1. Trang chủ
  2. » Thể loại khác

30 đề THI CHỌN học SINH GIỎI cấp TỈNH 2018 lớp 11 môn toán có đáp án

69 257 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 69
Dung lượng 5,25 MB

Nội dung

ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH 2018 SỐ Câu 1.(2,0 điểm) a) Giải bất phương trình: x − x + ≥ 2(2 − x) x −  x + xy = y10 + y b) Giải hệ phương trình:   x + + y + = Câu 2.(2,0 điểm)  x − m = y ( x + my ) m Tìm tất giá trị tham số để hệ phương trình sau nghiệm   x − y = xy Câu 3.(2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I (2; 4) đường thẳng d1 : x − y − = 0, d : x + y − = Viết phương trình đường tròn (C ) tâm I cho (C ) cắt d1 A, B cắt d C , D thỏa mãn AB + CD + 16 = AB.CD Câu (2,0 điểm) Cho tam giác ABC AB= c ,BC=a ,CA=b Trung tuyến CM vng góc với phân giác AL CM b = − Tính cos A AL c Cho a,b ∈ ¡ thỏa mãn: (2 + a )(1 + b) = Tìm giá trị nhỏ biểu thức: P = 16 + a + + b Câu (2,0 điểm) Cho f ( x ) = x − ax + b với a,b∈ ¢ thỏa mãn điều kiện: Tồn số nguyên m, n, p đôi phân biệt ≤ m, n, p ≤ cho: f ( m ) = f ( n ) = f ( p ) = Tìm tất số (a;b) Câu 6: (2,0 điểm) Giải phương trình cos x(tan x + tan x) = sin x + cos x Câu (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C ) : x + y − x − y − = tâm I điểm M (3; 2) Viết phương trình đường thẳng ∆ qua M , ∆ cắt (C ) hai điểm phân biệt A, B cho diện tích tam giác IAB lớn  x4 − x = y − y  (x, y ∈ ¡ ) Câu (2,0 điểm) Giải hệ phương trình   x − y = Câu (2,0 điểm) Cho số a, b, c không âm cho tổng hai số dương Chứng minh : ( ) a b c ab + bc + ca + + + ≥6 b+c a+c a+b a+b+c Câu 10.(2 điểm) Trong mặt phẳng Oxy , cho A ( 3;1) , B ( −3;9 ) , C ( 2; −3 ) uuur a) Gọi D ảnh A qua phép tịnh tiến theo BC Xác định tọa độ D b) Viết phương trình đường thẳng qua A , cắt đoạn thẳng CD M cho tứ giác ABCM diện tích 24 www.thuvienhoclieu.com Trang HƯỚNG DẪN CHẤM MƠN TỐN ĐỀ 01 Câu1 Đáp án Điều kiện: x ≥ Đặt t = x − ( t ≥ ) x = t + Khi ta 2 x − x + − 2(2 − x)t ≥ ⇔ x + 2tx − 4t − 3(t + 1) + ≥ Điểm 1.0 ⇔ ( x + t ) − (2t + 1) ≥ ⇔ ( x + 3t + 1)( x − t − 1) ≥ 1điểm ⇔ x − ≥ t (do x + 3t + > 0; ∀x ≥ ; ∀t ≥ ) x ≥ ⇔ x ≥ + Với x − ≥ t ta x − ≥ x − ⇔   x − 2x + ≥ 2x −1 Đối chiếu điều kiện ta tập nghiệm bất phương trình S = [2 + 2; +∞)  x + xy = y10 + y (1)   x + + y + = (2) Điều kiện: x ≥ − 1,0 Th1: y = ⇒ x = không thỏa mãn điểm x x Th2: y ≠ ta có: (1) ⇔  ÷ + = y + y ⇔ (t − y )(t + t y + t y + ty + y ) = với t=x/y  y y ⇔ (t − y )  (t + y ) + (t + y )2 (t − yt + y ) +  = ⇔ t=y hay y = x 23  x ≤ Thay vào (2): x + + x + = ⇔ x + 37 x + 40 = 23 − x ⇔   x − 42 x + 41 =  ⇒ x = ⇒ y = ±1 Đối chiếu đk ta nghiêm hệ là: ( x; y ) = { (1;1);(−1;1)} Câu2  my − y + m = (1) Hệ cho tương đương với:   x − yx − y = (2) y ≥ Phương trình (2) (ẩn x ) nghiệm ∆ x = y + y ≥ ⇔   y ≤ −4 điểm Th1: m = 0, ta y = 0, x = Suy m = thỏa mãn Th2: m ≠ Phương trình (1) (ẩn y ) khơng nghiệm thuộc khoảng (−∞; −4] ∪ [0; +∞) (*) nghiệm (1) nghiệm thuộc (−4;0), điều kiện 1 ∆ = − 4m2 <  m ∈ ( −∞ ; − ) ∪ ( ; +∞)   2   ∆ = − 4m <  ∆ = − 4m ≥   − ≤ m <      ∆ = − 4m ≥ ⇔  ⇔  (B) − − 4m   −4 < y <  −4 < + 8m ( A)  2m     −4 < y2 < + − 4m    − m < − − 8m − < <      2m (với y1 , y2 nghiệm phương trình (1)) www.thuvienhoclieu.com 2.0 (1) vơ Trang  1 4 − ≤ m < − ⇔ − ≤ m < − ⇒ (B) ⇔ m ∈ (−∞; − ) ∪ ( ; +∞) (A) ⇔  17 17  − m < −1 − m  Hệ phương trình cho nghiệm phương trình (1) (ẩn y ) nghiệm −4 ≤ m ≤ ; m ≠ Vậy tất thuộc khoảng (−∞; −4] ∪ [0; +∞) hay (*) không xảy ra, điều kiện 17 −4 ≤m≤ giá trị m cần tìm 17 2 ; IF = d ( I ;d2 ) = Gọi hình chiếu I d1 , d E , F IE = d ( I ;d1 ) = 5 Gọi R bán kính đường tròn (C ) cần tìm ( R > ) Câu3 điểm 36 AB = AE = R − ; CD = 2CF = R − 5 4  36  36  R2 − Theo giả thiết ta có:  R − ÷+  R − ÷+ 16 = 20 R − 5   5  ⇔ R − 16 = (5 R − 4)(5R − 36) ⇔ R − = (5 R − 4)(5 R − 36) 6 ⇔ (2 R − 4) = (5 R − 4)(5 R − 36) (do R > ) ⇔ R = 2 ( R > ) 5 Vậy phương trình đường tròn (C ) cần tìm (C ) : ( x − 2) + ( y − 4) = uuu r b uuur c uuur AB + AC Ta có: AL = b+c b+c uuu r uuu r uuur uuur uuuu r CA + CB AB − AC CM = = 2 uuu r uuuu r Theo giả thiết: AL ⊥ CM ⇔ AL.CM = uuu r uuur uuur uuur ⇔ b AB + c AC AB − AC = ⇔ bc + bc cos A − 2cb cos A − 2cb = ( 4.a điểm 2,0 )( 1.0 ) ⇔ ( c − 2b ) ( + cos A ) = ⇒ c = 2b (do cos A > −1) b2 + a c a − b2 − = u u u r u u u r uuu r uuur 1 AL2 = AB + AC = AB + AC + AB AC = ( 9b − a ) 9 Khi đó: CM = ( ) ( ) CM CM a − b a − b2 a2 = 5−2 ⇔ = = − ⇔ = − ⇔ = 6− AL AL2 9b − a 9b − a b2 ( ) b + c − a 5b − a −1 cos A = = = 2bc 4b 4.b 1điểm C/M : a + b + c + d ≥ (a + c) + (b + d ) ấu xẩy khi: a b = c d 1.0  a2   a2 p (a + 4b ) 2 = 1+  ÷ + 1+ b ≥ +  + b ÷ = + 16  4   Mặt khác: (1 + 2a)(1 + b) = ⇔ a + 2b + ab = (2) 2 Áp dụng (1) ta : www.thuvienhoclieu.com Trang   a + ≥ 2a  3( a + 4b ) ⇒ + ≥ 2a + 4b + 2ab ⇒ a + 4b ≥ (3) Mà:  4b + ≥ 4b  a + 4b  ≥ 2ab  Từ (1) (3) suy ra: p ≥ 17 Dấu “=” xẩy khi: a=1 b = Vậy: MinP = 17 Đạt a=1 b = số f(m),f(n),f(p) dương, âm số dấu nên: Th1: f(m),f(n),f(p) -7 ⇒ loại phương trình f(x)-7=0 nghiệm phân biệt 2,0 Th2: f ( m) = f ( n) = f ( p) = −7 Không tính tổng quát,giả sử m>n m − p ≥ n − p ta có: m,n nghiệm pt: x − ax + b − = p nghiệm pt: x − ax + b + = nên : Câu điểm  n − p = ⇒ n − m = 9(l ) m + n = a  p − m =    (n − p )(n + p − a) = 14 ⇒ (n − p )( p − m) = 14 ⇒   n − p = −2 (m − p )(m + p − a ) = 14  ⇒ n − m = −9(l )    p − m = −7 Th3: f ( m) = f ( n) = −7 f ( p) = ,khiđó hồn tồn tương tự ta có:  m − p = −7 m − p = ( p − n)(m − p) = −14 ⇒   p−n =  p − n = −2 Do m,n,p∈ [ 1;9] nên tìm là: (a;b)= { (11;17), (13; 29), (7; −1), (9;7)} Câu Điều kiện: cosx ≠ (*) PT cho tương đương 2sin x + 2sin x.cos x = sin x + cos x ⇔ 2sin x(sin x + cos x) = sin x + cos x ⇔ (sin x + cos x)(2sin x − 1) = π +) sin x + cos x = ⇔ tan x = −1 ⇔ x = − + kπ π 5π + k 2π + sin x = ⇔ x = + k 2π ; x = 6 Đối chiếu điều kiện (*), suy nghiệm PT π π 5π x = − + kπ ; x = + k 2π ; x = + k 2π (k ∈ ¢ ) 6 Câu www.thuvienhoclieu.com 2,0 2,0 Trang (C ) tâm I (1; 2) , bán kính R = Ta IM = < R nên M nằm đường tròn (C) Gọi H hình chiếu I AB đặt IH = t , < t ≤ Ta S IAB = IH AB = t − t Xét hàm f ( x ) = t − t ;0 < t ≤ Ta f '(t ) = − 2t − t2 > 0, ∀t ∈ ( 0; 2] , suy f (t ) đồng biến ( 0; 2] ⇒ f (t ) ≤ f (2) Vậy S IAB lớn d ( I ; ∆ ) = t = , hay H ≡ M uuur Khi ∆ nhận IM véc tơ pháp tuyến, suy ∆ : x − = Câu 2,0 điểm Đặt x + y = a, x − y = b Để cho tiện ta đặt = c Từ phương trình thứ hai hệ, ta có: ( ab ) = c ⇔ ab = c a+b a −b ab , suy x − y = (a + b ) ,y = 2 (a − b) a + 3b a + c b x − y = (a + b) − = = 2 ab a + c 3b Phương trình thứ hệ trở thành: (a + b ) = ⇔ c(a + b ) = a + c 3b 2 2 c(a + b ) = a + c b Ta hệ  , suy  ab = c 0,25 Từ x = 0,25  c2  c4 c  a + ÷ = a + ⇔ ca + c = a + ac ⇔ (ca − 1)(a − c ) = ⇔ a = ∨ a = c a a  c  Câu c +1 3 +1 −1 - Nếu a = c,b = x = = ,y = 2   + c3   − c −1 x = + c = = , y = = - Nếu a = ,b = c  ÷  − c ÷= 3 2c 2c 2c 2c c 3    3 + 3 −   −1  ( x ; y ) = ;  ÷, ; ÷ Vậy hệ cho hai nghiệm  ÷ 3   2,0 điểm 0,25 0,25 a b c ab + bc + ca + + + b+c a+c a+b a+b+c ab ac b.b c.c Giả sử a ≥ b ≥ c , + ≥ + = b+c a+c a+b b+c c+b Đặt P = Suy 0,25 b c b+c + ≥ a+c a+b a Đặt t = b + c P ≥ 0,25 a t at + + t a a +t 0,25 a t at a + t at + + = + ≥ (AM-GM) Do P ≥ (đpcm) t a a +t at a + t Chú ý: Đẳng thức xảy a + t = at chẳng hạn (a, b, c) thỏa mãn Ta 0,25  7+3  (a; b; c) =  ;1;0 ÷ ÷ (HS khơng cần nêu bước này)   www.thuvienhoclieu.com Trang Câu 10(2,0 điểm) uuur uuur uur ( A ) ⇔ AD = BC D = TuBC uuur a/ BC = ( 5; −12 )  xD − = x = ⇔ D ⇔ D ( 8; −11)  y − = − 12 y = − 11  D  D uuu r 16 b/ AB = ( −6;8 ) ⇒ AB = 10 ;Pt(AB): x + y − 15 = ⇒ d ( ( CM ) , ( AB ) ) = d ( C , ( AB ) ) = ( AB + CM ) d ( ( CM ) , ( AB ) ) S◊ABCM = = 24 ⇒ CM = AB CD Do M thuộc đoạn thẳng CD, CM = = suy M trung điểm CD ⇒ M ( 5; −7 ) = 2 Pt (AM) là: x + y − 13 = Hết ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH 2018 SỐ Câu (3,0 điểm) a) Cho hàm số y = x − 3x + hàm số y = − x + m Tìm m để đồ thị hàm số cắt hai điểm phân biệt A, B đồng thời khoảng cách từ trung điểm I đoạn thẳng AB đến trục tọa độ b) Giải bất phương trình: Câu (3,0 điểm) − x + 4x − − >0 2x − a) Trong mặt phẳng tọa độ Oxy cho tam giác ABC B(1;2) Đường thẳng ∆ đường phân giác góc A phương trình 2x + y −1 = ; Khoảng cách từ C đến ∆ gấp lần khoảng cách từ B đến ∆ Tìm tọa độ A C biết C nằm trục tung b) Cho tam giác ABC vuông A, gọi α góc hai đường trung tuyến BM CN tam giác Chứng minh sin α ≤ Câu (3,0 điểm) uuur r uuur uuu uuur a) Cho tam giác ABC Gọi D, E điểm thỏa mãn: BD = BC; AE = AC Tìm vị trí điểm K AD cho điểm B, K, E thẳng hàng b) Chouu tam I thỏa mãn hệ r giác uur ABC uurvuông r A; BC = a; CA = b; AB = c Xác 2định2 điểm 2 2 thức: b IB + c IC − 2a IA = ; Tìm điểm M cho biểu thức ( b MB + c MC2 − 2a MA ) đạt giá trị lớn Câu (2,0 điểm) a) Giải phương trình: + ( x + ) x − = ( x + x ) b) Cho x, y, z số thực dương thỏa mãn x + y + z = xyz Chứng minh rằng: + + x2 + + y2 + + z + + ≤ xyz x y z Câu 5: (3,0 điểm) a) Cho tan b a b−a 3sin a = = tan Chứng minh : tan − 3cos a 2 www.thuvienhoclieu.com Trang 1 + = 0 cos 290 sin 250 35 8 cos8 x + cos x + c) sin x + cos x = 64 16 64 b) Chứng minh : Câu 6: (3,0 điểm) Giải phương trình sau: a) sin x + 3sin x cos x + cos x = +8 = 12 cos x + 5sin x + 14 + cot2x.tan x + = 6(1 − sin 2 x) ; c) cos x Câu 7(1,0 điểm): Tìm giá trị α để phương trình : b) 12cos x + 5sin x + (cos α + 3sin α − 3)x + ( cos α − 3sin α − 2)x + sin α − cos α + = nghiệm x =1 Câu 8(2,0 điểm): r a).Trong mặt phẳng 0xy ,cho vectơ v =(-2;1), đường thẳng d phương trình 2x –3y +3 =0 Hãy xác định r phương trình d’ ảnh d qua phép tịnh tiến theo vectơ v b) Trong mặt phẳng 0xy , cho đường tròn ( C) phương trình : x + y − 2x + 4y − = r Tìm ảnh ( C) qua phép tịnh tiến theo vec tơ v =(-2;5) HƯỚNG DẪN CHẤM ĐỀ Câu Ý Nội dung Cho hàm số y = x − 3x + hàm số y = − x + m Tìm m để đồ thị hàm số cắt hai điểm phân biệt A, B đồng thời trung điểm đoạn thẳng AB cách trục tọa độ Điểm a 1,5 Yêu cầu toán ⇒ PT sau hai nghiệm phân biệt x − x + = − x + m hay x − x + − m = (*)có ∆ ' > ⇔ m>1 Gọi x A ; x B nghiệm (*), I trung điểm AB ta x I = yI = −x I + m = m − xA + xB = 1; Yêu cầu toán ⇔ y I = x I ⇔ m − = ⇔ m = 2; m = Kết hợp ĐK, kết luận b m=2 Giải bất phương trình: TXĐ: −x + 4x − − > (1) 2x − 1,5 − x + x − > ⇔ < x < 2;2 < x <  x ≠  (1) ⇔ Nếu < − x2 + x − > 0,25 2x − x < − x + x − > > x − , bất phương trình nghiệm với x: 1< x < 2 x − > Nếu < x < ⇒   − x + x − > bất pt cho ⇔ 2x − > − x + 4x − ⇔ x − 16 x + 16 > − x + x − ⇔ x − 20 x + 19 > Kết hợp nghiệm, trường hợp ta có: + www.thuvienhoclieu.com

Ngày đăng: 04/05/2018, 10:38

TỪ KHÓA LIÊN QUAN

w