Electrochemistry for the environment

567 372 0
Electrochemistry for the environment

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Electrochemistry for the Environment Christos Comninellis • Guohua Chen Editors Electrochemistry for the Environment 13 Editors Christos Comninellis Dept Chemical Engineering Ecole Polytech Fed Lausanne 1015 Lausanne Switzerland christos.comninellis@epfl.ch Guohua Chen Dept Chemical Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR kechengh@ust.hk ISBN 978-0-387-36922-8 e-ISBN 978-0-387-68318-8 DOI 10.1007/978-0-387-68318-8 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009927499 c Springer Science+Business Media, LLC 2010 All rights reserved This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of hazardous pollutants Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner Foremost among these technologies are electrochemical processes While electrochemical technologies have been known and utilized for the treatment of wastewater containing heavy metal cations, the application of these processes is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants In fact, only recently the electrochemical oxidation process has been recognized as an advanced oxidation process (AOP) This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals In this volume, our goals are to first lay down the fundamentals involving the environmental electrochemistry, introducing the basic techniques in selecting the electrode materials and fabricating them, followed by the theoretical analysis of the electrochemical processes, the green electrochemical operation, discuss about the electrochemical technologies in water/wastewater treatment using BDD, and then examine the established wastewater treatment technologies such as electrocoagulation and electroflotation The electrochemical reduction technologies are discussed in two chapters with main focus on the treatment of halogenated compounds Electrooxidation using Ti/SnO2 has received lots attention in the past decades, one chapter is devoted to this topic One chapter discusses about the treatment of wet sludge, a type of waste to generate along with the water/wastewater treatment development The emerging technologies based on solar energy are analyzed toward the end of the book with a closing chapter on using both redox half-reactions, reduction and oxidation in wastewater treatment We are grateful to the contributors from eight countries in Asia, Europe, and North America We hope this collective work of internationally renowned experts on electrochemical technologies can help the environmental engineers, academic v vi Preface researchers, and environmental protection officials/agencies to better protect our precious earth We are confident that together people can preserve the natural environment for us and many generations to come! Lausanne, Switzerland Kowloon, Hong Kong Christos Comninellis Guohua Chen Contents Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment Agnieszka Kapaka, Gyăorgy Foti, and Christos Comninellis Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants 25 Marco Panizza Techniques of Electrode Fabrication 55 Liang Guo, Xinyong Li, and Guohua Chen Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants 99 Manuel A Rodrigo, Pablo Ca˜nizares, Justo Lobato, and Cristina S´aez Green Electroorganic Synthesis Using BDD Electrodes .125 Ulrich Griesbach, Itamar M Malkowsky, and Siegfried R Waldvogel Domestic and Industrial Water Disinfection Using Boron-Doped Diamond Electrodes 143 Philippe Rychen, Christophe Provent, Laurent Pupunat, and Nicolas Hermant Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation .163 M.E Henry Bergmann Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD 205 Anna Maria Polcaro, M Mascia, S Palmas, and A Vacca vii viii Contents The Persulfate Process for the Mediated Oxidation of Organic Pollutants 229 N Vatistas and Ch Comninellis 10 Electrocoagulation in Water Treatment .245 Huijuan Liu, Xu Zhao, and Jiuhui Qu 11 Electroflotation .263 Xueming Chen and Guohua Chen 12 Electroreduction of Halogenated Organic Compounds 279 Sandra Rondinini and Alberto Vertova 13 Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants 307 Hua Cheng and Keith Scott 14 Preparation, Analysis and Behaviors of Ti-Based SnO2 Electrode and the Function of Rare-Earth Doping in Aqueous Wastes Treatment 325 Yujie Feng, Junfeng Liu, and Haiyang Ding 15 Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment 353 Roberto M Serikawa 16 Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts 371 Huanjun Zhang, Guohua Chen, and Detlef W Bahnemann 17 Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects 443 Angela Guiovana Rinc´on and Cesar Pulgarin 18 Fabrication of Photoelectrode Materials 473 Huanjun Zhang, Xinyong Li, and Guohua Chen 19 Use of Both Anode and Cathode Reactions in Wastewater Treatment .515 Enric Brillas, Ignasi Sir´es, and Pere Llu´ıs Cabot Index 553 Contributors Detlef W Bahnemann Institut făur Technische Chemie, Leibniz Universităat Hannover, Hannover, Germany, bahnemann@iftc.uni-hannover.de M.E Henry Bergmann Departments 6/7, Anhalt University of Applied Sciences, Koethen/Anh., Germany, h.bergmann@emw.hs-anhalt.de Enric Brillas Laboratori d’Electroqu´ımica dels Materials i del Medi Ambient, Departament de Qu´ımica F´ısica, Facultat de Qu´ımica, Universitat de Barcelona, Mart´ı i Franqu`es 1–11, 08028 Barcelona, Spain, brillas@ub.edu Pere Llu´ıs Cabot Laboratori d’Electroqu´ımica dels Materials i del Medi Ambient, Departament de Qu´ımica F´ısica, Facultat de Qu´ımica, Universitat de Barcelona, Mart´ı i Franqu`es 1–11, Barcelona, Spain, p.cabot@ub.edu ˜ Pablo Canizares Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario s/n, Ciudad Real, Spain Guohua Chen Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, kechengh@ust.hk Xueming Chen Environmental Engineering Department, Zhejiang University, Hangzhou, China, chenxm@zju.edu.cn Hua Cheng School of Chemical Engineering & Advanced Materials, Newcastle University, Merz Court, Newcastle Upon Tyne, UK, hua.cheng@ncl.ac.uk Christos Comninellis Institute of Chemical Sciences and Engineering, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland, christos comninellis@epfl.ch Yujie Feng State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, No 73, Huanghe Road, Harbin 150090, Heilongjiang, People’s Republic of China, yujief@hit.edu.cn Gyăorgy Foti Institute of Chemical Sciences and Engineering, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland, gyorgy.foti@epfl.ch ix x Contributors Ulrich Griesbach Care Chemicals, BASF SE, Ludwigshafen, Germany, ulrich griesbach@basf.com; cpr@adamant technologies.com Liang Guo Environmental Engineering Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, guol2008@hotmail.com Nicolas Hermant Adamant Technologies SA, La Chaux-de-Fonds, Switzerland Agnieszka Kapałka Institute of Chemical Sciences and Engineering, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland, agnieszka cieciwa@epfl.ch Xinyong Li Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental & Biological Science & Technology, Dalian University of Technology, Dalian, China, xyli@dlut.edu.cn Huijuan Liu State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, hjliu@rcees.ac.cn Justo Lobato Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario s/n, Ciudad Real, Spain Itamar M Malkowsky Chemicals Research and Engineering, BASF SE, Ludwigshafen, Germany, itamar.malkowsky@basf.com M Mascia Dip Ingegneria Chimica e mat., University of Cagliari, Cagliari, Italy, mmascia@dicm.unica.it S Palmas Dip Ingegneria Chimica e mat., University of Cagliari, Cagliari, Italy, sipalmas@dicm.unica.it Marco Panizza Department of Chemical and Process Engineering, Genoa University, Genoa, Italy, marco.panizza@unige.it Anna Maria Polcaro Dip Ingegneria Chimica e mat., University of Cagliari, Cagliari, Italy, polcaro@dicm.unica.it Christophe Provent Adamant Technologies SA, La Chaux-de-Fonds, Switzerland Cesar Pulgarin Division of Chemistry, Ecole Polytechnique F´ed´erale de Lausanne Suisse, cesar.pulgarin@epfl.ch Laurent Pupunat Adamant Technologies SA, La Chaux-de-Fonds, Switzerland Jiuhui Qu State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, jhqu@rcees.ac.cn Angela Guiovana Rinc´on Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA, agrincon@caltech.edu 19 Use of Both Anode and Cathode Reactions in Wastewater Treatment 549 Boye, B., Dieng, M M and Brillas, E (2003c) Anodic oxidation, electro-Fenton and photoelectroFenton treatments of 2,4,5-trichlorophenoxyacetic acid J Electroanal Chem 557, 135–146 Boye, B., Farnia, G., Sandon`a, G., Buso, A and Giomo, M (2005) Removal of vegetal tannins from wastewater by electroprecipitation combined with electrogenerated Fenton oxidation J Appl Electrochem 35, 369–374 Boye, B., Brillas, E., Buso, A., Farnia, G., Flox, C., Giomo, M and Sandon`a, G (2006) Electrochemical removal of gallic acid from aqueous solutions Electrochim Acta 52, 256–262 Brillas, E and Casado, J (2002) Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment Chemosphere 47, 241–248 Brillas, E., Bastida, R M., Llosa, E and Casado, J (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2 -fed cathode J Electrochem Soc 142, 1733–1741 Brillas, E., Mur, E and Casado, J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2 -fed cathode J Electrochem Soc 143, L49–L53 Brillas, E., Sauleda, R and Casado, J (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode J Electrochem Soc 144, 2374–2379 Brillas, E., Mur, E., Sauleda, R., S´anchez, L., Peral, J., Dom`enech, X and Casado, J (1998a) Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes Appl Catal B: Environ 16, 31–42 Brillas, E., Sauleda, R and Casado, J (1998b) Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes J Electrochem Soc 145, 759–765 Brillas, E., Calpe, J C and Casado, J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes Water Res 34, 2253–2262 Brillas, E., Ba˜nos, M A and Garrido, J A (2003a) Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton Electrochim Acta 48, 1697–1705 Brillas, E., Boye, B., Ba˜nos, M A., Calpe, J C and Garrido, J A (2003b) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method Chemosphere 51, 227–235 Brillas, E., Boye, B and Dieng, M M (2003c) Peroxi-coagulation and photoperoxi-coagulation treatments of the herbicide 4-chlorophenoxyacetic acid in aqueous medium using an oxygendiffusion cathode J Electrochem Soc 150, E148–E154 Brillas, E., Boye, B and Dieng, M M (2003d) General and UV-assisted cathodic Fenton treatments for the mineralization of herbicide MCPA J Electrochem Soc 150, E583–E589 Brillas, E., Ba˜nos, M A., Camps, S., Arias, C., Cabot, P L., Garrido, J A and Rodr´ıguez, R M (2004a) Catalytic effect of Fe2C , Cu2C and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode New J Chem 28, 314–322 Brillas, E., Boye, B., Sir´es, I., Garrido, J A., Rodr´ıguez, R M., Arias, C., Cabot, P L and Comninellis, Ch (2004b) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode Electrochim Acta 49, 4487–4496 Comninellis, Ch and De Battisti, A (1996) Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution J Chim Phys 93, 673–679 Da Pozzo, A., Di Palma, L., Merli, C and Petrucci, E (2005a) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide J Appl Electrochem 35, 413–419 Da Pozzo, A., Merli, C., Sir´es, I., Garrido, J A., Rodr´ıguez, R M and Brillas, E (2005b) Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton Environ Chem Lett 3, 7–11 De Laat, J and H Gallard, H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling Environ Sci Technol 33, 2726–2732 550 E Brillas et al Do, J -S and Chen, C -P (1993) In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide J Electrochem Soc 140, 1632–1637 Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C and Rambaud, A (2001a) Hydrogen peroxide production by water electrolysis: Application to disinfection J Appl Electrochem 31, 877–882 Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C and Rambaud, A (2001b) Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell Water Res 35, 3235–3241 Edelahi, M C., Oturan, N., Oturan, M A., Padellec, Y., Bermond, A and El Kacemi, K (2004) Degradation of diuron by the electro-Fenton process Environ Chem Lett 1, 233–236 Ferro, S., De Battisti, A., Duo, I., Comninellis, Ch., Haenni, W and Perret, A (2000) Chlorine evolution at highly boron-doped diamond electrodes J Electrochem Soc 147, 2614–2619 Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A V and Abdelhedi, R (2006) ElectroFenton and photoelectro-Fenton degradation of indigo Carmine in acidic aqueous medium Appl Catal B: Environ 67, 93–104 Fockedey, E and Van Lierde, A (2002) Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes Water Res 36, 4169–4175 Foller, P C and Bombard, R T (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen J Appl Electrochem 25, 613–627 Gallard, H., De Laat, J and Legube, B (1999) Comparative study of the rate of decomposition of H2 O2 and of atrazine by Fe.III/=H2 O2 , Cu.II/=H2 O2 , Fe.III/=Cu.II/=H2 O2 Rev Sci Eau 12, 715728 Găozmen, B., Oturan, M A., Oturan, N and Erbatur, O (2003) Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent Environ Sci Technol 37, 3716–3723 Guivarch, E., Oturan, N and Oturan, M A (2003a) Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent Environ Chem Lett 1, 165–168 Guivarch, E., Trevin, S., Lahitte, C and Oturan, M A (2003b) Degradation of azo dyes in water by electro-Fenton process Environ Chem Lett 1, 38–44 Hanna, K., Chiron, S and Oturan, M A (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation Water Res 39, 2763–2773 Harrington, T and Pletcher, D (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes J Electrochem Soc 146, 2983–2989 Hsiao, Y L and Nobe, K (1993) Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent J Appl Electrochem 39, 943–946 Irmak, S., Yavuz, H I and Erbatur, O (2005) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes Appl Catal B: Environ 63, 243–248 Marselli, B., Garcia-Gomez, J., Michaud, P -A., Rodrigo, M A and Comninellis, Ch (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes J Electrochem Soc 150, D79–D83 Matsue, T., Fujihira, M and Osa, T (1981) Oxidation of alkylbenzenes by electrogenerated hydroxyl radical J Electrochem Soc 128, 2565–2569 Meinero, S and Zerbinati, O (2006) Oxidative and energetic efficiency of different electrochemical oxidation processes for chloroanilines abatement in aqueous medium Chemosphere 64, 386–392 Oturan, M A (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D J Appl Electrochem 30, 475–482 Oturan, M A and Pinson, J (1995) Hydroxylation by electrochemically generated OH radicals Mono- and polyhydroxylation of benzoic acid: Products and isomer distribution J Phys Chem 99, 13948–13954 19 Use of Both Anode and Cathode Reactions in Wastewater Treatment 551 Oturan, M A., Pinson, J., Deprez, D and Terlain, B (1992) Polyhydroxylation of salicylic acid by electrochemically generated hydroxyl radicals New J Chem 16, 705–710 Oturan, M A., Aaron, J J., Oturan, N and Pinson, J (1999a) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method Pestic Sci 55, 558–562 Oturan, M A., Pinson, J., Oturan, N and Deprez, D (1999b) Hydroxylation of aromatic drugs by the electro-Fenton method Formation and identification of the metabolites of riluzole New J Chem 23, 793–794 Oturan, M A., Peiroten, J., Chartrin, P and Acher, A J (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method Environ Sci Technol 34, 3474–3479 Oturan, M A., Oturan, N., Lahitte, C and Trevin, S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent Application to the mineralization of an organic micropollutant, pentachlorophenol J Electroanal Chem 507, 96–102 Panizza, M and Cerisola, G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent Water Res 35, 3987–3992 Panizza, M and Cerisola, G (2005) Application of diamond electrodes to electrochemical processes Electrochim Acta 51, 191–199 Peralta-Hern´andez, J M., Meas-Vong, Y., Rodr´ıguez, F J., Chapman, T W., Maldonado, M I and God´ınez, L A (2006) In situ electrochemical and photo-electrochemical generation of the Fenton reagent: A potentially important new water treatment technology Water Res 40, 1754–1762 Plant, L and Jeff, M (1994) Hydrogen peroxide: A potent force to destroy organics in wastewater Chem Eng 101, 16–20 Pletcher, D (1999) Indirect oxidations using electrogenerated hydrogen peroxide Acta Chem Scand 53, 745–750 Ponce De Leon, C and Pletcher, D (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell J Appl Electrochem 25, 307–314 Pratap, K and Lemley, A T (1998) Fenton electrochemical treatment of aqueous atrazine and metolachlor J Agric Food Chem 46, 3285–3291 Qiang, Z., Chang, J H and Huang, C P (2003) Electrochemical regeneration of Fe2C in Fenton oxidation processes Water Res 37, 1308–1319 Sharma, V K and Millero, F J (1988) Oxidation of copper(I) in seawater Environ Sci Technol 22, 768–771 Sir´es, I., Arias, C., Cabot, P L., Centellas, F., Rodr´ıguez, R M., Garrido, J A and Brillas, E (2004) Paracetamol mineralization by advanced electrochemical oxidation processes for wastewater treatment Environ Chem 1, 26–28 Sir´es, I., Garrido, J A., Rodr´ıguez, R M., Cabot, P L.,Centellas, F., Arias, C and Brillas, E (2006) Electrochemical degradation of paracetamol from water by catalytic action of Fe2C , Cu2C , and UVA light on electrogenerated hydrogen peroxide J Electrochem Soc 153, D1–D9 Song-hu, Y and Xiao-hua, L (2005) Comparison treatment of various chlorophenols by electroFenton method: Relationship between chlorine content and degradation J Hazard Mater B118, 85–92 Sudoh, M., Kodera, T., Sakai, K., Zhang, J Q and Koide, K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton’s reagent J Chem Eng Jpn 19, 513–518 Sun, Y and Pignatello, J J (1993) Photochemical reactions involved in the total mineralization of 2,4-D by Fe3C =H2 O2 =UV Environ Sci Technol 27, 304–310 Tomat, R and Rigo, A (1976) Electrochemical production of hydroxyl radicals and their reaction with toluene J Appl Electrochem 6, 257–261 Tomat, R and Rigo, A (1979) Oxidation of polymethylated benzenes promoted by hydroxyl radicals J Appl Electrochem 9, 301–305 Tomat, R and Rigo, A (1984) Electrochemical oxidation of toluene promoted by hydroxyl radicals J Appl Electrochem 14, 1–8 552 E Brillas et al Tomat, R and Rigo, A (1985) Electrochemical oxidation of aliphatic hydrocarbons promoted by inorganic radicals I Hydroxyl radicals J Appl Electrochem 15, 167–173 Tomat, R and Vecchi, E (1971) Electrocatalytic production of hydroxyl radicals and their oxidative addition to benzene J Appl Electrochem 1, 185–188 Traube, M (1882) Ueber die Aktivirung des Sauerstoffs Ber Dtsch Chem.Ges 15, 2434–2443 Tzedakis, T., Savall, A and Clifton, M J (1989) The electrochemical regeneration of Fenton’s reagent in the hydroxylation of aromatic substrates: Batch and continuous processes J Appl Electrochem 19, 911–921 Ventura, A., Jacquet, G., Bermond, A and Camel, V (2002) Electrochemical generation of the Fenton’s reagent: Application to atrazine degradation Water Res 36, 3517–3522 Wang, Q and Lemley, A T (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment Environ Sci Technol 35, 4509–4514 Wang, Q and Lemley, A T (2002) Oxidation of diazinon by anodic Fenton treatment Water Res 36, 3237–3244 Wang, Q and Lemley, A T (2003) Oxidative degradation and detoxification of aqueous carbofuran by membrane anodic Fenton treatment J Hazard Mater B98, 241–255 Wang, Q., Scherer, E M and Lemley, A T (2004) Metribuzin degradation by membrane anodic Fenton treatment and its interaction with ferric ion Environ Sci Technol 38, 1221–1227 Wang, A., Qu, J., Ru, J., Liu, H and Ge, J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode Dyes Pigments 65, 227–233 Xie, Y -B and Li, X -Z (2006a) Degradation of Bisphenol A in aqueous solution by H2 O2 assisted photoelectrocatalytic oxidation J Hazard Mater B138, 526–533 Xie, Y -B and Li, X -Z (2006b) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2 -Ti mesh and reticulated vitreous carbon electrodes Mater Chem Phys 95, 39–50 Yuan, S., Tian, M., Cui, Y., Lin, L and Lu, X (2006) Treatment of nitrophenols by cathode reduction and electro-Fenton methods J Hazard Mater B137, 573–580 Zuo, Y and Hoign´e, J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes Environ Sci Technol 26, 1014–1022 Index A Absorption coefficient, 379, 380 Accelerated life test, 57, 268, 344, 345 Acceptor, 373, 383, 384, 405, 406, 421, 423, 444 Accumulated energy, 446, 462, 468 Acetic acid, 3–5, 15, 16, 45, 167, 296, 358–360, 363, 385, 386, 482, 526 Acetonitrile, 285, 292 Activated titanium anode (ATA), 326 Activation of water, by electrolytic oxygen discharge, 5–7 Active anodes, 30 Active chlorine, 36, 38, 163, 164, 166, 167, 169–176, 180, 181, 183, 186, 188, 189, 192–196, 218 Adsorption, 5–7, 11, 28, 34, 42, 63–65, 74, 166, 174, 175, 210, 211, 217, 219, 250, 254, 256, 258, 373, 389–391, 397, 404, 406, 407, 410–412, 425, 449, 450, 453, 458, 480, 491 Advanced oxidation, 64, 100, 214, 216, 223, 426, 443, 515, 516 Advanced oxidation processes (AOP), 64, 100, 214, 216, 219, 221–223, 426, 443, 515, 516 Aggregation of bacteria, 450, 453, 454 Aging, 135, 486, 488, 491 Alkoxylation reaction, 129–131 Aluminum anode, 57, 110, 121, 245, 247–250, 255, 257–259, 273 2-Aminoethanol (MEA), 358, 360 Ammonium, 56, 130, 134, 135, 167, 184–186, 219, 476, 487 Anatase-rutile TiO2 , 387, 390–392, 406, 416, 422, 454, 477, 497, 501 Annealing, 58, 330, 337, 416, 418, 473, 474, 477, 480–482, 494, 495, 499–501 Anode anodic current, 41, 376, 377 anodic oxidation, 3, 5, 15, 20, 26, 39, 42, 113, 208, 210, 211, 214, 217, 515, 520–522, 530, 531, 533–543, 547, 548 material, 2, 4, 6–9, 30, 38, 56, 59, 143, 178, 205, 214, 217, 246, 260, 267, 325, 366, 367, 523 reaction, 313, 525 Anolyte, 41, 191, 289, 290, 294, 311, 313, 315–318, 320, 321, 525, 529 Apparent current efficiency (ACE), 535, 536 Aromatic compounds, 15, 18, 208, 211, 279, 308, 325 Arsenic removal, 255, 256 Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), 390, 391 B Bacillus subtilis, 167, 170, 455 Bacteria bacterial inactivation, 447, 448, 450–452, 454–456, 458, 459, 461–463, 465 bacterial regrowth, 461, 462, 465 bacterial spores, 444 bacterial strain, 446–447 bacterial suspension, 168, 446, 447, 455–457, 461 bactericidal effect, 443, 453, 464 bacteriophage, 56, 453, 468 bacteriostatic effect, 464 population, 157, 459 Bandgap, 371, 372, 378, 380, 384, 385, 387, 388, 392–394, 396–398, 400, 402, 404, 406, 413–416, 418–424, 489, 497, 499, 502 Bandgap narrowing, 414–416, 418–420 553 554 Batch recycle mode, 313, 531, 532, 546 Batch system, 114, 120, 455 Benzoquinone, 32, 36, 37, 41, 42, 126, 208, 332–335, 348, 526–528, 532, 537, 538, 540 BET specific area, 454 Bibenzyl, 129, 130 Bicarbonate, 121, 154, 188, 189, 446, 450 Binding energy, 339, 384, 415, 495 Biological aspects, 459–461 Biological oxygen demand (BOD), 365 Biological treatment, 1, 219, 222, 229, 257, 325, 354, 355, 448 Biorefractory, 25, 34 Bipolar electrodes, 149, 247, 248, 259 Block copolymers, 486 Boron doped diamond (BDD), anodes, 7, 9, 11–17, 30, 43–46, 126, 130, 138, 164, 176, 181, 185–187, 189, 205, 215, 220, 229–233, 236, 242, 243, 312, 521, 522, 540, 548 Breakpoint, 185 Bubbles hydrogen, 263, 265, 266, 275, 316 oxygen, 246, 263, 265, 275, 517 size, 57, 265–266 By-pass, 154, 158, 191, 192 By-products aromatics, 213, 528 carboxylic acids, 528 inorganic ions, 184–187 C Cancer cells, 444 Carbon, 29–33, 65, 67, 71, 73–77, 79, 80, 82–84, 122, 129, 130, 144, 146, 164, 209, 210, 219, 222, 285, 286, 288, 290–296, 309, 314, 416, 424, 464, 491, 516, 518, 519, 526–533 Carbonaceous cathodes carbon felt, 516, 526 gas diffusion, 314, 516 reticulated vitreous carbon (RVC), 295, 516–519, 526, 529, 531 Carbon based electrode, 31, 32, 73–76, 130, 144, 288, 296, 516 Carbon-halogen bond, 296 Carboxylation, 137, 138, 301, 302 Catalysis, 55, 73, 131, 340, 371–426, 454, 457 Catalyst, 1, 2, 4, 19, 29, 30, 55, 58, 59, 61, 71, 229, 230, 234, 295, 308, 312, 313, 316, 321, 326, 331, 354, 355, 371–426, 443, 448, 455–458, Index 461–464, 466–468, 500, 515, 516, 522, 524, 526–529, 531, 539–541, 544, 548 Cathode material, 165, 248, 267, 284, 291, 294, 321, 366, 368 reaction, 515–548 Catholyte, 191, 194, 289, 290, 294, 311, 313, 315, 317–319, 321, 517, 518, 525, 529 Cation solid polymer electrolyte membrane, 290, 311, 314 CdS, 384, 385, 394–396, 400–404, 425, 426, 489, 490 Cell design, 25, 221, 280, 284, 288–290, 296 Cell lyses, 169, 170, 448 Cell voltage, 108, 194, 220, 221, 251, 285, 315, 320, 530 Cell walls and membranes, 169, 445, 448 Cerium, 347 Charge carriers, 372, 374, 375, 382–385, 388, 395–399, 402, 404, 410, 411, 413, 415, 420, 424–426, 501, 502 Charge interaction, 453 Chemical coagulation, 99, 249, 254–256, 258, 259 Chemical oxygen demand (COD), 1, 2, 10–17, 20, 26, 35–37, 39, 44, 46, 56, 102, 103, 112–113, 119, 120, 208, 213, 215, 219, 220, 222, 232, 236, 237, 240–242, 251, 258–260, 354, 355, 364, 365, 526–530, 533, 547 Chemical photosensitizers, 451 Chemical vapor deposition (CVD), 62–72, 85, 143, 145, 327, 367, 414, 491–493 Chloramines, 146, 148, 149, 153, 171, 185, 186 Chlorate, 154, 167, 174–184, 186, 196, 223 Chloride, 36–38, 47, 55–57, 64, 77, 130, 149, 150, 153, 163, 164, 167, 171–179, 183–188, 192, 193, 195, 206, 213, 214, 218, 219, 230, 249, 253, 256, 261, 266, 285, 290, 295, 357, 360, 366, 369, 446, 494, 516, 521, 535, 538 Chloride ion, 36, 37, 163, 171, 175, 176, 185, 187, 188, 192, 230, 266, 360, 366, 516, 535, 538 Chloride oxidation, 174, 183 Chlorination, 56, 156, 163, 164, 185, 361, 362, 443 Index Chlorine, 32, 36, 38, 47, 55–57, 69, 116, 117, 143, 146, 148–151, 153–156, 160, 163, 164, 166–176, 178–183, 186–190, 192–196, 207, 218, 230, 253, 266–268, 291, 311, 356, 357, 360, 362, 443, 461, 516, 527, 535, 538 Chlorine dioxide, 169–172, 175, 178–183, 188 Chlorofluorocarbons, 292–293 2-Chrolophenol (CP), 319 Chromatography gas chromatograph (GC), 332, 356, 537 high performance liquid chromatograph (HPLC), 32, 167, 332, 536, 537 Chromophores, 214, 451 Clean reduction, 321 Cleavage of C,C-bonds, 129, 131–132, 296 Coagulation and flotation, 118, 247, 249, 250, 261 Coaxial photocatalytic reactor (CAPHORE), 445–446, 457, 458 Coenzyme A, 445 Complete mineralization, 1, 43, 44, 47, 206, 212, 214–217, 219, 221, 222, 526, 535 Complexes oxalate, 390, 391, 537, 538, 540, 543, 544, 547 oxamate, 540, 544 Compound parabolic reactor (CPC), 446, 462–464, 466, 467 Conduction band (CB), 339, 371, 373, 376–378, 385, 387, 392–402, 404–406, 410, 411, 414, 416–418, 420, 423, 426, 444, 451, 452, 458, 520 Conductivity, 41, 47, 56, 59, 62, 70, 134, 144, 157, 166, 172, 194, 220, 223, 236, 249, 252–254, 258, 261, 264, 268, 269, 271, 284, 290, 311, 326, 328, 344, 421 Continuous system, 105, 250 Conversion, 29, 35, 47, 108, 127, 129, 132–139, 185, 208, 220, 284, 285, 290–294, 296, 309, 388, 405, 425, 476, 519, 521, 540 Corrosion, electrode, 21, 30–33, 56, 57, 127, 134, 137, 139, 144, 253, 267, 288, 340, 344, 366 Coupled semiconductors, 396–404, 425, 502 CPC photoreactor, 462–464, 467 Crystallinity, 58, 71, 396, 397, 473, 488, 497 Crystal structure, 326, 337–338, 346, 347, 391, 493, 497 555 Culturability, 450, 462 Current density, 10, 12, 13, 15–20, 25, 27, 30, 32, 34, 37, 38, 41, 42, 44, 45, 55, 58, 61, 63, 109, 112, 119, 125, 129, 154, 165, 171, 175, 179, 184, 186, 188, 192, 194, 208–211, 213, 215, 216, 220, 230–232, 234, 236–238, 250–253, 256, 258, 259, 264, 266, 268, 269, 271, 295, 314–316, 318, 320, 321, 328, 329, 331, 343, 344, 355, 366–368, 379–382, 544 distribution, 25, 104, 192, 194 mode, 164, 165 Current efficiency (CE) average, 19, 26, 27, 32, 220 instantaneous, 10, 11, 19, 26, 112, 208, 212, 215 Cyclic voltammetry, 34, 71, 126, 285, 294, 357 Cyclic voltammograms analysis, 9, 72, 340–342 D Dark period, 447, 461–463, 465, 468 Debye length, 374 Degradation, 25, 37, 38, 41–43, 56, 126, 132, 138, 206–209, 211, 213, 214, 216–218, 223, 234, 240, 279, 280, 283, 284, 289, 291–295, 325–336, 342, 346–350, 355, 357–361, 363, 387–389, 397–402, 407, 409, 410, 413, 415, 416, 424, 449, 450, 452, 453, 458, 476, 478, 482, 496, 500, 501, 517, 519, 522, 523, 525–548 Degussa P-25, 389, 406, 446, 453, 454 Dehalogenation, 280, 283, 285, 288, 290, 293, 295, 307 Density of states, 373, 375, 377, 381, 415 Deposition-precipitation, 409, 490–491 Depth of penetration, 380 Detoxification, 36, 126, 280, 284, 294, 296 DiaCell, 145, 147–160 2, 4-Dibromophenol (DBP), 294, 318, 320, 321 2, 4-Dichlorophenol (DCP), 45, 294, 315, 317–320, 527, 530, 537, 543 Diffusion, 11, 44, 103, 104, 108, 114, 126, 127, 172, 173, 191, 208, 212, 218, 230, 250, 252, 291, 292, 314, 353, 355, 378–380, 382, 383, 423, 457, 479, 516, 518, 519 Diffusion length, 379, 380, 382 556 Dimensionally stable anodes (DSA), 35–39, 56, 57, 267, 268, 325–327, 346 Dimethylformamide, 77, 285, 292 Dip, 327–328, 330, 490 Dip-coating, 474, 475, 486 Disinfection, 47, 56, 57, 126, 143–160, 163–197, 253, 266–267, 443–468 Disinfection by-products, 146, 163, 171, 174–196 Dissolved air flotation (DAF), 57, 265, 269, 275 Dissolved organic carbon, 464 Dissolved oxygen (DO), 74, 183, 187, 229, 359, 458, 479 DNA, 73, 79–81, 443 Donor, 283, 284, 373, 378, 380, 383, 384, 395, 410, 417, 421, 444 Doped semiconductors, 413–426, 487, 493, 495, 502 Doping, 62, 70, 144–146, 165, 325–350, 373, 394, 413–418, 420–425, 497, 499, 500 Dose, 118, 119, 354, 456, 461, 462, 465–466, 468, 500 Dose in water disinfection, 465–466 DPD, 149, 164, 166, 167, 173, 187, 189, 194, 195, 356 Drinking water, 156, 163–197, 219, 256, 443, 444, 461 Durability of disinfection, 460–462 Durability of solar disinfection, 463, 464 Dyes, decolorization, mineralization, 35, 37, 38, 44, 45, 56, 118, 206, 207, 214–215, 221–223, 255, 257–259, 363, 389, 392, 395, 399, 406, 412, 413, 477, 478, 480, 481, 493, 526, 528, 530, 531, 543, 544 Dye-sensitized solar cells (DSSCs), 413, 477, 493 Dysprosium, 347 E E, Z-Cyclopropyl phenylketone oxime, 137 EDT24 , 465 EDTx , 466, 468 Effective disinfection time (EDT), 462, 465 Effective mass, 373, 384, 385 Eg value, 326 Electrical energy consumption, 2, 4, 19, 250 specific, 19, 264, 284, 285 Electroanalytical, 65, 126 Index Electrocatalytic activity, 28, 33, 36, 55, 268, 285, 296, 347 Electrochemical advanced oxidation processes (EAOPs), 64, 100, 214, 216, 219, 221–223, 426, 443, 515, 516 anodization, 481–483 cleavage, 129, 280 degradation, 42, 43, 325, 326, 329, 333, 334, 348–349 disinfection, 56, 143 hydrodehalogenation (EHDH), 294, 307–321 incineration, 42, 59, 64 mineralization, 1–21, 34, 64 oxidation, 2, 19, 26–28, 33–35, 39–42, 44, 45, 47, 56, 59, 100, 107–118, 131, 168, 177, 211, 213, 216, 218, 219, 221, 222, 235, 360 potential, 375–377, 421 process, 11, 19, 25, 27, 30, 36, 47, 48, 85, 99–123, 125, 129, 138, 143, 144, 176, 207, 220, 222, 261, 280, 288, 308, 340 reaction, 12, 109, 112, 174, 177, 178, 180, 181, 215, 220, 247, 252, 263–264, 313, 343, 355, 356, 364, 395, 477 redox, 80, 82, 125, 126, 139, 144, 308, 329, 375–377, 409 Electrochemical cell, 13, 14, 31, 106, 110, 121–123, 127, 160, 171, 202, 203, 211, 239, 260, 288, 308, 435 Electrochemical conversion, 22, 49, 88, 129, 134–136, 141, 304, 305, 350 Electrochemical impedance spectroscopy (EIS), 344–345 Electrochemical oxidation index (EOI), average current efficiency, 19, 26 Electrochemical oxygen demand, 26 Electrochemical oxygen transfer reactions (EOTR), 2, 5–7 Electrochemical reductive hydrodehalogenation (ERHDH), 308, 313 Electrochemical synthesis, 65, 130, 161, 244, 301 Electrochemical window, 129, 130, 144, 146, 147 Electrocoagulation, 57, 102, 103, 118, 245–261, 270, 525, 547 Electrocoagulation-electroflotation (EC-EF), 57, 260 Electrode activation, 5, 6, 74, 248, 264 passivation, 248, 249, 253, 367 Index potential, 25, 73, 173, 192, 292, 294, 377, 393 service life, 58, 268, 327, 328, 330–332, 338, 346 stability, 56, 58, 59, 61, 62 system, 271 Electrodeposition, 73, 75, 293, 327, 329, 477–480 Electro-Fenton method, 522–525, 547 Electroflotation (EF), 57, 99, 119, 245, 246, 260, 263–275 design, 271–274 single-stage, 271–272 two-stage, 273 Electrogenerated proton, 313 Electrolysis galvanostatic control, 519, 531–547 potentiostatic control, 519, 529–531 voltage, 264, 270, 367, 530 Electrolytic cells divided, 290, 515, 518 three-electrode, 517, 518, 521, 526 two-electrode, 247 undivided, 290, 515, 519, 520, 522, 523, 529, 548 Electronegativity, 395 Electron paramagnetic resonance (EPR), 339–341, 402, 422, 424 Electron spin resonance (ESR), Electron transfer, 56, 80, 82, 108, 126, 208, 248, 280, 295, 313, 376, 377, 386, 389, 392, 397, 398, 402–405, 410, 412, 425, 498 Electron trapping, 410–412, 451 Electrooxidation, 26–28, 30, 34, 35, 38, 39, 64, 99, 100, 102, 103, 108, 110, 115, 116, 131, 148, 210, 215, 258, 260, 360, 361, 369 indirect, 27, 28, 38, 515–525, 531, 536, 538, 547 Electrophoretic deposition (EPD), 476–477 Electroplating wastewater, 104, 257 Electroreduction, 279–297 Electrostatic attraction, 453, 454, 475 Electrostatic repulsions, 454, 458, 478 Energy bands, 326, 373, 374, 377, 383, 391, 396 consumption (ECN), 19, 44, 220, 258, 264, 267, 269, 271, 284, 285, 309, 314, 315, 319–321, 529, 530 cost, 526, 547 Energy dispersive spectrometer (EDS), 347, 348 Enterococcus, 151 557 Environmentally friendly techniques, 160, 515, 547–548 EPDM, 128 Escherichia coli, 64, 150, 151, 153, 170, 444, 445, 447–468 Escherichia coli K12, 167, 446, 447, 460 Europium, 347 Evaporation-induced self-assembly, 486 Exciton, 378, 384, 385 Exponential phase, 459 F Fabrication, 55–85, 248, 326–332, 385, 398, 473–502 Faeccalis, 151 Faraday constant, 3, 10, 12, 19, 20, 26, 27, 109, 112, 208, 220, 232, 252, 263, 314 f-electron orbits, 326 Fe mesh, 316 Fenton reaction, 452, 453, 515, 522–526, 529, 530, 532, 534–536, 538, 539, 544, 545, 547 Fe2 O3 , 394–396, 482, 490, 491, 498 Fermi level, 373, 374, 376, 392, 404, 405, 407, 409, 421, 425 Field scale experiments, 463–465 Flatband potential, 391, 392, 396 Flocculated sludge, 259 Flotation, 57, 118, 247, 249, 250, 258, 259, 261, 265, 266, 269, 270, 273, 275 Flotation efficiency, 265, 269, 270 Flow cytometry, 450 Flow rate, 10, 11, 13, 32, 39, 46, 65, 67, 69, 105, 108, 113, 119, 250, 252, 253, 264, 266, 271, 316, 318, 332, 466–467, 496, 497, 533 Foerster mechanism, 176 Formaldehyde dimethylacetal, 129 Fouling, 2, 21, 42, 63, 126, 155, 208, 232 Free available chlorine, 163 FuMATech FT-FKE-S anion membrane, 314 Furan, 1, 131 G Gadolinium, 347 Galvanostatic operation, 13 electrolysis, 10, 11, 13, 220, 518 Gas generating rate, 263–264 GC-MS, 360, 537 Gd, 335, 347, 348 GDE-SPE reactor, 289, 291 General current efficiency, 26 Generation of E coli, 460 558 Glassy carbon, 30, 31, 73, 75, 76, 144, 210, 285, 286, 288, 291, 293, 294 Gram negative, 169, 444 Gram positive, 169, 444 Graphite, 29–33, 47, 65, 71, 73, 79, 129–131, 164, 267, 288, 296, 325, 516, 517, 523, 526, 530, 531, 533, 534 electrode, 30, 32, 129–131, 296 Growth media, 446–447 H Halocompounds, 279, 280, 284, 285, 296 Halogenated liquid organic wastes, 308, 321 Herbicides mineralization, 43, 217, 279, 527, 535, 541, 545, 546 oxidation, 216, 540, 545 Heterocatalysis, 326 Holes, 165, 372–374, 378–390, 392, 394–396, 399–401, 406, 408, 410–412, 419, 420, 423–425, 444, 449, 451, 453, 457, 479, 497, 500, 520 Hydrodehalogenation, 287, 288, 290, 291, 294, 307–321 Hydrogenation, 137, 287, 308, 313, 314, 412 Hydrogen evolution, 33, 62, 115, 267, 284, 287, 315, 316, 318, 320, 357, 358 Hydrogen peroxide cathodic electrogeneration, 515–521, 529 concentration, 148, 180, 187, 517, 518, 523 Hydrolysis, 62, 77, 183, 189, 249, 254, 260, 363, 417, 420, 474, 477 Hydroperoxyl radical, 33, 448, 519 Hydroquinone, 208, 209, 211, 213, 332, 335, 526–528, 531, 532, 537, 540 Hydrothermal method, 480–482 Hydroxo cationic complexes, 260 Hydroxyl group, 74, 397, 449, 473 Hydroxyl radical electrolytic, 2, 6–9, 21 reactivity, 2, 6–9, 210 Hypochlorite, 36, 37, 110, 147, 151–154, 167, 169, 171, 172, 174–177, 180–184, 191, 230 Hypochlorous acid, 169, 171, 176, 179, 180, 184, 360, 362 I Immobilized TiO2 , 455–458, 467 Impregnation, 409, 487–488 Incident photon-to-current efficiency (IPCE), 479–481, 497 Index Incineration, electrochemical, 42, 59, 64 Industrial water disinfection, 143–160 Initial bacterial concentration, 447, 448, 459, 466 Initial inactivation rate, 447–448 Inline electrolysis, 163–196 Instantaneous current efficiency (ICE), 10, 16, 17, 19, 26, 27, 39, 40, 44, 46, 112, 113, 208, 215, 219 Instantaneous current efficiency determination, 10–11 Interface, 108, 212, 213, 217, 223, 313, 357, 372–383, 392, 399, 400, 403, 405, 479, 533 Intermediate, 2, 6, 11, 17–18, 28, 32–34, 37, 39, 41, 47, 57, 64, 100, 112–117, 119, 126, 129, 131, 132, 135, 139, 175, 177, 180, 183, 189, 195, 208, 209, 212, 216, 217, 222, 279, 282, 287, 288, 291, 308, 315, 316, 319, 332, 333, 335, 336, 348, 360, 361, 389, 397, 449, 451, 519, 521, 523, 526–528, 530, 532, 540, 543, 545 Ion exchange membrane, 191, 290, 313, 314 Ion implantation, 73, 74, 423, 424, 491, 498–502 Ionic liquid, 135, 285, 299 Ions toxicity, 450 Iridium oxide (IrO2 ), 7, 29, 36, 37, 41, 45, 47, 56–62, 64, 164–166, 170, 173, 174, 176–180, 185–187, 189, 214, 273, 294, 326, 366, 367 Iron anode, 183, 515, 525 aqua complexes, 453 cathode, 316 Isoelectric point IEP, 79, 453, 454, 458 K Kinetics model, 2, 111 organic mineralization, pseudo first-order, 537 rate constant, 536 L Lactobacillus L acidophilus, 444, 455 L casei, 455 Langmuirt Hinshelwood equation, 397 Layer-by-layer self-assembly (LBLSA), 475–476 Lead dioxide, 30, 41–42, 334 Index Legionella, 150, 154 Leman lake, 461–464 Light intensity, 448, 452, 461, 462, 465 Limiting current, 12, 13, 20, 112, 126, 209, 220, 231, 232 Linear sweep voltammogram (LSV), 315 Long life oxidant mediated reactions, 212 Low-density suspended solids, 275 Luria Bertani (LB), 447 M Magnetron sputtering, 491, 494–498, 500 Mass transfer, 20, 34, 42, 45, 106–109, 112, 114–117, 119, 126, 169, 172, 192, 210–213, 217, 218, 220, 223, 230–233, 235–237, 242, 243, 252, 290, 297, 355, 484 Mass transfer coefficient, 20, 45, 108, 112, 114, 211, 232, 236, 252 Mechanical agitation, 466, 467 Mechanism of the electrochemical oxidation, 28, 56, 112–117 Mediator, 7, 27–29, 56, 79, 111, 113, 125, 131, 134, 139, 190, 283, 295 Membrane-divided cell, 289 Mercury, 73, 74, 84, 166, 285, 288, 516, 526 Mesh material, 165, 315 Mesoporous, 389, 424, 484, 486 Metal amalgam, 288 Metallic ion catalyst copper, 515 iron, 515 Methane fermentation, 354, 362, 365, 366 Methanol, 1, 4, 6, 33, 35, 65, 96, 125, 126, 129, 134, 138, 294, 302, 303, 332, 389, 410, 412, 424, 432, 440, 494, 504 Methionin hydroxy analogue (MHA), 137 Methoxylation, 129, 130, 131, 142 Methylmercapto propionaldehyde (MMP), 137 Microorganism, 148, 150–154, 160, 164, 167–170, 178, 189, 190, 354, 363, 364, 443–445, 447, 454, 459 Microstructure, 59, 71, 338, 473, 492, 497 Mineralization partial, 521, 544 total, 209, 521, 528, 538, 540, 541, 544 Mixed oxide electrode, 187 Monopolar electrodes, 149, 247, 248, 259 N Nafion R 117 cation membrane, 311–316, 318, 320 559 Nanometer coating, 329–331, 338–340, 346 Nanoparticles, 75–77, 80, 384, 389, 390, 395, 399, 402, 404–410, 412, 425, 475, 476, 486–491, 493, 499, 501, 502 Nanotubes, 71, 80, 423, 481–484, 491, 501 Natural anions, 448–451 Nickel, 71, 128, 256, 267, 285, 288, 291, 292, 294, 309, 316, 325, 368, 424, 488, 492, 499, 533 Ni mesh, 316 Nitrate, 167, 173, 180, 184–187, 212, 446, 481, 485, 494, 521 Nitrite, 76, 167, 172, 184–186 Non-aqueous solvent, 129, 285, 290, 309 O Ohmic potential drop, 264, 270 OH radical, 56, 126, 164, 172, 175, 177, 181, 183, 184, 186–190, 208, 209, 211, 213, 215–218, 220, 221, 223, 388, 389, 392, 443, 444, 448, 449, 452, 458, 545 Oil and grease, 57 Olive oil mill treatment, 213 Open circuit potential, 372, 383 Optimization, 1, 2, 19–21, 101, 122, 454, 466, 468 electrochemical oxidation, 19–21 Organic matter, 108, 116, 117, 126, 181, 207, 443, 444, 458 Organic pollutants, 1–21, 25–48, 64, 99–123, 148, 205–223, 229–243, 281, 290–296, 307–322, 354, 388, 398, 401, 426, 515, 516, 519, 523, 524, 527, 529, 531–547 Organic volatile halides, 291–292, 297 Organochlorinated (AOX), 360, 361 Osmotic strength, 450 Overpotential for hydrogen evolution, 33, 267 for oxygen evolution, 7, 9, 41, 56 Oxidation drugs, 216–217 dyes, 214–215 mechanism, 27–30, 210, 222, 239, 360 pesticides, 216–217 power, 7, 8, 385, 394, 515, 516, 520, 522, 524, 534, 535, 538–540, 543 surfactant, 217–219 Oxidative coupling, 132, 135 process, 206, 210, 213, 448 species, 451, 453, 458 560 Oxide coated titanium anode (OCTA), 326 Oxime reduction, 137 Oxygen concentration, 458–459 Oxygen evolution, 4, 7, 9–11, 14, 25, 28–31, 34, 36, 41, 43, 44, 47, 56, 58, 59, 61, 64, 121, 126, 144, 146, 210, 231, 260, 267, 268, 318, 331, 332, 342–344, 346, 347, 355–357, 362 Oxygen evolution potential, 30, 331, 332, 342–344, 347 Ozonation, 100, 188, 443 Ozone, 28, 56, 61, 116, 117, 148, 156, 166, 169–171, 175, 179, 181, 183, 185–188, 195, 207, 218, 221, 353, 354, 516, 522 P Palladium alloy, 287, 367 cathode, 309, 316, 321 Paraffin oil, 314, 317–321 Parallel connection, 250, 251, 259 Passivation, 127, 248, 249, 253, 367 PbO2 , 31, 38, 39, 41–43, 45–47, 56, 59, 62, 64, 171, 183, 210, 267, 268, 326, 334, 336 Peak potential, 285, 286 Pentachlorophenol (PCP), 309, 312, 315, 316, 530, 533 Percarbonate, 47, 148, 189, 229, 234 Percentage of halogenated organics removal (PR), 314, 316–319 Perchlorate, 41, 154, 166, 175, 177, 179, 182–184, 186, 190, 196, 223, 292 Perfluorosulphonic acid co-polymer (Nafion R ), 310 Permeability, 445 Peroxi-coagulation method, 525, 545, 547 Peroxodicarbonate, 189 Peroxodisulfate, 47, 148, 190, 207, 213 Peroxodisulfuric acid, 45 Peroxomonosulfate, 190 Persistent halogenated organic pollutants, 280, 281 Persulfate, 190, 229–243 PET bottles, 455 pH, 25, 34–40, 45, 65, 73, 75, 79, 119, 121–123, 151, 155, 166–168, 171, 172, 174–181, 185, 188, 191, 195, 213–216, 218, 236, 241, 242, 249, 252–255, 257–261, 264, 266, 292, 315, 321, 361, 389, 391–393, 399, 421, 446, 450, 453–454, 458, Index 463, 475, 477, 483, 485, 486, 491, 517–520, 522–524, 526–536, 538–542, 544–548 Phase transition, 477 Phenanthrene, 131, 132 Phenol, 15, 16, 18, 28, 30–37, 39–43, 45, 46, 56, 59, 65, 117, 126, 134, 206, 208–212, 220, 221, 223, 294, 308, 309, 312, 319, 326–336, 342, 346–350, 360–362, 410, 424, 525, 526, 529, 531, 532, 537, 543 oxidation mineralization, 18 Phenolic compounds, 45, 74, 207, 211–214 Phenolic coupling reactions, 132–136 Phosphate, 78, 79, 260, 446, 449, 450 Photoassisted processes, 443–468 Photocatalysis, 188, 221, 386–426, 444, 452–454, 458, 467, 468, 502 Photo(electro)catalysis, 55, 56, 58, 188, 221, 328, 350, 386–426, 444, 452–454, 458, 467, 468, 502, 530 Photocatalyst, 371, 372, 384–387, 389, 390, 393–395, 402, 404, 405, 408–411, 413–426, 446, 483, 487–489, 491, 494, 495, 498–500 Photocatalytic activity, 387–389, 391, 392, 396, 397, 399, 400, 404–406, 410, 414, 417, 424, 425, 457, 458, 476, 486, 488, 495–497, 499–502 disinfection of water, 444, 448–453, 458, 459, 462, 465, 467, 468 reactions, 371, 372, 383–387, 390, 397, 413, 449, 451, 477 treatment, 444, 445, 450, 458, 459, 461, 465 Photochromism, 395, 408 Photocurrent density, 379, 382 Photodeposition, 409, 426, 489–490 Photoelectrode, 387, 389, 391, 394, 396, 399, 400, 406, 409, 413, 473–502 Photoelectro-Fenton method, 215, 515, 524, 528, 539, 544, 547, 548 Photoinactivation, 444, 454, 465 Photolytic processes, 461 Photon flux, 379, 386, 387 Photonic efficiency, 372, 386–387 Photoreactivation, 465 Photoreactor, 445–446, 457, 462–464, 466–468, 521 Photoreactor and light sources, 445–446 Physicochemical aspects, 443–468 Physiological state of bacteria, 459–461 Plasmon-induced electron transfer, 410 Index Plate-and-frame electrolyzer, 289 Platinum anode, 9, 30, 33–36, 39, 271, 366 cathode, 166, 271, 309, 476 Plug flow, 105, 193, 290 Polarity, 144, 155, 164, 191, 192, 247, 248 Polychlorohydrocarbons, 294–295, 297 Polyelectrolyte, 475, 476 Polyhaloacetic acids, 293, 297 Polyhalophenols, 293–294, 297 Polymeric material, 21, 213, 484, 486 Polymerization, 75, 79, 254, 260, 340 Porous electrode material, 30 Post-irradiation events, 461–465 Power supply, 251, 260, 495 Precious metal-coated titanium anodes (PMTA), 326 Precursor, 57, 58, 60–62, 65, 68, 69, 181, 190, 221, 229–231, 233, 234, 239, 293, 473, 474, 476, 477, 484, 486, 487, 489, 491–494 Proteins, 79, 80, 363, 459, 547 Pseudomonas aeruginosa, 455 p-tert-butylbenzaldehyde dimethyl acetale, 131, 132 p-tert-butylbenzoic acid methyl ester, 132 p-tert-butylbenzyl methyl ether, 132 p-tert-butyltoluene, 129, 130 Pummerer’s ketone, 133 Pt mesh, 315 Pyrocystis fusiformis, 6, 150–151 Pyrolysis, 40, 60, 327–330, 417, 424, 491, 493–494 Q Quantum size effects, 384–386, 395, 396, 402 Quantum yield, 383, 386–387, 401, 419 Quartz crystal nanobalance, 166 R rac-’-cyclopropyl benzylamine, 137 Radicals, 2, 6–9, 11, 21, 27–30, 33, 41, 44, 45, 47, 56–59, 64, 65, 68, 69, 110, 113, 116, 125, 126, 129, 131, 134, 139, 146, 148, 164, 169, 172, 175, 177, 181, 183–190, 196, 206, 208–218, 220, 221, 223, 229–232, 234, 242, 282, 283, 287, 308, 339, 340, 386, 388, 389, 392, 443, 444, 448, 449, 451–453, 458, 515, 516, 519, 521–525, 533, 534, 544, 545 561 Rare earth, 325–350 Reactant concentration, 208, 217, 221, 321 Reaction sequence, 538, 539, 542 Reactive oxygen species (ROS), 169, 187–190, 451, 458 Reactor design, 250, 316, 386 Reactor geometry, 290, 447, 457, 466 Real wastewater treatments, 38, 205, 206, 218 Recirculation, 13, 193, 236, 455, 463, 464 Recombination, 379, 380, 382, 384, 390, 395–399, 402, 410, 411, 413, 420, 423–425, 451, 457, 480, 497, 500, 501 Redox, 28, 29, 63, 80, 82, 116, 125, 126, 139, 144, 308, 329, 342, 347, 359, 372–378, 393–395, 405, 409, 419, 424, 477 Reduction aldehydes, 137–138 oximes, 136–137 Refractory organic pollutants, 148 Residence time, 32, 105, 106, 114, 168, 184, 465–467 Residual disinfection effect, 465 Resistant, 1, 57, 128, 144, 217, 249, 310, 459 Room temperature ionic liquid (RTIL), 285, 293 Ruthenium oxide (RuO2 ), 8, 29–31, 36, 37, 42, 43, 47, 55–58, 61, 62, 64, 71, 164–166, 170, 173, 174, 177–180, 183, 186, 187, 268, 294, 326, 331, 332, 334–336, 340, 342–344, 519 S Saccharomyces cevisiae, 167, 444, 455 Sacrificial electrodes, 247–249, 251, 259 Sb, 36, 39, 40, 42, 43, 45, 56–60, 74, 326–329, 334–336, 339–344, 346–349 Scavengers of h+, 449 Schottky barrier, 404, 406, 407, 409, 410 Second-order rate constant, 527 Sedimentation, 245, 249, 250, 256, 258 Selectivity, 29, 30, 56, 73, 74, 79, 80, 85, 112, 125, 129, 134–137, 222, 231, 284, 293, 294, 319, 321 Semiconductor, 70, 80, 144, 326, 337, 339, 371–422, 425, 426, 444, 474–477, 480, 483, 487, 489, 491–493, 495, 497, 499, 502, 519 Semiconductor-electrolyte interface, 372–378, 383 Semiconductor surface, 371, 380, 381, 451 562 Sensitive, 71, 73, 75, 79, 80, 249, 396, 402, 426, 453, 458, 460, 461, 497, 498 Sensor, 73, 75, 76, 79, 80, 85, 195, 295–297, 393 Separation, 79, 191, 242, 250, 252, 259, 265–267, 271, 273, 275, 288, 290, 313, 333, 355, 356, 396–399, 401, 402, 407, 410, 411, 413, 421, 479, 499, 502, 548 Series connection, 247, 248, 250, 251, 259 Service life, 40, 47, 58, 60, 267–269, 327, 328, 330–332, 338, 344, 346 Short circuit current, 269, 271, 399, 477 Silver, 74, 256, 284–287, 291–294, 296, 407, 476, 486 Simultaneous reduction and oxidation, 321 Sintering, 58, 474–475 Sludge, 245, 246, 249, 251, 257, 259, 261, 274, 353–369 Sn, 36, 38, 39, 42, 43, 46, 56–59, 61, 218, 288, 326, 329, 331, 332, 334–336, 339, 494, 500 SODIS technology, 455 Sodium sulphate, 187, 315, 446 Solar energy, 413, 426, 443 Solar irradiation, 418, 445, 453, 458, 463, 464 Solar lamp, 445, 461 Sol-gel, 79, 329, 330, 407, 409, 423, 473–474, 481, 484, 485 Solid polymer electrolyte reactor (SPER), 289, 307–321 Space-charge region, 373, 374, 377–380, 382, 383, 425 Space-time yield (STY), 27, 314, 316–319 Specific area, 314 Specific energy consumption, 19, 264, 284, 285 Spectral characteristics of the day, 467 SPE reactor, 289, 290, 294, 307–321 Spin-coating, 475, 481 Spray pyrolysis, 40, 60, 327, 417, 424, 491, 493–494 Stability, 5, 40, 41, 43, 47, 55–63, 67, 70, 71, 73, 127, 128, 137–139, 144, 205, 208, 230, 260, 267, 268, 280, 290, 296, 310, 320–321, 327, 366–368, 409, 474, 493, 516 Stainless steel, 38, 84, 248, 266, 267, 271, 285, 288, 328, 330, 368, 477, 493, 526, 539 Stationary phase, 459 Substituted phenols, 206, 211, 213, 222 Sulfate, 47, 154, 230, 233, 234, 237–239, 249, 255, 446, 453, 521, 522 Index Sulfuric acid, 44, 45, 75, 236–238, 329, 418 Sunlight irradiation, 447 Superoxide anion radicals, 458 Supported TiO , 291, 408, 424, 457, 458, 468, 488 Supporting electrolyte, 20, 36, 38, 104, 125, 131, 134, 135, 137, 207, 211, 213, 215, 216, 223, 255, 283, 284, 292, 296, 313, 314, 358, 360 Surface area, 20, 30, 75, 114, 126, 247, 252, 256, 258, 265, 266, 318, 319, 346, 372, 383, 384, 389, 390, 396, 404, 410, 446, 454, 486, 491, 502, 516 Surface charge density, 475 Surface states, 126, 266, 377, 383, 394, 407, 410, 413, 414, 419, 421, 480 Suspended substances, 265, 266 Suspended TiO2 , 388, 446, 452, 453, 455–458 Synergistic effect, 56, 288, 443, 451, 453, 540 T Tafel curve, 343–344, 347, 348 Technological aspects, 190, 461–467 Teflon, 128, 309, 481 Template, 74, 133, 403, 483–487 Tetraalkylammonium salt, 284, 293 Tetraethoxysilane, 474 Tetraisopropyl orthotitanate (TIOT), 474 Thermodecomposition, 55–62, 85, 268, 366, 367 Thermodynamics of the electrochemical mineralization, 2–5 Thin films, 62, 63, 311, 338, 387, 406, 410, 455, 475–477, 479, 492–496, 500 Ti mesh, 315, 316, 318, 320 Tin dioxide (SnO2 ), 37–41, 45, 47, 56, 58–61, 64, 71, 74, 214, 268, 269, 273, 325–350, 393–394, 398–401, 474, 475, 487, 488, 498, 529 TiO2 aggregation, 389, 390, 450, 453 coated on fibrous Web, 457–458 concentration, 447–448, 452, 453, 455–457, 466–467 fixed in glass, 455–457 fixed in Nafion membranes, 455 Titanium, 34–36, 41, 47, 55, 57, 62, 70, 72, 143, 165, 234, 256, 259, 260, 267, 268, 273, 309, 327, 367–369, 405, 414, 476, 480, 484, 486, 492–495, 497, 500 Index Total chlorine, 173, 194, 195 Total organic carbon (TOC), 39, 41–43, 129, 208, 209, 214, 217, 218, 221, 335, 360–362, 526–528, 530–532, 534–536, 538, 541, 542, 544–547 Toxic pollutants, 4, 64, 307, 325 Transmission electron microscopy (TEM), 168, 338, 488, 489 Trihalometanes, 443 Trimethylothoformate, 130 Turbidity, 249, 251, 258–261, 450 U Undivided cell, 129, 130, 214, 215, 289, 290, 515, 519, 522–524, 529–547 UV radiometer, 446 spectroscopy, 166, 178–180, 182 UVA light photodecarboxylation, 538, 547 photolysis, 537, 544 V Valence band (VB), 371, 373, 374, 378, 381–383, 385, 392, 415, 418–421, 444, 453, 520 Vibrio fischerii, 150, 151 Virus, 79, 151, 152, 444, 475 Visible-light absorption, 416–418, 423–424, 497 Voltammetry, 34, 71, 126, 285, 294, 315–316, 340, 357 563 W Waste volume, 318, 319 Wastewater treatment, 21, 30, 34, 39, 47, 63, 64, 104, 109, 111, 126, 127, 138, 147, 205, 207, 213, 218, 219, 229, 230, 233, 239, 247, 248, 259–261, 266, 273, 448, 515–548 Wastewater treatment plant, 213, 448 Water disinfection process, 47, 143, 159, 160 rain, 143, 156–157, 160 sewage, 143, 150, 157–159 spas, 143, 150, 156, 160 swimming pool, 143, 150, 153, 155–156, 160 Water treatment, 43, 47, 129, 155, 157–159, 184, 223, 245–261, 443, 455 Wet electrolytic oxidation, 353–369 Wet oxidation, 354–357, 359, 369 WO3 , 394–398, 474, 477–479, 484, 487, 493, 498 X X-ray diffraction (XRD), 70–72, 258, 328, 330, 331, 337, 347, 488 X-ray photoelectron spectroscopy (XPS), 338–340, 415, 417, 418, 497 Y Yeast, 167, 170, 444 Z Zimmermann process, 354 ZnO, 385, 392–393, 405, 412, 474, 477, 479–482, 484, 490, 493, 494, 497 ... first lay down the fundamentals involving the environmental electrochemistry, introducing the basic techniques in selecting the electrode materials and fabricating them, followed by the theoretical.. .Electrochemistry for the Environment Christos Comninellis • Guohua Chen Editors Electrochemistry for the Environment 13 Editors Christos Comninellis... related to the overpotential for oxygen evolution and to the adsorption enthalpy of hydroxyl radicals on the anode surface, i.e., for a given anode material the higher is the O2 overvoltage the higher

Ngày đăng: 15/03/2018, 11:18

Mục lục

    Electrochemistry for the Environment

    1 Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment

    1.2 Thermodynamics of the Electrochemical Mineralization

    1.3 Mechanism of the Electrochemical Mineralization

    1.3.1 Activation of Water by Dissociative Adsorption

    1.3.2 Activation of Water by Electrolytic Discharge

    1.4 Influence of Anode Material on the Reactivity of Electrolytic Hydroxyl Radicals

    1.5 Determination of the Current Efficiency of the Electrochemical Mineralization

    1.5.1 Determination of ICE by the Chemical Oxygen Demand Technique

    1.5.2 Determination of ICE by the Oxygen Flow Rate Technique

Tài liệu cùng người dùng

Tài liệu liên quan