Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)Áp dụng tính đơn điệu của hàm số để giải phương trình và hệ phương trình (Luận văn thạc sĩ)
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN VĂN ĐƠNG ÁP DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ GIẢI PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH LUẬN VĂN THẠC SỸ TOÁN HỌC THÁI NGUYÊN - NĂM 2015 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN VĂN ĐƠNG ÁP DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ GIẢI PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH LUẬN VĂN THẠC SỸ TOÁN HỌC Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP Mã số: 60 46 01 13 Người hướng dẫn khoa học TS NGUYỄN ĐÌNH BÌNH THÁI NGUYÊN - NĂM 2015 i Mục lục Mở đầu Danh mục kí hiệu, chữ viết tắt Kiến thức chuẩn bị 1.1 Hàm đồng biến, nghịch biến 1.2 Định lý Rolle số mở rộng 1.2.1 Định lý Rolle 1.2.2 Định lý Rolle với nguyên hàm 1.2.3 Định lý Rolle khoảng vô hạn 1.3 Định lý Lagrange định lý Cauchy 1.4 Hệ hốn vị vòng quanh Áp dụng tính đơn điệu hàm số để giải phương trình 2.1 Ứng dụng định lý Rolle hệ để giải phương trình 2.2 Chứng minh tồn biện luận số nghiệm phương trình 2.3 Áp dụng định lí Lagrange hệ để xét tồn nghiệm phương trình cho trước 5 7 10 11 12 15 17 17 25 34 Áp dụng tính đơn điệu hàm số để giải hệ phương trình 39 3.1 Áp dụng định lý Lagrange hệ để giải hệ phương trình 39 3.2 Áp dụng định lí Cauchy để giải hệ hốn vị vòng quanh n biến, n ≥ 2, n ∈ N 46 Kết luận 52 Tài liệu tham khảo 53 Mở đầu Lý chọn đề tài Hàm số đơn điệu khái niệm quan trọng giải tích tốn học có nhiều ứng dụng ngành khoa học khác kinh tế, học, vật lý kĩ thuật Trong kỳ thi học sinh giỏi cấp Quốc gia, Quốc tế, kỳ thi Olympic Toán sinh viên trường đại học nước tốn liên quan đến tính đơn điệu hàm số thường xuyên xuất dạng phổ biến ứng dụng định lí Rolle số mở rộng định lí Rolle (Định lý Lagrange, định lý Cauchy, định lý Rolle môt khoảng không bị chặn) định lý quan trọng giải tích cổ điển Ứng dụng định lý toán sơ cấp đa dạng phong phú, đặc biệt dạng toán giải phương trình, giải hệ phương trình, chứng minh phương trình có nghiệm, xét cực trị hàm số Tuy nhiên, tài liệu dành cho học sinh phổ thông số nghiên cứu trước ứng dụng tính đơn điệu hàm số giải phương trình, hệ phương trình chưa trình bày cách hệ thống đầy đủ Với suy nghĩ theo ý tưởng đó, mục tiêu luận văn nghiên cứu tính đơn điệu hàm số toán cao cấp ứng dụng để giải tốn sơ cấp Đặc biệt luận văn định hướng cách giải cách vận dụng định lý biết để tìm tòi lời giải hay, độc đáo đặc thù cho dạng tốn cụ thể, từ hình thành ý thức sáng tạo tốn Ngồi ra, kết mà thân tác giả tiếp tục hồn thiện q trình nghiên cứu giảng dạy toán trường phổ thơng Mục đích nghiên cứu đề tài • Khai thác tính chất đơn điệu, cực trị hàm số giải tích tốn học • Nâng cao lực giải tốn giải phương trình hệ phương trình phương pháp hàm số • Xây dựng hệ thống tập phục vụ công tác giảng dạy bồi dưỡng học sinh giỏi Đối tượng phạm vi nghiên cứu • Đối tượng nghiên cứu tính đơn điệu hàm số • Phạm vi nghiên cứu tính đơn điệu hàm số ứng dụng giải phương trình, hệ phương trình Phương pháp nghiên cứu • Phân tích tổng hợp • Hệ thống phân loại tập Ý nghĩa khoa học thực tiễn đề tài • Thể tính ứng dụng toán cao cấp để giải toán sơ cấp • Xây dựng, hệ thống phương pháp để giải tốn phương trình, hệ phương trình • Luận văn đóng góp thiết thực cho việc học dạy chuyên đề toán sơ cấp, đem lại niềm đam mê sáng tạo việc dạy học toán Cấu trúc luận văn Luận văn gồm ba chương, lời nói đầu, kết luận tài liệu tham khảo Chương Kiến thức chuẩn bị Nội dung chương trình bày cách định lý liên quan đến tính đơn điệu hàm số là: Định lý Fermat, định lý Rolle, định lý Lagrange số hệ quan trọng giải tích tốn học Đây phần lý thuyết sở để xây dựng phương pháp vận dụng cho toán ứng dụng chương sau Chương Áp dụng tính đơn điệu hàm số để giải phương trình Chương trình bày số ứng dụng trực tiếp định lý Rolle, định lý Lagrange, định lý Cauchy hệ để xét tồn nghiệm phương trình cho trước Chương Áp dụng tính đơn điệu hàm số để giải hệ phương trình Chương trình bày ứng dụng định lý Lagrange, định lý Cauchy hệ để giải hệ phương trình Các tập minh họa lựa chọn từ đề thi kì thi học sinh giỏi Quốc gia, kì thi Olympic khu vực Quốc tế, kì thi Olympic tốn sinh viên Luận văn hồn thành hướng dẫn khoa học đầy nhiệt tình nghiêm túc TS Nguyễn Đình Bình, tác giả xin bày tỏ lòng biết ơn chân thành kính trọng sâu sắc TS - người thầy truyền đạt nhiều kiến thức quý báu với kinh nghiệm nghiên cứu khoa học suốt thời gian tác giả theo học nghiên cứu đề tài Tác giả xin bày tỏ lòng biết ơn sâu sắc đến Ban giám hiệu trường Đại học Khoa học - Đại học Thái Ngun, Phòng Đào tạo, Khoa Tốn - Tin, thầy cô giảng dạy lớp Cao học K7N, Ban giám hiệu trường THPT Giao Thủy B - Nam Định tạo điều kiện thuận lợi, động viên tác giả suốt q trình học tập, cơng tác thực đề tài luận văn Để hoàn thành luận văn này, tác giả cố gắng học tập nghiên cứu cách nghiêm túc suốt khóa học Tuy nhiên hạn chế lực, thời gian hồn cảnh nên q trình thực khơng tránh khỏi thiếu sót, tác giả mong nhận bảo quý thầy cô góp ý bạn đọc để luận văn hoàn thiện Thái Nguyên, tháng năm 2015 Tác giả Nguyễn Văn Đông Danh mục ký hiệu, chữ viết tắt • N - Tập số tự nhiên • N∗ - Tập số tự nhiên khác • Z - Tập số nguyên • R - Tập số thực • ĐPCM - Điều phải chứng minh • THPT - Trung học phổ thơng • ĐH - Đề thi Đại học • HSG - Học sinh giỏi • NXBGD - Nhà xuất Giáo dục • I (a; b) ; I - Nhằm ngầm định bốn tập hợp tập R (a; b) , [a; b) , (a; b] , [a; b] Chương Kiến thức chuẩn bị Tính chất đồng biến, nghịch biến tính lồi, lõm hàm số vấn đề chương trình tốn sơ cấp Định lý Lagrange đóng vai trò quan trọng việc chứng minh định lý, tính chất chương trình Trong chương giới thiệu số định lý quan trọng liên quan đến tính đơn điệu hàm số là: Định lý Fermat, định lý Rolle số mở rộng định lý Rolle (Định lý Lagrange, định lý Cauchy, định lý Rolle khoảng không bị chăn) Một số hệ quan trọng trình bày để thuận lợi cho việc vận dụng giải tốn trình bày hai chương 1.1 Hàm đồng biến, nghịch biến Từ sau, ta sử dụng kí hiệu I(a; b) ⊂ R nhằm ngầm định bốn tập hợp (a; b), [a; b), (a; b] [a; b] với a < b Định nghĩa 1.1 Giả sử hàm số f (x) xác định tập I(a; b) ⊂ R thỏa mãn điều kiện: • Với x1 , x2 ∈ I(a; b) x1 < x2 , ta có f (x1 ) ≤ f (x2 ) ta nói f (x) hàm đơn điệu tăng I(a; b) Đặc biệt, ứng với cặp x1 , x2 ∈ I(a; b) x1 < x2 , ta có f (x1 ) < f (x2 ) ta nói f (x) hàm đơn điệu tăng thực I(a; b) • Ngược lại, với x1 , x2 ∈ I(a; b) x1 < x2 , ta có f (x1 ) ≥ f (x2 ) ta nói f (x) hàm đơn điệu giảm I(a; b) Đặc biệt, ứng với cặp x1 , x2 ∈ I(a; b) x1 < x2 , ta có f (x1 ) > f (x2 ) ta nói f (x) hàm đơn điệu giảm thực I(a; b) Những hàm đơn điệu tăng thực I(a; b) gọi hàm đồng biến I(a; b) hàm đơn điệu giảm thực I(a; b) gọi hàm nghịch biến I(a; b) Định nghĩa 1.2 Giả sử f (x), g(x) hàm liên tục [a; b] khả vi (a; b) Khi đó: i) f (x) g(x) gọi có tính đơn điệu f (x).g (x) > ii) f (x) g(x) gọi khác tính đơn điệu f (x).g (x) < Trong chương trình giải tích, biết đến tiêu chuẩn để nhận biết hàm số khả vi cho trước khoảng (a; b) hàm đơn điệu khoảng Sau dùng định lý Lagrange để chứng minh định lý điều kiện đủ tính đơn điệu hàm số Đây định lý quan trọng chương trình giải tích lớp 12-THPT Định lí 1.1 Cho hàm số y = f (x) có đạo hàm khoảng (a; b) a) Nếu f (x) > với x ∈ (a; b) hàm số y = f (x) đồng biến khoảng b) Nếu f (x) < với x ∈ (a; b) hàm số y = f (x) nghịch biến khoảng Chứng minh Lấy hai điểm x1 , x2 (x1 < x2 ) khoảng (a; b) Vì f (x) có đạo hàm khoảng (a; b) nên f (x) liên tục [x1 ; x2 ] có đạo hàm khoảng (x1 ; x2 ) Áp dụng định lý Lagrange cho hàm số y = f (x) [x1 ; x2 ], tồn c ∈ (x1 ; x2 ) cho f (x2 ) − f (x1 ) = f (c)(x2 − x1 ) a) Nếu f (x) > khoảng (a; b) f (c) > 0, mặt khác x2 − x1 > nên f (x2 ) − f (x1 ) > hay f (x2 ) > f (x1 ), suy hàm f (x) đồng biến khoảng (a; b) b) Nếu f (x) < khoảng (a; b) f (c) < 0, mặt khác x2 − x1 > nên f (x2 ) − f (x1 ) < hay f (x2 ) < f (x1 ), suy hàm f (x) nghịch biến khoảng (a; b) Định lí 1.2 (Mở rộng định lý 1.1) Giả sử hàm số y = f (x) có đạo hàm khoảng (a;b) Nếu f (x) ≥ (hoặc f (x) ≤ 0) đẳng thức xảy số hữu hạn điểm khoảng (a; b) f (x) đồng biến (hoặc nghịch biến) khoảng Chứng minh Thật vậy, để đơn giản cách lập luận, giả sử f (x) ≥ (a; b) f (x) = x1 ∈ (a; b) f (x) đồng biến khoảng (a; x1 ) (x1 ; b) liên tục (a; x1 ] [x1 ; b) nên đồng biến (a; x1 ] [x1 ; b) Từ suy đồng biến khoảng (a; b) 1.2 Định lý Rolle số mở rộng Cơ sở định lý Rolle dựa vào định lý Weierstrass hàm liên tục khẳng định f liên tục đoạn [a; b] phải đạt giá trị lớn giá trị nhỏ đoạn định lý Fermat điểm cực trị hàm khả vi khẳng định hàm khả vi g(x) khoảng (a; b) đạt cực trị (cực đại cực tiểu) điểm khoảng đạo hàm điểm 1.2.1 Định lý Rolle Định lí 1.3 (Định lý Fermat) Cho hàm số f (x) xác định liên tục khoảng đóng [a; b], f (x) đạt cực trị c ∈ (a, b) f (x) khả vi c f (c) = Định lí 1.4 (Định lí Rolle) Giả sử f hàm liên tục đoạn [a; b] có đạo hàm x ∈ (a, b) Nếu f (a) = f (b) tồn điểm c ∈ (a, b) cho f (c) = Chứng minh Vì f liên tục đoạn [a; b] nên theo định lý Weierstrass hàm f phải đạt giá trị cực đại giá trị cực tiểu đoạn [a; b], tức tồn điểm x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a;b] Có hai khả năng: i) m = M Khi f (x) = const đoạn [a; b], f (x) = với x ∈ (a, b) c điểm khoảng ii) m < M Khi điều kiện f (a) = f (b) nên hai điểm ... ĐẠI HỌC KHOA HỌC NGUYỄN VĂN ĐƠNG ÁP DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ GIẢI PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH LUẬN VĂN THẠC SỸ TOÁN HỌC Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP Mã số: 60 46 01 13 Người... Lagrange số hệ quan trọng giải tích tốn học Đây phần lý thuyết sở để xây dựng phương pháp vận dụng cho toán ứng dụng chương sau Chương Áp dụng tính đơn điệu hàm số để giải phương trình Chương trình. .. thơng số nghiên cứu trước ứng dụng tính đơn điệu hàm số giải phương trình, hệ phương trình chưa trình bày cách hệ thống đầy đủ Với suy nghĩ theo ý tưởng đó, mục tiêu luận văn nghiên cứu tính đơn điệu