼ ĐẦU CHƯƠNG 1: TÓM LƯỢC VỀ LOGIC MỜ, CHUÔI THƠI GIAN ĐẠI SỐ GIA TỬ 1.1 Những vấn đề sở lý thuyết tập mờ 1.1.1 Định nghĩa tập mờ 1.1.2 Các phép toán tập mờ 1.2 Chuỗi thời gian mờ 10 1.2.1 Định nghĩa chuỗi thời gian mờ 10 1.2.2 Một số định nghĩa liên quan đến chuỗi thời gian mờ 11 1.3 Đại số gia tử 13 1.3.1 Định nghĩa đại số gia tử 13 1.3.2 Các định lý 16 1.4 Kết luận chương 18 CHƯƠNG 2: HÌNH DỰ BÁO CHUỖI THỜI GIAN MỜ TRÊN QUAN ĐIỂM BIẾN NGÔN NGỮ 20 2.1 hình dự báo chuỗi thời gian mờ Song Chissom 20 Số hoá Trung tâm Học liệu – ĐHTN n v 2.1.1 Bước Xác định tập 21 2.1.2 Bước Chia miền xác định tập thành khoảng 22 2.1.3 Bước Xây dựng tập mờ tập 22 2.1.4 Bước Mờ hóa chuỗi liệu 23 2.1.5 Bước Xác định quan hệ mờ 23 2.1.6 Bước Dự báo phương trình Ai=Ai−1* R, ký hiệu * toán tử max-min 27 2.1.7 Bước Giải mờ kết dự báo 27 2.2 hình dự báo chuỗi thời gian mờ cải tiến Chen 28 2.2.1 Bước Chia miền xác định tập thành khoảng 29 2.2.2 Bước Xây dựng tập mờ tập 30 2.2.3 Bước Mờ hóa chuỗi liệu 31 2.2.4 Bước Xác định quan hệ mờ 32 2.2.5 Bước Tạo lập nhóm quan hệ mờ 32 2.2.6 Bước Giải mờ đầu dự báo 33 2.3 hình dự báo dựa ĐSGT ứng dụng 37 2.3 hinh tinh toan cua ly thuyêt đai gia 38 2.3.2 hinh dự báo chuôi thơi gian dưa ĐSGT 41 2.3.3 So sánh kết hình dự báo chuỗi thời gian mờ 53 2.4 Kết luận chương 55 Số hoá Trung tâm Học liệu – ĐHTN n vi CHƯƠNG 3: CÀI ĐẶT THỬ NGHIỆM 57 3.1 Bài toán thử nghiệm 57 3.1.1 Đặt toán 57 3.1.2 Kết chạy thử nghiệm 58 3.2 Kết luận chương 59 KẾT LUẬN VÀ KIẾN NGHỊ 60 TÀI LIỆU THAM KHẢO 62 PHỤ LỤC Số hoá Trung tâm Học liệu – ĐHTN n vii DANH MỤC CÁC KÍ HIỆU, CHỮ VIẾT TẮT ĐSGT: Đại số gia tử Số hoá Trung tâm Học liệu – ĐHTN n viii viiiv DANH LỤC BẢNG Bảng 1.1 : Các cặp T - chuẩn T - đối chuẩn Bảng 1.2 Một số phép kéo theo mờ thông dụng Bảng 2.1 Số sinh viên nhập học trường đại học Alabama từ 1971 đến 1992 20 Bảng 2.2 Chuyển đổi giá trị lịch sử thành giá trị ngôn ngữ 24 Bảng 2.3 Xác định quan hệ thành viên 26 Bảng 2.4 Mờ hóa chuỗi liệu 31 Bảng 2.5 Quan hệ logic mờ liệu tuyển sinh 32 Bảng 2.6 Các nhóm quan hệ logic mờ 33 Bảng 2.7 Bảng so sánh phương án dự báo 36 Bảng 2.8 Số sinh viên nhập học trường đại học Alabama từ 1971 đến 1992 41 Bảng 2.9 Giá trị đầu giá trị cuối khoảng giải nghĩa chọn 49 Bảng 2.10 Tổng hợp thông tin sở cho hình dự báo theo tiếp cận ĐSGT 50 Bảng 2.11 So sánh phương pháp dự báo với khoảng chia 54 Bảng 3.1 Số sinh viên nhập học trường đại học Alabama từ 1971 đến 1992 57 Số hoá Trung tâm Học liệu – ĐHTN n ix DANH LỤC HÌNH VẼ Hình 1.1 Hàm liên thuộc tập mờ “x gần 1” Hình 1.2 Một số dạng hàm liên thuộc tập mờ Hình 1.3 Giao hai tập mờ Hình 1.4 Phép hợp hai tập mờ Hình 2.1: Số sinh viên nhập học thực tế số sinh viên nhập học dự báo 28 Hình 2.2 Dữ liệu tuyển sinh thực tế liệu tuyển sinh dự báo 37 Hình 3.1 Dữ liệu tuyển sinh Đại học Alabama từ năm 1971 đến 1992 58 Hình 3.2 Kết chạy tốn thử nghiệm 59 Số hoá Trung tâm Học liệu – ĐHTN n MỞ ĐẦU Trong năm gần đây, có nhiều tác giả giới quan tâm nghiên cứu hình dự báo chuỗi thời gian mờ Song & Chissom [1, 2, 3] đưa tạp chí “Fuzzy Sets and Systems” năm 1993 Chen [5] cải tến vào năm 1996 Nhiều nghiên cứu ứng dụng dự báogiá trị thực tế thực sở phương pháp luận dự báo theo hình chuỗi thời gian mờ nêu Tuy nhiên, độ xác dự báo quan điểm xem xét chuỗi thời gian theo tiếp cận mờ Song & Chissom chưa cao phụ thuộc vào nhiều yếu tố Vì nay, hình dự báo chuỗi thời gian mờ nhiều chuyên gia giới Việt Nam cải tiến để có kết tốt [9] Đại số gia tử (ĐSGT) tiếp cận tác giả N.C.Ho W Wechler xây dựng vào năm 1990, 1992 [5, 6] đưa hình tính tốn hồn toàn khác biệt so với tiếp cận mờ Những ứng dụng tếp cận ĐSGT cho số toán cụ thể lĩnh vực công nghệ thông tin điều khiển mang lại số kết quan trọng khẳng định tính ưu việt tếp cận so với tiếp cận mờ truyền thống [8] Đề tài luận văn tếp tục thử nghiệm lần đầu tên thử nghiệm cho nghiên cứu ứng dụng ĐSGT cho lĩnh vực dự báo chuỗi thời gian Đây lĩnh vực ứng dụng hoàn toàn ĐSGT, phương pháp luận ĐSGT cần có nghiên cứu cải tiến khác với trước cho có khả ứng dụng Để đánh giá tính ưu việt ĐSGT so với phương pháp luận dựa tiếp cận mờ, nhiều tác giả tến hành thử nghiệm chuỗi liệu sử dụng nhiều Việt Nam Trong luận văn này, trước tên Tập trung nghiên cứu hình dự báo chuỗi thời gian mờ Song & Chissom Chen tìm điểm mạnh điểm yếu hình Từ đưa hình dự báo theo tiếp cận đại số gia tử sở nghiên cứu cải tiến phép ngữ nghĩa hóa (Semantzation), phép giải nghĩa (Desemantization ) hình tính tốn ĐSGT cho phù hợp với ứng dụng lĩnh vực dự báo chuỗi thời gian mờ Trên sở đó, tơi xây dựng chương trình ứng dụng dự báo chuỗi thời gian mờ dựa hình tính tốn ĐSGT việc dự báo kết tuyển sinh trường cao đẳng Cơng nghiệp Thực phẩm Việt Trì - tỉnh Phú Thọ Đối tượng phạm vi nghiên cứu 1.1 Đối tượng Tập trung nghiên cứu hình dự báo chuỗi thời gian mờ Song & Chissom Chen tm điểm mạnh điểm yếu hình Từ đưa hình dự báo theo tiếp cận đại số gia tử sở nghiên cứu cải tiến phép ngữ nghĩa hóa (Semantzation), phép giải nghĩa (Desemantzation ) hình tnh tốn ĐSGT cho phù hợp với ứng dụng lĩnh vực dự báo chuỗi thời gian mờ 1.2 Phạm vi nghiên cứu - Nghiên cứu hình dự báo chuỗi thời gian mờ Song & Chissom - Nghiên cứu hình dự báo cải tiến Chen - Nghiên cứu tiếp cận ĐSGT: Lý thuyết hình tính tốn ứng dụng - Nghiên cứu cải tiến phép ngữ nghĩa hóa phép giải nghĩa - Nghiên cứu đề xuất hình dự báo chuỗi thời gian mờ theo tiếp cận đại số gia tử với phép ngữ nghĩa hóa giải nghĩa cải tiến - Ứng dụng hình dự báo theo tiếp cận ĐSGT cho chuỗi liệu sử dụng nhiều Việt Nam nay; qua so sánh MSE hình dự báo với để thấy rõ hiệu tếp cận ĐSGT toán dự báo chuỗi thời gian mờ Số hoá Trung tâm Học liệu – ĐHTN n 55 1984 15145 16000 15722 15500 15167 1985 15163 16000 15722 16000 15167 1986 15984 16000 15722 16000 16167 1987 16859 16000 15722 16000 16556 1988 18150 16833 16750 17500 17406 1989 18970 19000 19000 19000 19200 1990 19328 19000 19000 19000 19400 1991 19337 19000 19000 19500 19400 1992 18876 19000 19000 19000 19000 407507 397537 226611 69304 MSE Trên phép ngữ nghĩa hóa tu yến tnh phép giải nghĩa tuyến tnh kết tính toán nhận MSE = 69304 2.4 Kết luận chương Dự báo chuỗi thời gian mờ hướng nghiên cứu hoàn toàn Trên thực tế, liệu thu theo thời gian thường chịu ảnh hưởng yếu tố khách quan chủ quan Trong chương này, tơi trình bày phương pháp dự báo Song- Chissom Chen để dự báo kết tuyển sinh trường Đại học Alabama Từdụ minh họa cho thấy phương pháp khơng đưa dự báo tốt kết tuyển sinh đại học mà đưa dự báo quan trọng dựa vào liệu lịch sử Trong phương pháp Chen [5] Số hoá Trung tâm Học liệu – ĐHTN n 56 đơn giản mặt tnh tốn vi khơng sử dụng phép toán max -min phức tạp phương pháp Song - Chissom [4] Vấn đề dự báo chuỗi thời gian mờ năm gần nhiều chuyên gia giới quan tâm nghiên cứu Nhiều nghiên cứu cai tên sử dụng hình chuỗi thời gian mờ bậc cao với số lượng khoảng lơn cho kết dự báo số sinh viên nhập học trường Đại học Alabama kha xác [5, 6, 7] Tuy nhiên, qua so sánh hình dự báo ứng dụng cho chuỗi liệu lịch sử số sinh viên nhập học trường Đại học Alabama mà nhiều tác giả giới nghiên cứu so sanh , hình dự báo dựa ĐSGT hình , hồn tồn khác biệt, có khả dự báo chuỗi thời gian mờ với độ xác cao so với số hình dự báo bâc nhât có điêu kiên cung phân hoach Sự khác biệt thể phương pháp luận lần sử dụng phép ngữ nghĩa hóa thay cho phép mờ hóa, nhóm quan hệ ngữ nghĩa thay cho nhóm quan hệ mờ phép giải nghĩa thay cho phép giải mờ Mặc sử dụng hình chuỗi thời gian mờ bậc với khoảng chia liệu lịch sử hình dự báo Chen [5], kết ứng dụng hình dự báo dựa ĐSGT cho thấy rõ hiệu dự báo tốt nhiêu so với số phương pháp dự báo sử dụng khoảng có [5] [8] [15] Số hố Trung tâm Học liệu – ĐHTN n 57 CHƯƠNG 3: CÀI ĐẶT THỬ NGHIỆM 3.1 Bài toán thử nghiệm 3.1.1 Đặt tốn Bài tốn đặt là: xây dựng chương trình để áp dụng hình dự báo dựa ĐSGT toán thử nghiệm dự báo kết số sinh viên nhập học trường Đại học Alabama đưa bảng sau Bảng 3.1 Số sinh viên nhập học trường đại học Alabama từ 1971 đến 1992 Năm Số sinh viên Năm Số nhập học sinh nhập học 1971 13055 1982 15433 1972 13563 1983 15497 1973 13867 1084 15145 1974 14696 1985 15163 1975 15460 1986 15984 1976 15311 1987 16859 1977 15603 1988 18150 1978 15861 1989 18970 1979 16807 1990 19328 1980 16919 1991 19337 Số hoá Trung tâm Học liệu – ĐHTN n viên 58 1981 16388 1992 18876 Yêu cầu tốn: xây dựng chương trình thử nghiệm với MATLAB R2013a để dự báo kết tuyển sinh năm (1993) sử dụng hình dự báo chuỗi thời gian mờ dựa ĐSGT 3.1.2 Kết chạy thử nghiệm Dữ liệu lịch sử số sinh viên nhập học 22 năm học (từ năm 1971 đến 1992) trường đại học Alabama nhập xuất hình Hình 3.1 Dữ liệu tuyển sinh Đại học Alabama từ năm 1971 đến 1992 Số hoá Trung tâm Học liệu – ĐHTN n 59 Sau xử lý liệu, chương trình cho kết bảng số liệu mã hóa kết tuyển sinh cuối năm năm 1993 69304 (có sai số) Hình 3.2 Kết chạy tốn thử nghiệm 3.2 Kết luận chương Chương xây dựng phần mềm tnh toán sở sử dụng thuật toán dựa ĐSGT dự báo liệu tuyển sinh Đại học Alabama từ năm 1971 đến năm 1992 chương trình ứng dụng dự báo liệu tuyển sinh trường Cao đẳng Công nghiệp Thực phẩm Việt Trì - tỉnh Phú Thọ Đây la liêu đươc nhiêu tac gia thê giơi cung Viêt Nam sư dung đê thư nghiêm Kết tính tốn cho thấy mức độ phù hợp dự báo so với số liệu thực tế Chính vậy, hình chuỗi thời gian mờ nhiều tác giả nghiên cứu có nhiều triển vọng ứng dụng xử lý số liệu thực tế Số hoá Trung tâm Học liệu – ĐHTN n 60 KẾT LUẬN VÀ KIẾN NGHỊ Luận văn chủ yếu giới thiệu khái niệm chuỗi thời gian hình xử lý chuỗi thời gian Có nhiều phương pháp để dự báo chuỗi thời gian noi chung đa tác g iả xây dựng từ kỷ trước Tuy nhiên hình thích ứng hầu hết cho chuỗi thời gian dừng tuyến tính Chuỗi thời gian thực tế phụ thuộc nhiều vào yếu tố khác nên có nhiều biến thiên mang tnh phi tuyến manh , chuỗi thời gian có biến thiên nhanh chuỗi số liệu lịch sử ngắn, hình dự báo truyền thống cho kết chưa xác Trên quan điêm chun chi thơi gian sang chuôi thơi gian mơ, tác giả Song, Chissom va Chen đa vươ t qua kho khăn nêu va đa đat đươc kêt tốt cho tốn dự báo Trong luận văn tơi tập trung nghiên cứu hình dự báo chuỗi thời gian mờ Song & Chissom Chen tìm điểm mạnh điểm yếu hình Từ đưa hình dự báo theo tiếp cận đại số gia tử cho phù hợp với ứng dụng lĩnh vực dự báo chuỗi thời gian mờ Cuối tơi xây dựng phần mềm tnh tốn sở sử dụng thuật toán dựa ĐSGT dự báo liệu tuyển sinh Đại học Alabama từ năm 1971 đến năm 1992 chương trình ứng dụng dự báo liệu tuyển sinh trường Cao đẳng Cơng nghiệp Thực phẩm Việt Trì - tỉnh Phú Thọ Đây la liêu đươc nhiêu tac gia thê giơi cung Viêt Nam sư dung đê thư nghiêm Kết tính tốn cho thấy mức độ phù hợp dự báo so với số liệu thực tế Chính vậy, hình chuỗi thời gian mờ nhiều tác giả nghiên cứu có nhiều triển vọng ứng dụng xử lý số liệu thực tế Số hoá Trung tâm Học liệu – ĐHTN n 61 Những kết chương na y mở hướng nghiên cứu khac biêt cho lĩnh vực dự báo chuỗi thời gian mờ Tuy nhiên hình dự báo dựa ĐSGT tương lai cần tiếp tục nghiên cứu thử nghiệm hình chuỗi thời gian mờ bậc cao, có số khoảng chia lớn với nhiều yếu tố ảnh hưởng khác để đáp ứng xu hướng nghiên cứu hình dự báo chuỗi thời gian mờ Nêu điêu kiên cho phep , se têp tuc rơng ứng dụng hình dự báo dưa ĐSGT cho chuôi liêu khac chi liêu vê nhiêt đơ, tỷ giá hối đối Số hoá Trung tâm Học liệu – ĐHTN n 62 TÀI LIỆU THAM KHẢO Tiếng Việt: [1] Nguyễn Công Điều Một thuật tốn cho hình chuỗi thời gian mờ Tạp chí khoa học cơng nghệ Tập 49 Số 4, 11-25, 2011 Tiếng Anh: [2] Song Q, Chissom B.S Fuzzy tme series and its models Fuzzy Sets and Syst 54, 269–277, 1993 [3] Song Q, Chissom B.S Forecasting enrollments with fuzzy tme series – part Fuzzy Sets and Syst 54, 1–9, 1993 [4] Song Q, Chissom, B S Forecastng enrollments with fuzzy time series – part Fuzzy Sets and Syst 62, 1–8, 1994 [5] Chen, S.M Forecasting Enrollments Based on Fuzzy Time Series Fuzzy Sets and Syst 81, 311–319, 1996 [6] Chen S.M and Chung N.Y Forecasting enrollments using high-order fuzzy time series and genetic algorithms Int Journal of Intelligent Systems 21, 485-501 2006 [7] Chen S M, Tanuwijaya K Multivariate fuzzy forecastng based on fuzzy tme series and automatic clustering techniques Expert Systems with Applications 38, 10594–10605, 2011 [7 ] Lee M H, Efendi R, Ismad Z Modified Weighted for Enrollments Forecasting Based on Fuzzy Time Series MATEMATIKA, 25(1), 67-78, 2009 Số hoá Trung tâm Học liệu – ĐHTN n 63 [9] N Cat Ho and W Wechler, Hedge algebras: An algebraic approach to structures of sets of linguistic domains of linguistic truth variable Fuzzy Sets and Systems, Vol 35,3, pp.281-293, 1990 [10] N Cat Ho and W Wechler Extended hedge algebras and their application to Fuzzy logic Fuzzy Sets and Systems 52, 259-281, 1992 [11] Cat Ho, N and H Van Nam An algebraic approach to linguistic hedges in Zadeh's fuzzy logic Fuzzy Set and System, 129, 229-254, 2002 [12] Nguyen Cat Ho, Vu Nhu Lan, Le Xuan Viet Optimal hedge-algebras- based controller: Design and Application Fuzzy Sets and Systems 159, 968– 989, 2008 [13] Dinko Vukadinović, Mateo Bašić, Cat Ho Nguyen, Nhu Lan Vu, Tien Duy Nguyen Hedge-Algebra-Based Voltage Controller for a Self-Excited Induction Generator, Control Engineering Practice, 30, 78–90, 2014 [14] Cong Nguyen Huu, Duy Nguyen Tien, Trung Ngo Kien, Ha Le Thi Thu A Research on Parabolic Trough Solar Collector System Control based on Hedge Algebra, 11th International Conference on Control, Automation, Robotics and Vision, December, 715720, 2010, Singapore [15] Huarng, K Heuristic Models of Fuzzy Time Series for Forecasting Fuzzy Sets and Syst 123, 369–386, 2001 Số hoá Trung tâm Học liệu – ĐHTN n PHỤ LỤC CHƯƠNG TRINH TINH TOAN BAO CHUÔI THƠI GIAN SƯ DUNG ĐAI GIA VƠI α = 0.5 θ = 0.5 functon [y] = HAP_tuyentinhngan(x format long SV22=[13055;13563;13867;14696;15460;15311;15603;15861;16807;16919; 16388;15433;15497;15145;15163;15984;16859;18150;18970;19328;19337;1 8876] SV21=[13563;13867;14696;15460;15311;15603;15861;16807;16919;16388; 15433;15497;15145;15163;15984;16859;18150;18970;19328;19337;18876] xgmin=13000 xgmax=20000 WSA1A1=3/7 WSA2A1=1/7 WSA3A2=1 WSA3A3=9/71 WSA4A3=4/71 WSA4A4=4/20 WSA3A4=9/20 WSA6A4=3/20 WSA6A6=3/5 WSA7A6=2/5 WSA7A7=2/5 WSA6A7=3/5 x(1)=0.5 x(2)=0.5 SA1=x(1)*(1-x(2))*(1-x(2)) SA2=x(1)*(1-x(2)) SA3=x(1)*(1x(2)+x(2)^2) SA4=x(1) SA5=x(1)+x(2)*(1-x(1))*(1-x(2)) SA6=x(1)+(1-x(1))*x(2) SA7=x(1)+x(2)*(1-x(1))*(2-x(2 SP(1)=WSA1A1*SA1*2+WSA2A1*SA2 SP(2)=SP(1) SP(3)=SP(1) SP(4)=WSA3A2*SA3 SP(5)=WSA3A3*SA3*7+WSA4A3*SA4*2 SP(6)=SP(5) SP(7)=SP(5) SP(12)=SP(5) SP(13)=SP(5) SP(14)=SP(5) SP(15)=SP(5) SP(8)=SP(5) SP(16)=SP(5) SP(9)=WSA4A4*SA4*2+WSA3A4*SA3+WSA6A4*SA6 SP(10)=SP(9 SP(11)=SP(9) SP(17)=SP(9) SP(18)=WSA6A6*SA6+WSA7A6*SA7 SP(19)=SP(18) SP(20)=WSA6A7*SA6+WSA7A7*SA7 SP(21)=SP(20) xmin(1)=13000 xmax(1)=17000 xmin(2)=13000 xmax(2)=18000 xmin(3)=13000 xmax(3)=20000 xmin(4)=15000 xmax(4)=16000 xmin(5)=14000 xmax(5)=17000 xmin(6)=14000 xmax(6)=18000 xmin(7)=15000 xmax(7)=18000 xmin(8)=15000 xmax(8)=19000 xmin(9)=15000 xmax(9)=19000 xmin(10)=14000 xmax(10)=19000 xmin(11)=13000 xmax(11)=18000 xmin(12)=14000 xmax(12)=18000 xmin(13)=14000 xmax(13)=17000 xmin(14)=14000 xmax(14)=17000 xmin(15)=15000 xmax(15)=18000 xmin(16)=15000 xmax(16)=19000 xmin(17)=15000 xmax(17)=20000 xmin(18)=16000 xmax(18)=20000 xmin(19)=17000 xmax(19)=20000 xmin(20)=17000 xmax(20)=20000 xmin(21)=15000 xmax(21)=20000 SPP=0.0 DPP=0.0 for i=1:21, DeSP(i)=(SPP*SP(i)*(1-SP(i))+SP(i))*(xmax(i)-xmin(i))+xmin(i); DDeSP(i)=DPP*(DeSP(i)-xmin(i))*(xmax(i)-DeSP(i))/(xmax(i)- xmin(i)) +DeSP(i); end DP=[1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21]; SAISO=SV21-DDeSP' SAISOBINHPHUONG=[SAISO(1)^2;SAISO(2)^2;SAISO(3)^2;SAISO(4)^2 ;SAISO(5)^2;SAISO(6)^2;SAISO(7)^2;SAISO(8)^2;SAISO(9)^2;SAISO(10) ^2;SAISO(11)^2;SAISO(12)^2;SAISO(13)^2;SAISO(14)^2;SAISO(15)^2;S AISO(16)^2;SAISO(17)^2; SAISO(18)^2;SAISO(19)^2;SAISO(20)^2;SAISO(21)^2] T=sum(SAISOBINHPHUONG) MSE=T/21 y=MSE BANG=[SV21 DP DDeSP' SAISOBINHPHUONG] ... luận dự báo theo mô hình chuỗi thời gian mờ nêu Tuy nhiên, độ xác dự báo quan điểm xem xét chuỗi thời gian theo tiếp cận mờ Song & Chissom chưa cao phụ thuộc vào nhiều yếu tố Vì nay, mơ hình dự báo. .. Nghiên cứu đề xuất mơ hình dự báo chuỗi thời gian mờ theo tiếp cận đại số gia tử với phép ngữ nghĩa hóa giải nghĩa cải tiến - Ứng dụng mơ hình dự báo theo tiếp cận ĐSGT cho chuỗi liệu sử dụng nhiều... 10 1.2.1 Định nghĩa chuỗi thời gian mờ 10 1.2.2 Một số định nghĩa liên quan đến chuỗi thời gian mờ 11 1.3 Đại số gia tử 13 1.3.1 Định nghĩa đại số gia tử 13 1.3.2

Ngày đăng: 23/05/2018, 23:55

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Nguyễn Công Điều. Một thuật toán mới cho mô hình chuỗi thời gian mờ.Tạp chí khoa học và công nghệ. Tập 49. Số 4, 11-25, 2011 Tiếng Anh Sách, tạp chí
Tiêu đề: Một thuật toán mới cho mô hình chuỗi thời gian mờ
[2] Song Q, Chissom B.S. Fuzzy tme series and its models. Fuzzy Sets and Syst. 54, 269–277, 1993 Sách, tạp chí
Tiêu đề: Fuzzy tme series and its models. Fuzzy Sets andSyst
[3] Song Q, Chissom B.S. Forecasting enrollments with fuzzy tme series – part 1. Fuzzy Sets and Syst. 54, 1–9, 1993 Sách, tạp chí
Tiêu đề: Forecasting enrollments with fuzzy tme series –part 1
[4] Song Q, Chissom, B S. Forecastng enrollments with fuzzy time series – part 2. Fuzzy Sets and Syst. 62, 1–8, 1994 Sách, tạp chí
Tiêu đề: Forecastng enrollments with fuzzy time series –part 2
[5] Chen, S.M. Forecasting Enrollments Based on Fuzzy Time Series. Fuzzy Sets and Syst. 81, 311–319, 1996 Sách, tạp chí
Tiêu đề: Forecasting Enrollments Based on Fuzzy Time Series
[6] Chen S.M and Chung N.Y. Forecasting enrollments using high-order fuzzy time series and genetic algorithms. Int. Journal of Intelligent Systems21, 485-501. 2006 Sách, tạp chí
Tiêu đề: Forecasting enrollments using high-order fuzzy time series and genetic algorithms

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w