1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Time varying field 2013 mk

25 105 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 189,91 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics TimeVarying Fields & Maxwell’s Equations Contents I Introduction II Vector Analysis III Coulomb’s Law & Electric Field Intensity IV Electric Flux Density, Gauss’ Law & Divergence V Energy & Potential VI Current & Conductors VII Dielectrics & Capacitance VIII Poisson’s & Laplace’s Equations IX The Steady Magnetic Field X Magnetic Forces & Inductance XI TimeVarying Fields & Maxwell’s Equations XII The Uniform Plane Wave XIII Plane Wave Reflection & Dispersion XIV.Guided Waves & Radiation TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn TimeVarying Fields & Maxwell’s Equations Faraday’s Law Displacement Current Maxwell’s Equations in Point Form Maxwell’s Equations in Integral Form The Retarded Potentials TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (1) dΦ emf = − V dt Emf is nonzero if one of any: • A time-changing flux linking a stationary closed path • Relative motion between a steady flux and a closed path • A combination of the two Minus sign ? Lenz’s law TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn dΦ emf = − dt Faraday's Law (2) d emf = ∫ E.dL → emf = ∫ E.dL = − dt ∫S B.dS B = B (t ) Φ = ∫ B.d S S ∂B → emf = ∫ E.dL = − ∫ dS S ∂t Stokes' theorem: ∫ E.dL = ∫ ( ∇ × E).dS S ∂B ∂B dS → ∫ (∇ × E).dS = −∫ dS → (∇ × E).dS = − S S ∂t ∂t ∂B →∇×E = − ∂t TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (3) ∂B ∇×E = − ∂t ∂B emf = ∫ E.dL = − ∫ d S S ∂t ∂B = (steady) ∂t ∫ E.dL = ∇×E = TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (4) z B y v x=d x Φ = ∫ B.dS = Byd S dΦ emf = − dt dy → emf = − B d = − Bvd dt TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (5) z F = Qv × B B F → = v×B Q Em = v × B emf = y v x=d x ∫ Em dL = ∫ ( v × B).dL = ∫d vBdx = − Bvd TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (6) ∂B emf = ∫ E.dL = − ∫ dS + ∫ ( v × B).dL S ∂t B TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (7) Ex A single turn loop is situated in air, with a uniform magnetic field normal to its plane The area of the loop is 10 m2 If the rate of change of flux density is Wb/m2/s, what is the emf appearing at the terminals of the loop? dΦ emf = − N dt Φ = B.S dB → emf = − S = × 10 = 50 V dt TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 10 TimeVarying Fields & Maxwell’s Equations Faraday’s Law Displacement Current Maxwell’s Equations in Point Form Maxwell’s Equations in Integral Form The Retarded Potentials TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 11 Displacement Current (1) ∇ × H = J → ∇.∇ × H = ∇.J ∂ ρ ∇ ∇× H = → v = (unreasonable) ∂ρv ∂t ∇.J = − ∂t ∇× H = J + G → = ∇.J + ∇.G ∂ρ v → ∇.G = ∂ρ v ∇.J = − ∂ t ∂t ∇.D = ρ v ∂ ∂D ∂D → ∇.G = (∇.D) = ∇ →G = ∂t ∂t ∂t ∇×H = J +G ∂D → ∇×H = J + ∂t TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 12 Displacement Current (2) ∂D ∇×H = J + ∂t → ∇× H = J + J d ∂D Define J d = ∂t ∂D In nonconducting medium J = → ∇ × H = ∂t ∂D I d = ∫ J d dS = ∫ dS S S ∂t ∂D ∫S (∇× H).dS = ∫S J.dS + ∫S ∂t dS ∂D → ∫ H.dL = I + I d = I + ∫ dS S ∂t ∫ H.dL = ∫S (∇ × H ).dS TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 13 Displacement Current (3) C emf = V0 cos ωt I k → I = −ωCV0 sin ωt = −ω ∫ k εS d V0 sin ωt B H.dL = I k  V0  D = ε E = ε  cos ωt  d  → I = −ω ε S V sin ωt d ∂D ∂D d Id = ∫ dS = S S ∂t ∂t TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 14 TimeVarying Fields & Maxwell’s Equations Faraday’s Law Displacement Current Maxwell’s Equations in Point Form Maxwell’s Equations in Integral Form The Retarded Potentials TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 15 Maxwell’s Equations in Point Form (1) ∂B ∇×E = − ∂t ∂D ∇×H = J + ∂t ∇ D = ρv ∇.B = TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 16 Ex Maxwell’s Equations in Point Form (2) Given an electric field E = Acosω(t – z/c)ay Determine the time-dependent MFI H in free space? B H ìE = = à0 t t ∂E y ω  z ∇× E = − a x = − A sin ω  t −  ∂z c  c ωA  z →H= sin ω  t −  a x ∫ c µ0  c  z = cos ω  t −  a x c µ0  c A TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 17 TimeVarying Fields & Maxwell’s Equations Faraday’s Law Displacement Current Maxwell’s Equations in Point Form Maxwell’s Equations in Integral Form The Retarded Potentials TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 18 Maxwell’s Equations in Integral Form ∂B ∇×E = − ∂t ∂B ∫ E.dL = −∫S ∂t dS Et1 = Et ∂D ∇×H = J + ∂t ∂D ∫ H.dL = I + ∫S ∂t dS H t1 = H t ∇ D = ρv ∫ S D.dS = ∫V ρv dv ∇.B = ∫ S B.dS = DN − DN = ρ S BN = BN TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 19 TimeVarying Fields & Maxwell’s Equations Faraday’s Law Displacement Current Maxwell’s Equations in Point Form Maxwell’s Equations in Integral Form The Retarded Potentials TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 20 The Retarded Potentials (1) E = −∇V → ∇ × E = −∇ × (∇V ) → ∇ × E = ∂B = ∇ × (∇ V ) ∂B → =0 ∇ ×E = − ∂t ∂t (unreasonable) E = −∇V + N → ∇ × E = −∇ × (∇V ) + ∇ × N ∂B ∇ × (∇V ) = → ∇× N = − ∂B ∂t ∇×E = − B = ∇× A ∂t ∂ ∂A ∂A → ∇ × N = − (∇ × A ) → ∇ × N = −∇ × →N =− ∂t ∂t ∂t ∂A → E = −∇V − ∂t TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 21 The Retarded Potentials (2) B = ∇×A ∂A E = −∇V − ∂t ∂D ∇× H = J + ∂t ∇ D = ρv 1  ∂V ∂ A  −   ∇ ×∇ × A = J + ε  −∇ ∂t ∂t  µ  → ∂    −∇ ∇ V − ∇ A = ε ρ   v   ∂t   TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 22 The Retarded Potentials (3) 1  ∂V ∂ A  −   ∇ ×∇ × A = J + ε  −∇ ∂t ∂t  µ   ∂    −∇ ∇ V − ∇ A = ε ρ   v   ∂t     ∂ V ∂ A +  ∇(∇.A ) − ∇ A = µ J − µε  ∇  ∂t   ∂t → ρv ∂  ∇ V + ∂t (∇.A ) = − ε TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 23 The Retarded Potentials (4)   ∂ V ∂ A +  ∇(∇.A ) − ∇ A = µ J − µε  ∇  ∂t ∂t    ρv ∂  ∇ V + ∂t (∇.A ) = − ε ∂V Define ∇.A = − µε ∂t  ∇ A = −µ J + µε → ∇ 2V = − ρv + µε  ε ∂2 A ∂t ∂ 2V ∂t TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 24 The Retarded Potentials (5) V =∫ V ρv dv 4πε R R t′ = t − v →V = ∫ V [ ρv ] dv 4πε R   R  Ex : ρ v = e cos ωt → [ ρv ] = e cos ω  t −   v    −r A=∫ V −r µJ µ[J ] dv → A = ∫ dv V 4π R 4π R TimeVarying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn 25 ... Magnetic Field X Magnetic Forces & Inductance XI Time – Varying Fields & Maxwell’s Equations XII The Uniform Plane Wave XIII Plane Wave Reflection & Dispersion XIV.Guided Waves & Radiation Time – Varying. .. ∂t Time – Varying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (3) ∂B ∇×E = − ∂t ∂B emf = ∫ E.dL = − ∫ d S S ∂t ∂B = (steady) ∂t ∫ E.dL = ∇×E = Time – Varying Fields... ∫d vBdx = − Bvd Time – Varying Fields & Maxwell’s Equations - sites.google.com/site/ncpdhbkhn Faraday's Law (6) ∂B emf = ∫ E.dL = − ∫ dS + ∫ ( v × B).dL S ∂t B Time – Varying Fields & Maxwell’s

Ngày đăng: 17/05/2018, 15:58

TỪ KHÓA LIÊN QUAN