1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Dielectrics capacitance 2017mk

38 111 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 357,78 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics Dielectrics & Capacitance Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations Transmission Lines The Uniform Plane Wave Plane Wave Reflection & Dispersion Guided Waves & Radiation Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using Field Sketches to Estimate Capacitance Current Density & Flux Density Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (1) + – – d E Q + E • Dipole moment: p = Qd • Q: the positive one of the bound charges • d: the vector from the negative to the positive charge Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (2) • Dipole moment: p = Qd • If there are n dipoles per unit volume, then the total dipole moment in Δv: ptotal = n∆v ∑ pi i =1 • The polarization: n∆v P = lim pi ∑ ∆v→0 ∆v i =1 • Unit: C/m2 Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (3)ΔS E Density: n molecules/m3 ∆v = d cos θ∆S + + – – ΔS – ∆Qb = nQ∆v + + + – + + + – + θ – – → ∆Qb = nQd cos θ∆S – – = nQd.∆S → ∆Qb = P.∆S p = Qd → P = nQd → Qb = − ∫ P.dS S Gauss’s law: QT = QT = Qb + Q ∫S ε 0E.dS → Q = QT – Qb + →Q= – d cos θ d cos θ d ∫ S (ε 0E + P ) dS (Q: the total free charge) Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (4) Q= ∫ S ( ε 0E + P ) dS Gauss’s law: Q = Divergence theorem: ∫ S ∫ S D.dS → D = ε 0E + P D.dS = ∫ ∇.Ddv v Q = ∫ ρ v dv → ∇.D = ρv V Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (5) • D = ε0E + P • In an isotropic material, E & P are always parallel, regardless of the orientation of the field • P = χeε0E • χe : the electric susceptibility • → D = ε0E + P = ε0E + χeε0E = (χe + 1)ε0E • εr = χe + 1: the relative permitivity • → D = ε0εrE = εE • ε = ε0εr : the permitivity Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectric Materials (6) N Ida Engineering Electromagnetics Springer, 2015, pp 175 Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using Field Sketches to Estimate Capacitance Current Density & Flux Density Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 10 Capacitance (7) C= C= d1 d2 + ε1S ε S = ε1S1 + ε S d Area, S Conducting plates 1 + C1 C2 ε2 d2 ε1 d1 d Conducting plates = C1 + C2 S1 S2 ε1 ε2 Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn d 24 ρ L R01 V1 = ln 2πε R1 − ρ L R02 V2 = ln 2πε R2 y Capacitance (8) P(x, y, 0) R2 R1 (– a, 0, 0) (a, 0, 0) ρ L  R01 R02  → V = V1 + V2 = − ln  ln  2πε  R1 R2  ρL R01R2 = ln 2πε R02 R1 R01 = R02 R1 = ( x − a) + y R2 = ( x + a )2 + y – ρL z +ρL ρL ( x + a )2 + y →V = ln 2πε ( x − a )2 + y ρ L ( x + a )2 + y = ln 4πε ( x − a )2 + y Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 25 x y Capacitance (9) ρ L ( x + a) + y V = ln 4πε ( x − a )2 + y P(x, y, 0) R2 R1 (– a, 0, 0) (a, 0, 0) Choosing an equipotential surface V1, we define: – ρL z +ρL K1 = e4πεV1/ρL K1 + 2 → K1 = → x − ax + y + a =0 2 K1 − (x − a) + y ( x + a) + y 2  a K1   K1 +  → x−a   + y =   K1 −  K −    Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 26 x y Capacitance (10) K1 = e P(x, y, 0) R2 4πεV1/ ρL R1  a K1   K1 +  →x−a   + y =   K1 −  K − 1    (– a, 0, 0) (a, 0, 0) – ρL +ρL z • The V = V1 surface is independent of z → it is a cylinder • It intersects the xy plane in a circle of radius: b= 2a K1 K1 − K1 + & this circle is centered at (x = h, y = 0) where h = a K1 − Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 27 x y Capacitance (11) V0 = h V1 The V1 surface intersects the xy plane in a circle of radius K1 + & centered at (x = h, y = 0) where h = a K1 −  a = h − b2  → 2 h + h − b  K1 = b  x b 2a K1 b= K1 − 4πε V1 → ρL = ln K1 z If h, b & V1 are given then a, ρL & K1 can be found K1 = e 4πεV1 /ρ L 2πε L 2πε L ρ L L 4πε L = → C plane, cylinder = = = V1 ln K1 ln[( h + h − b )/b] cosh −1 (h/b) Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 28 Capacitance (12) Ex Given the system, find the location & the magnitude of the equivalent line charge, & the location of the 50V equipotential surface a= y V0 = The equivalent line charge h − b = 132 − = 12 m K1 = h+ h −b b 2 = 13 + 12 =5 x V1 = 100 V h = 13 m b=5m → K1 = 25 4π × 8.854 × 10−12 × 100 4πε V1 → ρ L = = 3.46 nC /m ρL = ln 25 ln K1 2πε 2π × 8.854 × 10−12 C plane, cylinder = = = 34.6 pF/m −1 −1 cosh (h/b) cosh (13/ 5) Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 29 Capacitance (13) Ex Given the system, find the location & the magnitude of the equivalent line charge, & the location of the 50V equipotential surface y V0 = The equivalent line charge K = e 4πε V2 / ρ L =e π ×8.854 ×10 −12 × 50 / 3.46 ×10 −9 = 5.00 x V1 = 100 V h = 13 m 2a K 2 × 12 → b2 = = = 13.42 m K2 − 5−1 K2 + +1 h2 = a = 12 = 18 m K2 −1 −1 b=5m V3 = 25 V → b3 = 29.06 m, h3 = 31.44 m Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 30 y Capacitance (14) C plane, cylinder = V0 = h V1 2πε L ln[( h + h − b2 )/b ] b≪h → C plane, cylinder = C plane, wire → Cwire, wire = x b z 2πε L = 2h ln b y h πε L 2h ln b x z Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 31 Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using Field Sketches to Estimate Capacitance Current Density & Flux Density Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 32 Using Field Sketches to Estimate Capacitance (1) • A conductor boundary is an equipotential surface • The electric field intensity E & the electric flux D are both perpendicular to the equipotential surfaces • E & D are perpendicular to the conductor boundaries & posses zero tangential values • The lines of electric flux, or streamlines, begin & terminate on charge & therefore, in a charge-free, homogeneous dielectric, begin & terminate only on the conductor boundaries Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 33 Using Field Sketches to Estimate Capacitance (2) ∆Ltan =1 ∆LN E & D are both perpendicular to the equipotential surfaces ∆ψ E= ε ∆Ltan ∆V E= ∆LN ∆ψ ∆V → = ε ∆Ltan ∆LN ΔLtan ∆Ltan ∆ψ → = const = ∆LN ε ∆V B A ΔLN Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn B’ A’ 34 Using Field Sketches to Estimate Capacitance (3) Q C= V0 Q = N Q ∆Q = N Q ∆ψ V0 = NV ∆V →C = ∆Ltan ∆LN NQ ∆ψ NV ∆V ∆ψ = const = =1 ε ∆V N Q ∆Ltan NQ →C= ε =ε NV ∆LN NV Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 35 Using Field Sketches to Estimate Capacitance (4) 15 30 46 100 V 80 62 Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 36 Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using Field Sketches to Estimate Capacitance Current Density & Flux Density Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 37 Current Density & Flux Density J = σ Eσ D = ε Eε Eσ = −∇Vσ Eε = −∇ Vε J.dS = σ ∫ Eσ dS ∫S Vσ = − ∫ Eσ dL Q = ε ∫ Eε dS S Vε = − ∫ Eε dL I= S  − ∫ Eσ dL Vσ R = = I  σ ∫ Eσ dS  S →  Q ε ∫ S Eε dS = C = Vε − ∫ Eε dL  ε → RC = σ Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 38 ... Waves & Radiation Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using... sites.google.com/site/ncpdhbkhn Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using Field Sketches to Estimate Capacitance Current Density & Flux Density Dielectrics. .. 3.2  ε1   Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 16 Dielectrics & Capacitance Dielectric Materials Boundary Conditions for Perfect Dielectric Materials Capacitance Using

Ngày đăng: 17/05/2018, 15:58

TỪ KHÓA LIÊN QUAN