1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Robust control systems 2018b mk

46 48 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 562,62 KB

Nội dung

Nguyễn Công Phương CONTROL SYSTEM DESIGN Robust Control Systems Contents I Introduction II Mathematical Models of Systems III State Variable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII The Root Locus Method VIII.Frequency Response Methods IX Stability in the Frequency Domain X The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII.Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn Robust Control Systems Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust Internal Model Control System Robust Control Systems Using Control Design Software s i tes.google.com/site/ncpdhbkhn Introduction Td ( s ) R( s ) E a (s ) (−) Gc ( s ) G(s) Controller Process H (s ) Y ( s) N (s ) Sensor • The process model will always be inaccurate representation of the actual physical system because of: – – – – – – Parameter changes, Unmodeled dynamics, Unmodeled time delays, Changes in equilibrium point (operating point), Sensor noise, Unpredicted disturbance inputs • A system is robust when the system has acceptable changes in performance due to model changes or inaccuracies s i tes.google.com/site/ncpdhbkhn Robust Control Systems Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust Internal Model Control System Robust Control Systems Using Control Design Software s i tes.google.com/site/ncpdhbkhn Robust Control Systems & System Sensitivity (1) • A control system is robust when: – It has low sensitivities, – It is stable over the range of parameter variations, – The performance continues to meet the specifications in the presence of a set of changes in the system parameters • The system sensitivity: • The root sensitivity: ∂T / T Sα = ∂α / α ∂ri ri Sα = ∂α / α n ri S α SαT = − i =1 s + ri T  s i tes.google.com/site/ncpdhbkhn Robust Control Systems & System Sensitivity (2) Ex 1 s + α T= = s + α +1 1+ s+α R ( s) ∂T / T Sα = ∂α / α ∂T α −1 α −1 = = = ∂α T ( s + α + 1) T ( s + α + 1) s +α Y (s) T α s + α +1 ∂ ri Sα = ∂(α + 1) ∂α / α ri 1 → Sα = ∂α α = α T= = s + α + s + r1 −α = s + α +1 ri s i tes.google.com/site/ncpdhbkhn Robust Control Systems & System Sensitivity (3) Ex T= s +α +1 R ( s) s +α Y (s) −α Sα = s + α +1 T Sαri = α n ri S α SαT = − i =1 s + ri −α = s +α +1  s i tes.google.com/site/ncpdhbkhn Robust Control Systems & System Sensitivity (4) Ex T Sα = K K K s ( s + 1) T= = K s +s+K 1+ s( s + 1) R ( s) Y (s) K s ( s + 1) ∂T / T = ∂α / α ∂T K ( s + s + K ) − K K = = 2 ∂K T T (s + s + K ) s2 + s = (s + s + K ) K s2 + s = = S (s ) K s +s+K s2 + s + K s i tes.google.com/site/ncpdhbkhn Robust Control Systems & System Sensitivity (5) Ex K s +s T ( s) = , S (s ) = s +s+K s +s+K s i tes.google.com/site/ncpdhbkhn R ( s) Y (s) K s ( s + 1) 10 The Design of Robust PID – Controlled Systems (5) Ex Td ( s ) Obtain an optimum ITAE R(s) performance for a step input and Gp (s) a settling time of less than 0.5 second T (s) = K D s2 + KP s + KI s + ( K D + 2) s + ( K P + 1) s + K I E a (s ) ( −) U (s ) Gc ( s ) Y (s) ( s + 1) → K P = 362.35, K D = 20.75, K I = 2197 ζ = 0.8, ωn = 13 Step Response 1.4 2.5 1.2 Disturbance 10 -3 1.5 0.8 0.6 0.5 0.4 0.2 -0.5 0.2 0.4 0.6 Time (seconds) 0.8 s i tes.google.com/site/ncpdhbkhn 0.2 0.4 0.6 Time (seconds) 0.8 32 The Design of Robust PID – Controlled Systems (6) Ex Obtain an optimum ITAE R(s) performance for a step input and Gp (s) a settling time of less than 0.5 second T (s) = Td ( s ) E a (s ) ( −) U (s ) Gc ( s ) Y (s) ( s + 1) 20.75 s + 362.35 s + 2197 s + 22.75 s + 363.35 s + 2197 Step Response 1.4 T (s) = G p (s) = 20.75 s + 362.35 s + 2197 Without Gp 1.2 With G p s + 22.75 s + 363.35 s + 2197 2197 0.8 s + 22.75 s + 363.35 s + 2197 105.88 → G p (s) = s + 17.46 s + 105.88 0.6 0.4 0.2 0 0.1 s i tes.google.com/site/ncpdhbkhn 0.2 0.3 0.4 0.5 Time (seconds) 0.6 0.7 0.8 33 0.9 Ex The Design of Robust PID – Controlled Systems (7) Td ( s ) Obtain an optimum ITAE R( s ) performance for a step input and Gp ( s ) a settling time of less than 0.5 second E a (s ) (−) U (s ) Gc ( s ) Y (s) ( s + 1) 26 s + 549.4 s + 4096 157.54 ωn = 16 → Gc ( s ) = , G p (s) = s s + 21.13 s + 157.54 Step Response Disturbance 1.4 0.6 Original PID without pref ilter PID with pref ilter 1.2 0.5 0.4 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 Original With PID -0.1 Time (seconds) s i tes.google.com/site/ncpdhbkhn Time (seconds) 34 The Design of Robust PID – Controlled Systems (8) Td ( s ) R( s ) Gp ( s ) E a (s ) (−) U (s ) Gc ( s ) Y (s) ( s + 1) The design procedure: Select the ωn of the closed-loop system by specifying the settling time, Determine the three coefficients using the appropriate optimum equation & the ωn of step to obtain Gc(s), Determine a prefilter Gp(s) so that the closed-loop system transfer function, T(s), does not have any zeros s i tes.google.com/site/ncpdhbkhn 35 The Design of Robust PID – Controlled Systems (9) Ex Td ( s ) 0.5 ≤ τ ≤ 1, ≤ K ≤ R( s ) E a (s ) Gp ( s ) (−) U (s ) K Y ( s) (τ s + 1)2 Gc ( s ) 26 s2 + 549.4 s + 4096 157.54 K = 1, τ = 1, ωn = 16 → Gc (s) = , G p (s ) = s s + 21.13 s + 157.54 Step Response 1.2 Disturbance 10 -4 20 K= K= K= K= 15 1, 2, 1, 2, = = = = 1 0.5 0.5 0.8 10 0.6 0.4 K K K K 0.2 = 1, = 2, = 1, = 2, =1 =1 = 0.5 = 0.5 0 -5 0.1 0.2 0.3 0.4 Time (seconds) 0.5 0.6 0.7 s i tes.google.com/site/ncpdhbkhn 0.2 0.4 Time (seconds) 0.6 0.8 36 Robust Control Systems Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust Internal Model Control System Robust Control Systems Using Control Design Software s i tes.google.com/site/ncpdhbkhn 37 The Robust Internal Model Control System (1) R ( s ) E a (s ) ( −) Gc ( s ) ( −) G(s) x Y (s) K The internal model principle: if Gc(s)G(s) contains R(s) then y(t) will track r(t) asymptotically (in the steady state), and the tracking is robust s i tes.google.com/site/ncpdhbkhn 38 The Robust Internal Model Control System (2) Ex G(s) = 1/s, obtain a ramp response with a steady-state error of zero K=0 Gc ( s ) = K P + R ( s ) E a (s ) ( −) Gc ( s ) ( −) G(s) x Y (s) K KI s K 1 K s+ K  Gc ( s )G ( s ) =  K P + I  = P I s s s  T (s) = KPs + KI s2 + K P s + K I The Optimum Coefficients of T(s) Based on the ITAE Criterion for a Ramp Input s + 3.2ωn s + ωn2 → T (s) = 3.2ωn s + ωn2 s + 3.2ω n s + ωn2 s i tes.google.com/site/ncpdhbkhn 39 The Robust Internal Model Control System (3) Ex R ( s ) E a (s ) G(s) = 1/s, obtain a ramp response with a steady-state error of zero T (s) = KPs + KI s2 + K P s + K I Tsettling time = ζωn = 1s = 3.2ωn s + ω Gc ( s ) ( −) n ( −) K s + 3.2ω n s + ω n2 → ζ = 0.8, ωn = Ramp input Output Error G(s) x Y (s) → T (s) = 16 s + 25 s + 16 s + 25 0.8 0.5 0.6 Step input Output Error 0.4 -0.5 0.2 -1 10 Time 15 s i tes.google.com/site/ncpdhbkhn Time 40 Ex The Robust Internal Model Control System (4) G(s) = 1/s, G(s) changes gain so that it becomes 2/s R ( s ) E a (s ) ( −) Gc ( s ) ( −) G(s) x Y (s) K s i tes.google.com/site/ncpdhbkhn 41 The Robust Internal Model Control System (5) R( s ) Ex G p ( s) 1 , G2 (s) = s +1 s+2 1 Gˆ1 ( s ) = , Gˆ ( s ) = s + 0.5 s +1 ( −) G c (s ) G1 ( s ) = Achieve a settling time in less than second & a deadbeat response KD s2 + K P s + KI Gc (s ) = s → Ta (s ) = Gp (s) = Ta = ( −) Ka ( −) G1 ( s ) G2 ( s) Y (s) Kb G1G2Gc + K b G1 + K a G1G2 + G1G2Gc K D s2 + KP s + KI s + ( K D + Kb + 3) s + ( K P + K a + Kb + 2) s + K I KI K D s2 + K P s + K I → T (s ) = G p ( s )Ta ( s ) = KI s + ( K D + Kb + 3) s + ( K P + K a + Kb + 2)s + K I s i tes.google.com/site/ncpdhbkhn 42 The Robust Internal Model Control System (6) R( s ) Ex G p ( s) ( −) Gc ( s ) ( −) Ka Achieve a settling time in less than second & a deadbeat response T ( s) = α β 1.90 2.20 Ts = Kb s + ( K D + Kb + 3) s + ( K P + K a + Kb + 2) s + K I Coefficients → T (s ) = G2 ( s) KI System Order 3rd ( −) G1 ( s ) Y (s) γ δ ε Percent Overshoot (%) Percent Undershoot (%) 90% Rise Time 100% Rise Time Settling Time 1.65 1.36 3.48 4.32 4.04 ω n3 s + 1.9ωn s + 2.2ωn2 s + ωn3 4.04 ωn = 0.5 → ω n = 8.08 K a = 10, K b = → K P = 127.6, K I = 527.5, K D = 10.35 s i tes.google.com/site/ncpdhbkhn 43 Ex The Robust Internal Model Control System (7) R( s ) G p ( s) 1 , G2 (s) = s +1 s+2 1 Gˆ1 ( s ) = , Gˆ ( s ) = s + 0.5 s +1 G1 ( s ) = ( −) G c (s ) ( −) Ka ( −) G1 ( s ) G2 ( s) Y (s) Kb Achieve a settling time in less than second & a deadbeat response s i tes.google.com/site/ncpdhbkhn 44 Robust Control Systems Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust Internal Model Control System Robust Control Systems Using Control Design Software s i tes.google.com/site/ncpdhbkhn 45 Ex Robust Control System Using Control Design Software 116 s + 1887 s + 8260 Gc ( s ) = K s R(s) s i tes.google.com/site/ncpdhbkhn (−) Gc ( s ) Y (s) ( s + 1) 46 ... Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust Internal Model Control System Robust Control Systems. .. Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust PID-Controlled Systems The Robust. .. 12 Robust Control Systems Introduction Robust Control Systems & System Sensitivity Analysis of Robustness Systems with Uncertain Parameters The Design of Robust Control Systems The Design of Robust

Ngày đăng: 17/05/2018, 15:56

TỪ KHÓA LIÊN QUAN