1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Steady magnetic field 2013 mk

73 92 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 476,17 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics The Steady Magnetic Field Contents I Introduction II Vector Analysis III Coulomb’s Law & Electric Field Intensity IV Electric Flux Density, Gauss’ Law & Divergence V Energy & Potential VI Current & Conductors VII Dielectrics & Capacitance VIII Poisson’s & Laplace’s Equations IX The Steady Magnetic Field X Magnetic Forces & Inductance XI Time – Varying Fields & Maxwell’s Equations XII The Uniform Plane Wave XIII Plane Wave Reflection & Dispersion XIV.Guided Waves & Radiation The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn The Steady Magnetic Field (1) Biot – Savart Law Ampere’s Circuital Law Curl Stokes’ Theorem Magnetic Flux & Magnetic Flux Density Magnetic Potential Derivation of the Steady – Magnetic – Field Law The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn The Steady Magnetic Field (2) • The source of the steady magnetic field may be: – Permanent magnet – Electric field changing linearly with time – Direct current • Consider the field produced by a differential dc element in free space only The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn Biot – Savart Law (1) dH = IdL × a R 4π R = Id L × R 4π R3 R12 dL1 I1 P aR12 H: magnetic field intensity (A/m) The direction of H is determined by the right-hand rule d H2 = dH = I1dL1 × a R12 IdL × a R 4π R 2 4π R12 →H= ∫ IdL × a R 4π R The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn Biot – Savart Law (2) I = Kb K b I = ∫ KdN I IdL = KdS H= ∫ IdL × a R 4π R =∫ S K × a R dS 4π R The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn z dL Biot – Savart Law (3) d H2 = R12 = ρ a ρ − z ' a z → a R12 = → dH = I → H2 = 4π 3/2 ρ dz ' aϕ ∫−∞ ( ρ + z '2 )3/2 = = 4π ρaρ x y I ∞ Idz ' a z × (ρ a ρ − z ' a z ) −∞ 4π ( ρ + z '2 )3/2 → H2 = ∫ I ρ aϕ R12 ρ + z '2 4π ( ρ + z ' ) ∞ z’az 4π R12 dz ' a z dL1 = ρaρ − z ' a z Idz ' a z × (ρ a ρ − z ' a z ) IdL1 × a R12 aR a z × a ρ = aϕ ; a z × a z = ∞ dz ' ∫−∞ ( ρ + z '2 )3/2 z '=∞ I ρ aϕ z' 4π ρ ρ + z '2 = z '=−∞ The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn I 2πρ aϕ z Biot – Savart Law (4) H= az z aφ I 2πρ dL aR z’az R12 aϕ ρaρ y α2 α ρ y x I aρ ρ x z z y I φ H= I 4πρ (sin α − sin α1 )aϕ x The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn H= I 2πρ Biot – Savart Law (5) aϕ The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn Biot – Savart Law (6) H= ∫ IdL × a R 4π R2 K × aR dS H=∫ S 4π R H=∫ V J × a R dV 4π R The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 10 Magnetic Potential (4) µ0 IdL dA = 4π R dL = dza z → dA = R = ρ + z2 → dA z = µ0 Idza z 4π ρ + z H= ∇× A µ0 Idz 4π ρ + z z IdL = Idzaz R = ρ + z2 P(ρ, φ, z) y az x φ dAϕ = dA ρ = → dH = µ0 ρ ∇ × dA  ∂dAz = −  µ0  ∂ρ µ0 → dH = z   aϕ  Idz ρ aϕ 2 3/ 4π ( ρ + z ) The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 59 Magnetic Potential (5) à0 IdL dA = R ã In the case of current flow throughout a volume with a density J, then: IdL = Jdv →A=∫ V µ0 Jdv 4π R The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 60 Magnetic Potential (6) Ex A very long, straight conductor lies along the z axis, carrying a uniform current I in the z direction Find the magnetic potential difference between two points in space? a Vm,ab = − ∫ H.dL b dL = d ρ aρ + ρ dϕ aϕ + dza z → Vm, ab = − a I dϕ = I (ϕb − ϕ a ) ∫b 2π 2π I H= aϕ 2πρ The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 61 z L Magnetic Potential (7) Ex IdL Find the vector magnetic potential in the plane bisecting a straight piece of thin wire of finite length 2L in free space µ0 IdL dA = 4π R R I ρ P( ρ ,0, 0) −L IdL = Idz ' a z R = ρ + ( z ') → A ( ρ ,0,0) = L ∫ z ' =− L 4π µ0 Idz ' ρ + ( z ')2 az L2 + ρ + L µ0 I = ln az 4π L2 + ρ − L The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 62 The Steady Magnetic Field Biot – Savart Law Ampere’s Circuital Law Curl Stokes’ Theorem Magnetic Flux & Magnetic Flux Density Magnetic Potential Derivation of the Steady – Magnetic – Field Law The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 63 (1) • Use formulae/definitions: H= ∫ IdL × a R 4π R B = à0 H B =ìA ã to show that A= V A=∫ V µ0 Jdv 4π R µ0J dv →H= 4π R ∫ IdL × a R 4π R2 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 64 (2) A=∫ V µ0J dv →H= 4π R ∫ IdL × a R 4π R2 Current element at (x1, y1, z1), A at (x2, y2, z2) B = à0 H B ì A = H = B = ì A à0 à0 H2 = ì A2 à0 = à0 ì V → H2 = 4π µ0J1dv1 = 4π R12 4π µ0 J1dv1 V 4π R 12 → A2 = ∫  J1  J1dv1 ∫V ∇ × R12 = 4π ∫V  ∇ × R12  dv1 ∇× ( SV ) = (∇S ) × V + S (∇ × V )    ∫V  ∇2 R12  × J1 + R12 ( ∇2 × J1 ) dv1   The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 65 (3) A=∫ V µ0J dv →H= 4π R ∫ IdL × a R 4π R2 Current element at (x1, y1, z1), A at (x2, y2, z2)    ∫V  ∇ R12  × J1 + R12 ( ∇ × J1 ) dv1   ∇ × J1 =   1  → H2 =  ∇  × J1  dv1 ∫ V 4π  R12   R12 a R12 2 R12 = ( x2 − x1 ) + ( y2 − y1 ) + ( z2 − z1 ) → ∇ =− =− R12 R12 R12 → H2 = 4π → H2 = 4π ∫V a R12 × J1 R12 dv1 = 4π ∫V J1 × a R12 R12 dv1 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 66 (4) A=∫ V µ0J dv →H= 4π R ∫ IdL × a R 4π R2 Current element at (x1, y1, z1), A at (x2, y2, z2) → H2 = 4π ∫V J1 × a R12 R12 dv1 J1dv1 = I1dL1 → H2 = ∫ I1dL1 × a R12 4π R12 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 67 (5) ∇×H = J ìH = J B = à0 H B = ì A ì H = ì B à0 = à0 ì ì A ì ì A = ∇ (∇ A) − ∇ A ∇ A = ∇ Axa x + ∇ Ay a y + ∇ Az a z → ∇× H = ∇ (∇ A) − ∇ A µ0 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 68 (6) ∇×H = J → ∇× H = ∇ (∇ A) − ∇ A µ0 A2 = ∫ V µ0 J1dv1 4π R12 ∇.(S A ) = A.(∇ S ) + S (∇.A ) µ0 → ∇ A = 4π     ∫V J1  ∇ R12  + R12 (∇2 J1 )  dv1   The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 69 (7) ìH = J à0 A = 4π     ∫V J1  ∇ R12  + R12 (∇2 J1 )  dv1   ∫V R12 (∇ J1 )dv1 = R12 ∇1 = = −∇ R12 R12 R12 µ0 → ∇2 A = 4π    ∫V −J1  ∇1 R12  dv1   The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 70 (8) ìH = J à0   → ∇2 A = −J1  ∇1 dv1    ∫ 4π V   R12   ∇.(S A ) = A.(∇ S ) + S (∇.A ) µ0 → ∇2 A = 4π  J1  ∫V  R12 ( ∇1 J1 ) − ∇1 ( R12 )  dv1 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 71 (9) ∇×H = J µ0  J1  → ∇ A = ∇1 J1 ) − ∇1 ( )  dv1 (  ∫ 4π V  R12 R12  ∂ρ v ∇1 J = − =0 ∂t ∫ µ0 → ∇ A = − 4π S J.dS = ∫ ∇.Jdv V ∫S J1 dS1 = R12 The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 72 (10) ∇×H = J ∇ (∇ A) − ∇ A ì H = à0 à0 J x dv .A = Ax = ∫ V 4π R ∇2 Ax = − µ0 J x  ρv dv V =∫ → ∇ A = − µ J → ∇ A = − J µ  y y V 4πε R  ∇ Az = −µ0 J z ρv  ∇ V =− ε0 → ∇× H = J The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 73 ... Derivation of the Steady – Magnetic – Field Law The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn The Steady Magnetic Field (2) • The source of the steady magnetic field may be: – Permanent... Magnetic Potential Derivation of the Steady – Magnetic – Field Law The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn 14 Ampere''s Circuital Law (1) ∫ H.dL = I I The Steady Magnetic Field. .. The Steady Magnetic Field - sites.google.com/site/ncpdhbkhn The Steady Magnetic Field (1) Biot – Savart Law Ampere’s Circuital Law Curl Stokes’ Theorem Magnetic Flux & Magnetic Flux Density Magnetic

Ngày đăng: 17/05/2018, 15:58