120 Đề ÔN TậP VàO LớP 10 I, số ®Ị cã ®¸p ¸n ®Ị Bài : (2 điểm) a) Tính : b) Giải hệ phương trình : Bài : (2 điểm) Cho biểu thức : a) Rút gọn A b) Tìm x nguyên để A nhận giá trị nguyên Bài : (2 điểm) Một ca nơ xi dịng từ bến sơng A đến bến sơng B cách 24 km ; lúc đó, từ A B bè nứa trôi với vận tốc dòng nước km/h Khi đến B ca nô quay lại gặp bè nứa địa điểm C cách A km Tính vận tốc thực ca nô Bài : (3 điểm) Cho đường trịn tâm O bán kính R, hai điểm C D thuộc đường tròn, B trung điểm cung nhỏ CD Kẻ đường kính BA ; tia đối tia AB lấy điểm S, nối S với C cắt (O) M ; MD cắt AB K ; MB cắt AC H a) Chứng minh BMD = BAC, từ => tứ giác AMHK nội tiếp b) Chứng minh : HK // CD c) Chứng minh : OK.OS = R2 Bài : (1 điểm) Cho hai số a b khác thỏa mãn : 1/a + 1/b = 1/2 Chứng minh phương trình ẩn x sau ln có nghiệm : (x2 + ax + b)(x2 + bx + a) = Bµi 3: Do ca nô xuất phát từ A với bè nứa nên thời gian ca nô thời gian bÌ nøa: = (h) Gäi vËn tèc ca nô x (km/h) (x>4) 24 24 24 16 + =2⇔ + =2 x+4 x−4 x+4 x−4 x = ⇔ x − 40 x = ⇔ x = 20 Theo ta có: Vởy vận tốc thực ca nô lµ 20 km/h -1- Bµi 4: » » · · a) Ta cã BC = BD (GT) → BMD = BAC (2 góc nội tiếp chắn cung băng nhau) · · * Do BMD = BAC → A, M nh×n HK dêi gãc b»ng → MHKA néi tiÕp » » b) Do BC = BD (do BC = BD ), OC = OD (b¸n kÝnh) → OB đờng trung trực CD CD AB (1) Xet MHKA: tứ giác nội tiếp, à AMH = 900 (góc nt à chắn nửa đờng tròn) HKA = 1800 − 900 = 900 (®l) → HK ⊥ AB (2) Tõ 1,2 → HK // CD B C D O H M K A S Bµi 5: x + ax + b = (*) ( x + ax + b)( x + bx + a ) = ⇔ x + bx + a = (**) 2 (*) → ∆ = α − 4b , §Ĩ PT cã nghiƯm a − 4b ≥ ⇔ a ≥ 4b ⇔ ≥ a (**) → ∆ = b − 4a §Ĩ PT cã nghiƯm th× b − 4a ≥ ⇔ ≥ b a b (3) (4) 1 1 + ≥ + a b a b 1 1 1 11 1 1 ⇔ + ≤ ⇔ + ≤ ⇔ + ữ (luôn với a, b) 4a 4b 4a b a b Céng víi ta cã: De Đề thi gồm có hai trang PHẦN TRẮC NGHIỆM KHÁCH QUAN : (4 điểm) Tam giác ABC vng A có tgB = Giá trị cosC : -2- a) cos C = ; 5 b) cos C = ; c) cos C = ; d) cos C = Cho hình lập phương có diện tích tồn phần S1 ; thể tích V1 hình cầu có diện tích S2 ; thể tích V2 Nếu S1 = S2 tỷ số thể tích a) V1 = ; V2 π b) V1 π = ; V2 c) V1 : V2 V1 = ; V2 3π Đẳng thức x − x + 16 = − x xảy : a) x ≥ ; b) x ≤ –2 ; c) x ≥ –2 x ≤ ; d) V1 3π = V2 d) x ≥ x ≤ –2 Cho hai phương trình x2 – 2x + a = x2 + x + 2a = Để hai phương trình vơ nghiệm : a) a > ; b) a < ; c) a > ; d) a < Điều kiện để phương trình x − (m + 3m − 4) x + m = có hai nghiệm đối : a) m < ; b) m = –1 ; c) m = ; d) m = – Cho phương trình x − x − = có nghiệm x1 , x2 Biểu thức A = x13 + x2 có giá trị : a) A = 28 ; b) A = –13 ; c) A = 13 ; d) A = 18 x sin α − y cos α = Cho góc α nhọn, hệ phương trình có nghiệm : x cos α + y sin α = x = sin α x = cos α x = x = − cos α a) ; b) ; c) ; d) y = cos α y = sin α y = y = − sin α Diện tích hình trịn ngoại tiếp tam giác cạnh a : 3π a a) π a ; b) ; c) 3π a ; -3- d) π a2 PHẦN TỰ LUẬN : (16 điểm) Câu : (4,5 điểm) Cho phương trình x − (m + 4m) x + 7m − = Định m để phương trình có nghiệm phân biệt tổng bình phương tất nghiệm 10 + = x ( x + 1) x + x +1 Giải phương trình: Câu : (3,5 điểm) Cho góc nhọn α Rút gọn khơng dấu biểu thức : P = cos α − − sin α + Chứng minh: (4+ 15 )( 5− ) − 15 = Câu : (2 điểm) Với ba số không âm a, b, c, chứng minh bất đẳng thức : a + b + c +1 ≥ ( ab + bc + ca + a + b + c ) Khi đẳng thức xảy ? Câu : (6 điểm) Cho đường tròn (O) (O’) cắt hai điểm A, B phân biệt Đường thẳng OA cắt (O), (O’) điểm thứ hai C, D Đường thẳng O’A cắt (O), (O’) điểm thứ hai E, F Chứng minh đường thẳng AB, CE DF đồng quy điểm I Chứng minh tứ giác BEIF nội tiếp đường tròn Cho PQ tiếp tuyến chung (O) (O’) (P ∈ (O), Q ∈ (O’)) Chứng minh đường thẳng AB qua trung điểm đoạn thẳng PQ -HẾT - -4- ĐÁP ÁN PHẦN TRẮC NGHIỆM KHÁCH QUAN : Câu a) x x b) x c) x d) (4 điểm) 0,5đ × 8 x x x x PHẦN TỰ LUẬN : Câu : (4,5 điểm) Đặt X = x2 (X ≥ 0) Phương trình trở thành X − (m2 + 4m) X + 7m − = (1) Phương trình có nghiệm phân biệt ⇔ (1) có nghiệm phân biệt dương + (m + 4m) − 4(7 m − 1) > ∆ > ⇔ S > ⇔ m + 4m > (I) + 7 m − > P > 2 Với điều kiện (I), (1) có nghiệm phân biệt dương X1 , X2 ⇒ phương trình cho có nghiệm x1, = ± X ; x3, = ± X 2 2 ⇒ x12 + x2 + x3 + x4 = 2( X + X ) = 2(m + 4m) + m = m = −5 2 Vậy ta có 2(m + m) = 10 ⇒ m + 4m − = ⇒ + Với m = 1, (I) thỏa mãn Với m = –5, (I) không thỏa mãn Vậy m = + + Đặt t = x + x + (t ≥ 1) Được phương trình + = 3(t − 1) t + 3t2 – 8t – = ⇒t=3; t=− (loại) + Vậy x + x + = ⇒ x = ± + -5- Câu : (3,5 điểm) P = cos α − − sin α + = cos α − cos α + P = cos α − 2cos α + (vì cosα > 0) + P = (cos α − 1) P = − cos α (vì cosα < 1) + + ( + 15 )( 5− ) ) ( ) (4− = ( − ) + 15 = ( − ) ( + 15 ) = ( − 15 ) ( + 15 ) − 15 = ( 5− + 15 = Câu : ( 15 ) + + + + (2 điểm) a− b ) ≥ ⇒ a + b ≥ ab + Tương tự, a + c ≥ ac b+c ≥ a +1 ≥ b +1 ≥ c +1 ≥ bc a b c + Cộng vế với vế bất đẳng thức chiều ta điều phải chứng minh + Đẳng thức xảy ⇔ a = b = c = + -6- Câu : (6 điểm) I E A D + O O’ B C P H F Q Ta có : ABC = 1v ABF = 1v ⇒ B, C, F thẳng hàng AB, CE DF đường cao tam giác ACF nên chúng đồng quy ECA = EBA (cùng chắn cung AE (O) Mà ECA = AFD (cùng phụ với hai góc đối đỉnh) ⇒ EBA = AFD hay EBI = EFI ⇒ Tứ giác BEIF nội tiếp + + + + Gọi H giao điểm AB PQ Chứng minh tam giác AHP PHB đồng dạng ⇒ HP HA = ⇒ HP2 = HA.HB HB HP + + Tương tự, HQ2 = HA.HB ⇒ HP = HQ ⇒ H trung điểm PQ + + Lưu ý : - Mỗi dấu “+” tương ứng với 0,5 điểm - Các cách giải khác hưởng điểm tối đa phần - Điểm phần, điểm tồn khơng làm trịn lu«n lu«n cã nghiƯm -7- + ++ -®Ị I.Trắc nghiệm:(2 điểm) HÃy ghi lại chữ đứng trớc khẳng định ( ) Câu 1: KÕt qu¶ cđa phÐp tÝnh 18 − 98 + 72 : lµ : A.4 C 16 D 44 B +6 C©u : Giá trị m phơng trình mx +2 x + = cã hai nghiÖm ph©n biƯt : A m ≠ 1 C m ≠ vµ m < 4 µ µ ằ Câu :Cho VABC nội tiếp đờng tròn (O) cã B = 600 ; C = 450 S® BC lµ: B m < D m ≠ vµ m < A 750 B 1050 C 1350 D 1500 Câu : Một hình nón có bán kính đờng tròn đáy 3cm, chiều cao 4cm diện tích xung quanh hình nón là: A (cm2) II Tự Luận: (8 điểm) C©u : Cho biĨu thøc A= B 12 π (cm2) C 15 π (cm2) D 18 π (cm2) x +1− x x + x + x −1 x +1 a) Tìm x để biểu thức A có nghÜa b) Rót gän biĨu thøc A c) Víi gi¸ trị x ABC) Vẽ đờng tròn tâm (O') đờng kính BC.Gọi I trung điểm AC Vẽ dây MN vuông góc với AC I, MC cắt đờng tròn tâm O' D a) Tứ giác AMCN hình gì? Tại sao? b) Chøng minh tø gi¸c NIDC néi tiÕp? c) X¸c định vị trí tơng đối ID đờng tròn tâm (O) với đờng tròn tâm (O') -8- Đáp án C©u Néi dung C D D C x ≥ x ≥ ⇔ a) A cã nghÜa ⇔ x −1 ≠ x ≠ b) A= ( ) x −1 x −1 + x ( ) 0.5 0.5 x +1 x +1 0.25 = x −1 + x =2 x − c) A 0, x ≠ x −x Rót gän biĨu thức A Tính giá trị A x= câu 3: (2 điểm) Cho đờng thẳng d có phơng trình y=ax+b Biết đờng thẳng d cắt trục hoành điểm có hoành song song với đờng thẳng y=-2x+2003 Tìm a vầ b Tìm toạ độ điểm chung (nếu có) d parabol y= x câu 4: (3 điểm) Cho đờng tròn (O) có tâm điểm O điểm A cố định nằm đờng tròn Từ A kẻ tiếp tuyến AP AQ với đờng tròn (O), P Q tiếp điểm Đờng thẳng qua O vuông góc với OP cắt đờng thẳng AQ M - 141 - Chứng minh MO=MA Lấy điểm N cung lớn PQ đờng tròn (O) cho tiếp tuyến N đờng tròn (O) cắt tia AP AQ tơng ứng B C a Chứng minh AB+AC-BC không phụ thuộc vị trí điểm N b.Chøng minh r»ng nÕu tø gi¸c BCQP néi tiÕp đờng tròn PQ//BC câu 5: (1 điểm) Giải phơng tr×nh x − x − + x + = x + 3x + + x S 28 câu 1: (3 điểm) Đơn giản biểu thức: P = 14 +6 + 14 −6 Cho biÓu thøc: x +2 x −2 ⋅ Q = − x + x +1 x −1 a Chøng minh Q= x +1 x ; x > 0, x x b Tìm số nguyên x lớn để Q có giá trị số nguyên câu 2: (3 điểm) Cho hệ phơng trình: ( a + 1) x + y = ax + y = 2a (a lµ tham sè) Gi¶i hƯ a=1 Chøng minh r»ng víi giá trị a, hệ có nghiệm (x;y) cho x+y câu 3: (3 điểm) Cho đờng tròn (O) đờng kính AB=2R Đờng thẳng (d) tiếp xúc với đờng tròn (O) A M Q hai điểm phân biệt, chuyển động (d) cho M khác A Q khác A Các đờng thẳng BM BQ lần lợt cắt đờng tròn (O) điểm thứ hai N P Chứng minh: BM.BN không đổi Tứ giác MNPQ nội tiếp đợc đờng tròn Bất đẳng thức: BN+BP+BM+BQ>8R câu 4: (1 điểm) Tìm giá trị nhỏ cđa hµm sè: y= x + 2x + x + 2x + - 142 - ĐỀ S 29 câu 1: (2 điểm) Tính giá trị biểu thức Chứng minh: câu 2: (3 điểm) ( a− b ) P = −4 + + + ab a b − b a ⋅ = a −b a+ b ab ; a > 0, b > Cho parabol (P) đờng thẳng (d) có phơng trình: (P): y=x2/2 ; (d): y=mx-m+2 (m tham số) Tìm m để đờng thẳng (d) (P) qua ®iĨm cã hoµnh ®é b»ng x=4 Chøng minh r»ng với giá trị m, đờng thẳng (d) cắt (P) điểm phân biệt Giả sử (x1;y1) (x2;y2) toạ độ giao điểm đờng thẳng (d) (P) Chứng minh y1 + y ≥ ( 2 − 1)( x1 + x2 ) câu 3: (4 điểm) Cho BC dây cung cố định đờng tròn tâm O, bán kính R(01 a −1 + a a −1 Chøng minh phơng trình x + x +1 − x − x +1 = a có nghiệm -1< a 0 cho trớc) Tính độ dài nhỏ đoạn PQ M thay đổi (T) Giải phơng trình (1 m ) x + 2( x + − m ) x + m − 4m + = ; m ≥ , x lµ Èn ĐỀ SỐ 35 câu I: (2 điểm) Cho biểu thức: F= x +2 x −1 + x −2 x −1 T×m giá trị x để biểu thức có nghĩa Tìm giá trị x2 để F=2 câu II: (2 ®iĨm) - 147 - x+ y+ z = Cho hệ phơng trình: 2xy z = (ở x, y, z ẩn) Trong nghiệm (x0,y0,z0) hệ phơng trình, hÃy tìm tất nghiệm có z0=-1 Giải hệ phơng trình câu III:(2,5 điểm) Cho phơng trình: x2- (m-1)x-m=0 (1) Giả sử phơng trình (1) có nghiệm x1, x2 Lập phơng trình bậc hai có nghiệm t1=1-x1 t2=1-x2 Tìm giá trị m để phơng trình (1) có nghiệm x1, x2 thoả mÃn điều kiện: x1