Advances in Isotope Geochemistry Mark Baskaran Editor Handbook of Environmental Isotope Geochemistry Editor Dr Mark Baskaran Wayne State University Dept Geology Detroit Michigan 0224 Old Main Bldg USA Baskaran@wayne.edu ISBN 978-3-642-10636-1 (Printed in volumes) DOI 10.1007/ 978-3-642-10637-8 Springer Heidelberg Dordrecht London New York e-ISBN 978-3-642-10637-8 Library of Congress Control Number: 2011935432 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer Violations are liable to prosecution under the German Copyright Law The use of general descriptive names, registered names, trademarks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-tective laws and regulations and therefore free for general use Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To The Founders, Architects and Builders Of Yesterday, Today and Tomorrow Of The Field “Isotope Geochemistry” Endorsement from Prof Gerald J Wasserburg “Environmental Science is concerned with chemical compounds that effect the well being of society-where they come from, how they are transported & where they are deposited Isotopic geochemistry plays a key role in deciphering this code The approaches given in this “Hand Book” give a clear view of answers, potential answers & approaches in this field.” G.J Wasserburg, Caltech Crafoord Laureate and John D MacArthur Professor of Geology and Geophysics, Emeritus Endorsement from Prof Alex Halliday “The environment has never before been the focus of such fascination, challenge and global engagement Yet trying to comprehend it or predict how it might evolve is difficult because of the complexities of the systems This is a volume of immense scope that provides up to date information on the range of new isotopic tools that are being developed and utilised to assail this issue It is an invaluable reference work that explains the range of techniques, the archives and the discoveries, and should be of interest to any environmental scientist who wants to explore and understand these same critical parts of Earth’s surface.” Alex N Halliday FRS Head, Mathematical, Physical and Life Sciences Division University of Oxford Author Index Zhu, L-P., 602 Zhu, P., 105, 106, 110, 112 Zhu, X.K., 160, 188, 198 Zhuang, D., 506, 507 Ziegler, K., 90, 91, 95–98, 101 Zielinski, G.A., 838 Zimmerman, J.T.F., 333 Zink, S., 160–162, 164, 178, 191 Zipf, E.C., 464 Zobeck, T., 406 Zoccola, D., 113 937 Zohar, I., 421, 424, 425, 432 Zonneveld, K., 112 Zreda, M., 443 Zuddas, P.P., 794 Zumberge, J.E., 644, 645, 650, 657, 660 Zuo, W., 157, 172 Zuo, Z.Z., 278, 321 Zurcher, L., 206 Zwanenburg, K.C.T., 792, 800 Zwank, L., 643, 665, 684, 685, 697 Zylberberg, D.R., 216 Subject Index A Abrupt temperature changes, 862, 871, 874, 880 Absorption coefficient, 479 of cosmic ray, 483 Abyssal peridotite, 51, 216 Accelerator mass spectrometry (AMS), 27–28, 439, 576, 581, 582 Accessory minerals, 525–526 Accumulation, 76–77, 320–321, 369, 387, 791, 851, 871, 878–880 Adenosine triphosphate (ATP), 417, 418 Adsorption, 23, 46, 47, 50, 51, 65, 163–164, 169–170, 257, 265–266, 422 Advection, 165, 316–319 of particulate matter, 316–317 Aegean Sea, 382 A530E resin, 437 Aerobic degradation, 663 Aerosols, 18, 34, 207, 212, 221, 254–255, 273, 275, 376, 575, 578, 579, 583–585, 840 A-horizon, Airborne particle sampling, 590 Air bubble, 290, 291, 294 Air-sea exchange, 348–351, 579 Air trapped in ice, 861–880 Alice Springs, 295, 296 Alkaline phosphatase (APase), 422, 423, 440 Alkyl benzenes, 652, 665 Alkyl naphthalenes, 652 Allanite, 521, 526 Alpha particle, 23–24 Alpha spectrometry (AS), 23–24, 27–28, 310, 330–331 Am–241, 367, 387 American Petroleum Institute (API) gravity, 638 Americium (241Am), 18, 365, 367, 368, 387, 394, 398, 400, 402 AMH’S See Anatomically modern humans Amino acids, 725, 729, 735 Ammonia oxidation, 461 AMS See Accelerator mass spectrometry Anaerobic degradation, 663, 665, 668 Analysis of oxygen isotopes in nitrate, 836–837 Anatomically modern humans (AMH’S), 733–734 Ancient human population, 728–734 Ancient mobility patterns, 739 Ancient Nasca, 755 Anco´n, 741, 742, 746, 753, 754 Andaman Sea, 541 Anomalous sulfur isotopic composition, 835 Anoxic condition, 279, 394, 419, 436, 460 Anoxic events, 428 Anthropocene, 5, 97, 101, 786 Anthropogenic Cd isotope fractionation, 149–150 Anthropogenic emissions, 138–140, 229, 271, 583 Anthropogenic isotopes, 17–19 Anthropogenic lithium, 44 Anthropogenic radioisotopes, 355–356 Anthropogenic radionuclides, 365–388, 487, 589–606 Antimony (125Sb), 380 Apatites, 422, 521, 522, 524–527, 730, 751 Applications of Ra isotopes, 336 Arctic, 69, 77, 144, 145, 215, 368, 379, 381–382, 408, 538 Atacama ClO4-, 441–443, 446 Atmospheric Cl, 435, 442 Atmospheric CO2, 65, 143, 520, 531, 726, 815 Atmospheric deposition, 119, 307, 308, 325, 419, 505, 786 Atmospheric life of [Hg(0)], 229, 238 Atmospheric lifetime of sulfuric and nitric acids, 831 Atmospheric nitrate, 611–630, 846–850 Atmospheric removal of radionuclides, 13 Atmospheric tracers, 573–585, 589–606 Atmospheric transport, 72, 79 Atomic chlorine, 585 ATP See Adenosine triphosphate Authigenic Tl, 257 Autocorrelation, 818, 822 B Bacterial denitrification, 460–467 Bacteria method, 837 BAM–1012 reference material, 130, 132, 133, 136 Barium (Ba), 208, 309, 311, 344, 378 Barometric equation, 868 Basaltic weathering, 95 Bay of Bengal, 100, 277, 519, 532, 536, 539, 541, 542, 545 Be, 61–81, 305–325, 485–511, 576, 577, 579–585 and 10Be in freshwater, 66–67 and 10Be in marine environment, 61, 65, 67–69 as a tracer to quantify the redistribution of PCBs and other contaminants, 322–323 Be–7, 311, 312 M Baskaran (ed.), Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry, DOI 10.1007/978-3-642-10637-8, # Springer-Verlag Berlin Heidelberg 2011 939 940 10 Be, 61–81, 478–483, 581–585 in continental dust, 62–63 in groundwater, 67 inventory, 63, 65, 70, 73, 79 Be/10Be ratios, 78, 80, 581–583 Bedrock signatures, 740 Beef hydrogen and oxygen ratios, 709–711 Benthic fluxes, 255–256, 354–358 Benzene, toluene, ethylbenzene and xylenes (BTEX), 665 Be/210Pb ratios in sediments, 75, 314–315 as tracer of particle dynamics, 319–320 Beta particle, 24, 25, 311 Beta spectrometry, 24–25, 310, 311 Bichromate, 178 Bicyclic alkanes, 652 Bioaccumulation of 210Po, 229, 272 Biodegradation, 7, 436, 445, 643–648, 651–653, 663–665 Biogenic carbonates, 43, 54, 106, 115, 116 Biogenic enamel isotope signatures, 743 Biogenic methane, 653, 666 Biogeochemical cycle, 100–101, 579 Biogeochemical cycling of phosphorus, 417–432 Biokinetics of lead, 772, 778 Biological fractionation, Biological mass-independent effect, 467 Biological pathways of calcification, biocalcification pathway, 112 Biological production pathways, 458–469 Biomagnification, 282 Biomarker, 179, 190, 638, 667–668, 767–768 Biomass burning index, 848 Biomineralization, marine biomineralization, 112–116 Biosignatures, 198–199 Biotites, 42, 96, 140, 522–524 Bioturbation, 497–498 Biovolatilization of 210Po, 271 Bisphosphonate treatment, 775 Bolling-Allerod, 872 Bonding energies, 155 Bone apatite, 730 diagenetic alteration, 743, 747 remodel, 744, 755, 773, 801 turnover, 775 Boundary scavenging, 76–77, 386, 387 Box model, 356, 504, 625–626 Brahmaputra, 519, 527–529, 531–535, 538–541 Bulk silicate Earth (BSE), 93, 105, 112, 133, 134, 140–141, 146, 150 standard, 105, 112 C 14 C, 4–6, 12–14, 374–376 d42/40Ca, d44/40Ca, 105–120 of Ca fluxes in seawater, 106 on ecosystem calcium fractionation, 117 in rivers, 108 temperature dependence in calcite and aragonite, 54 Subject Index variation with time in tree rings, 120 in tree rings, 119–120 CaCO3 fractionation as a function of mineralogy, 107, 108 as a function of precipitation rate, 115–116 Cadmium (Cd) isotopes, 126–133, 136–149 in marine environment, 150–151 stable, fractionation during evaporation, 136–137 variation, 125–151 Calcic phases, 524 Calcification mechanism, 114 Calcium (Ca) availability in vertebrates, 110 biogeochemistry, 105–121 isotopes, 105–121 in bones, 116–117 in corals, 113–114 in food chains, 109–110 fractionation, 106, 108, 110, 113–116 isotopic variation, 109 residence time in oceans, 105–108 transport during biomineralization, 108 transport in corals, 113 Calvin cycle, 704, 725 Canopy effect, 726, 727 Carbohydrate, 196, 704, 706, 712, 713, 716, 722, 726, 729, 734, 808, 814, 817 Carbonates, 16, 18, 43, 48, 53–55, 106, 107, 111, 115, 116, 147, 212, 524–525, 529–534, 663, 724, 785–802 Carbonic acid, 88, 108, 115, 374, 520 Carbon isotopes, 644–646, 649–656, 659, 666–667, 679–680, 683–685, 704, 725–726 in cellulose, 815–816 composition of atmospheric CO2, 704 ratios of beef, 707 tracer for food adulteration, 704 in trees, 815–816 Carnivores, 728 Catchments, 48, 97–99, 117 Cave deposits, 785 Cavity Ring Down Spectroscopy (CRDS), 469, 831, 834, 853 113 Cd, 126 114 Cd, 126, 147, 181 116 Cd, 126, 132, 147–148, 181 Cd/Ca, 134, 142, 147, 150, 151 110 Cd/111Cd, 135 112 Cd/110Cd, 23, 135 113 Cd/114Cd, 126, 135, 148 114 Cd/110Cd, 23, 126, 128, 133–138, 181 114 Cd/112Cd, 135 CDW See Changjiang diluted water Cellulose, 808–815, 818–823 d18O, 813–815, 818, 819, 823 synthesis, 808, 817, 818 Cesium (137Cs and 134Cs), 380–383 Chalcophile, 140, 205, 206, 208, 211, 252, 266 Changes in d15N per trophic step, 709, 733 Changes in isotopic composition of a recreational shooter, 776 Changjiang diluted water (CDW), 336, 337 Chelation, 777 Subject Index Chemical erosion, 49, 555–556 Chemical signatures, 51, 142, 565, 744 in teeth, 743 Chemical weathering, 521–537, 557–559 Chernobyl, 372–373, 489, 491, 497, 594–596 Chlorinated ethenes, 643 Chlorine–36, 443–445 abundance in perchlorate, 443–445 Chlorine (Cl) isotopes in environmental forensics, 666 isotopic ratio, d37Cl, 436, 439 Chlorofluorocarbon (CFCs), 232, 581–582 Cholesterol, 638, 724, 725 Chondritic uniform reservoir (CHUR), 521 C-horizon, 65, 73 Chromate (CrO42-), 178, 180 Chromium (Cr) contamination in groundwater, 164 isotopes, 156–157, 160, 162–167 Chronosequences, 95, 522–523, 526, 534 CHUR See Chondritic uniform reservoir CI See Crystallinity index 36 Cl, 15, 296 Climate change, 382–383, 615, 819 Climate parameters, 542 Closed system, 73, 99, 144, 165, 208, 258, 297, 343, 459, 686, 687, 690, 693, 791, 793, 799, 800 assumption, 793 cNOR, 462, 463 CO2, 87–88, 219, 374–375, 453, 531, 579, 640, 642, 676–678, 815 Coastal ocean mixing, 329–339 Cobalt (58Co and 60Co), 210, 367, 376 CO continuous-flow isotope-ratio mass spectrometry (CO-CFIRMS), 438 Cold vapor introduction system, 232 Collagen, 723–724, 727, 729–735 Colloidal transport, 497 Colloids, 74, 80, 323, 530–531, 552 Colonization, 751, 754 3-Compartmental model for Pb, 772 Compound specific isotope analysis (CSIA), 639–640, 666, 676, 689–690 Concentration of Pb in urine, 768 Condensates, 647, 655 Condensation, 581, 688, 978 Conflat seats, 865 Congruent weathering, 407, 411 Conservative radium (Ra) model, 337–338 Conservative tracer, 380, 458, 462, 486 Contaminants, 164–167, 190–195, 322–323, 369–372 Continental weathering, 45–50, 54, 106, 206, 252, 255, 419, 534–536, 543 Continuous flow isotope ratio mass spectrometer (CF-IRMS), 438, 613, 723, 725 Continuous flow method, 232, 865 Contribution of bone Pb to blood Pb, 772–773 Copper isotopes, 179, 180 Corals, 55, 113–114, 370, 386, 786, 789–791, 794–796 Cosmic irradiation history, 481–482 941 Cosmic ray produced nuclide systematics on Earth project (CRONUS-Earth Project), 479, 483 Cosmic rays, 306, 475, 479–481, 488, 576, 577 flux, 126, 476–477 Cosmogenic isotopes, 573–585 Cosmogenic nuclides, 14–16, 477–479, 575–580 Cosmogenic production rate, 477 Cosmogenic radionuclides, 475–483, 576–582 Cosmos-954, 397, 599 Counting methods, 22–25, 27, 72, 78, 311, 788 C4 (Hatch-Slack cycle) pathway, 704 C3 (Calvin cycle) photosynthetic pathway, 704 C3 plants, 36, 642, 678, 817 C4 plants, 36, 642, 678, 704, 708, 725, 726 Cr(III), 162, 163 oxidation, 163, 164 Cr(VI), 156–157, 162, 164 reduction, 163, 165–167, 191–192 Craig-Gordon model, 704–705, 814 Crassulacean acid metabolism (CAM) cycle, 725–726 53 Cr/52Cr, 23, 157, 159, 163–164 CRDS See Cavity Ring Down Spectroscopy CRM, 403, 553 Crude oil-isotopic composition, 638, 641, 643, 645, 647–648, 650–653 Crustal flux, 41 Crystallinity index (CI), 724–725, 751 137 Cs and 210Po/210Pb as tracers of historical records in river basin sediments, 305–325 profile, 381–383, 404, 496, 497, 506 transport, 497 CSIA See Compound specific isotope analysis Cu(I), 179, 196 Cu(II), 179, 196 65 Cu/63Cu, 23, 179 Culture change, 36 Curium, 395 D Dansgaard-Oeschger events, 863, 871 Dating, 14, 16, 18, 20, 35, 73, 78, 80, 206, 295, 321, 373, 375–376, 403, 579, 649–651, 785–802, 822 of particulate matter, 78, 80 Daughter deficient method, 786, 791–792, 798–802 DCM See Dichloromethane DDT See Dichlorodiphenyltrichloroethane Decay series nuclides, 16–17 Deccan basalts, 47, 536 Deep crustal helium, 295 Deep-sea corals, 55, 790, 795 Deep water formation, 382–383, 387 Degree of crystallinity, 724, 751 Degree of isotope equilibrium, 423 Degree of weathering, 48 Dehydration kinetics, 114 Delayed coincidence system, 331 Deleterious health effects of ClO4–, 436 Denitrification, 452, 458–469, 726, 837, 848, 851 Denitrifier method, 614 942 Denitrifying bacteria method, 837 Dense non-aqueous phase liquid (DNAPL), 667 Dentine, 729, 768, 770 Depleted MORB source mantle (DMM), 140–141 Deposition, 61–63, 79–80, 305–325, 404–406, 591, 604–606, 648–649 environment, 648–650, 657, 743 flux of 7Be, 61–63, 323, 325 flux of 10Be, 13, 61–63, 77 velocity, 14, 584, 605 Depth shift, 872 Desorption from riverine particles, 330 Deuterium enrichment, 653 Deuterium isotopomer distribution (DID), 683, 822 Diagenesis, 51–52, 724–725, 743, 750–751 in teeth and bone, 749 Diagenetic contamination, 741, 743, 745, 750–751 in enamel and bone, 748, 751 Dichlorodiphenyltrichloroethane (DDT), 666, 687–688 Dichloromethane (DCM), 663 DID See Deuterium isotopomer distribution Dietary protein, 706, 729 Diffusion, 43–44, 55, 76, 165, 172, 260, 279, 289, 321, 330, 335, 337, 350, 352, 355, 357–358, 452, 458–460, 477, 506, 683–684, 722, 754, 786, 793, 868, 871–873 from bottom sediments, 278, 786 coefficient, 76, 350, 351, 722 through the ice, 866–867 Diffusive seafloor flux, 352 Dioxins, 666 Discharge-weighted, 527, 528, 530 Dispersion, 165, 166, 186, 274, 297, 380, 735 Dissolution, 45, 46, 73, 88, 96, 97, 100, 179, 198, 208, 216, 255, 278, 379, 399, 400, 402, 422, 425, 522, 523, 534, 552, 556, 559, 564, 565, 599, 748 experiments, 523, 529 kinetics, 144, 198 Dissolved inorganic phosphate (DIP), 420, 426, 427 Dissolved oceanic Tl, 260 Dissolved organic carbon (DOC), 234, 236, 375, 530 Dissolved organic matter (DOM), 424, 425, 525, 552 Dissolved Sr in rivers, 529, 530 DNAPL See Dense non-aqueous phase liquid Dole effect, 624 Double spike, 26, 110, 129, 131–132, 149, 159–161, 187, 188 Downwelling, 386, 387, 420 Drinking water and d18O values, 713–716 Dual oxygen ratio analysis, 835 E EA-IRMS See Element analyzer-isotope ratio mass spectrometry Early life migrations, 744 Early tertiary, 536 East Antarctica, 843, 862, 878 East Asian dust, 597, 600 East China Sea, 336 Eastern California Shear Zone (ECSZ), 297 East Morongo Basin (EMB), 292, 293, 297–298 East Pacific Rise (EPR), 44, 216, 800 Subject Index ECSZ See Eastern California Shear Zone Eddy diffusion coefficient, 76, 351 Effective fractionation factor, 172 Efficiency of the detectors, 72 Eichrom TRU resins, 129 Element analyzer-isotope ratio mass spectrometry (EA-IRMS), 676, 677, 679–680, 689, 696 Elkhorn Slough, 427 EMB See East Morongo Basin Endogenous sources of lead, 768 Enrichment of Tl, 257 Environmental forensics, 7, 23, 637–668 Environmental half-life, 377, 381, 384 Environmental tracer, 34–35, 446 Enzyme cofactor, 179, 180 EPR See East Pacific Rise Equilibrium fractionation, 5, 94, 137, 612, 616, 722 factors, 115, 163, 168, 623, 810 Tl isotope, 255, 259 Erosion, 317–319, 404–406, 475–483, 485–510, 519–545, 551–566 rates, 17, 20, 49, 73, 405, 475–483, 485–511, 540, 544, 555–557, 563, 566 Estuaries and coasts, 305–325 Estuarine behaviour of lithium, 49–50 Estuary, 50, 68, 164, 313, 315–317, 335, 376, 379, 408, 427 Ethanes, 643 Ethylbenzene, 665 Eutrophication, 418, 427 Evaporation, 70, 128, 136–138, 148, 149, 211, 252, 425, 553, 644, 678, 705–706, 712, 810, 812, 813 Evaporites, 439, 529, 532 EXAFS/XANES spectra See Extended x-ray absorption fine structure spectra Excess helium, 292, 294–298 Excess Pb–210 dating method, 786, 794–798 Exchangeable Sr, 523 Exchanges of Pb in teeth, 772 Exposure age, 16, 475–483 Exposure history, 476, 479, 481–483 Extended x-ray absorption fine structure (EXAFS/XANES) spectra, 259 External doping, 91 F Fallout, 372, 382, 384–385, 396, 403, 404, 407–409, 490, 497 Faraday collectors, 91, 159, 251, 287 Fast food stable isotopes, 706 Fate and cycling of 210Po, 272 Fatty acids, 725 Fe(II), 162, 178–179, 190, 195, 197, 199 Fe(III), 162, 178–179, 189, 195, 197–199 Ferromanganese (Fe-Mn) crust, 145 deposit, 55 sediment, 216, 263–265 Fingerprint, 12, 167, 199, 217, 233, 237–238, 243, 251, 266, 314, 397, 409–410, 507, 537, 638, 639, 661–663, 665–666, 773, 843, 845 Firn densification, 871–873 Subject Index Firnification model, 862, 871–873, 875, 876, 879 First-order kinetics, 11, 558 Fishbones, 786, 791, 800 Fission products, 5, 368, 369, 379, 395–396, 487 Food web, 235–237, 239–243, 281, 419, 704–705, 709, 740, 759, 833, 836 assemblages, 705 Formation of sulfate, 838, 839 Forward model, 532, 818 Fossil fuel emission, 842 Four-end-member mixing, 332, 335–337 Fourier-transform infrared spectrometry (FTIR), 457, 469, 724, 751 Fractionation, 5–6, 52, 115–116, 136–137, 147–149, 157–159, 162–163, 167–168, 189–190, 233–234, 258–261, 422–423, 439–441, 643–644, 663–664, 867–871 coefficients, 873 factors, 20, 46–47, 51, 89, 94, 95, 98, 107, 112, 115, 137, 138, 144, 151, 156, 158, 163, 167–169, 234, 236, 259, 440–441, 458–460, 466, 623, 683, 810 mechanisms, 7, 113, 149, 242, 259 signals, 867–871 in Sm/Nd, 521, 527 Functional trophic level (TL), 705, 708, 709 Fungal denitrification, 458–460, 462, 463, 465, 467, 469 G Galactic cosmic ray (GCR), 370, 477 Gamma-ray spectrometry, 311, 312, 331, 368, 581, 788, 799 Gamma spectrometry, 23, 25, 310, 313, 330, 331, 405, 406, 786 Gamma spectroscopy, 501 Gandak, 539–540 Ganga-Brahmaputra river system, 531–534 Ganga plain, 539–541, 545 Ganga tributaries, 545 Garden variety, 61 Gas age scale, 871, 879 Gas chromatography (GC), 8, 438, 638, 665, 697, 834 Gas chromatography-isotope ratio mass spectrometer (GCIRMS), 638–641, 651, 653–654, 662–664, 667, 677, 680–682, 689–670 Gas chromatography mass spectrometry (GCMS), 639–640, 661, 663, 665, 668, 716 Gas generation index (GGI), 657 Gas isotope ratio mass spectrometer (G-IRMS), 834 Gas loss correction, 866–867 Gas solubility constant of radon, 345 Gas source mass spectrometry, 27, 92 GC See Gas chromatography GCIRMS See Gas chromatography-isotope ratio mass spectrometer GCMS See Gas chromatography mass spectrometry GCR See Galactic cosmic ray Geiger-M€uller (GM) counter, 24–25 Geochemical behavior of Ra, 344, 346 of Rn, 346 Geochemical fractionation, 786 Geochemical Ocean Sections Study (GEOSECS), 349, 375, 378, 381, 384 943 Geochronology, 16–17 Geological provenance, 537 Geomagnetic field, 476–477, 582 Geomagnetic latitude, 476–479 Geomorphology, 475–476, 537 GEOSECS See Geochemical Ocean Sections Study Ge/Si, 97, 543 Gettered sample, 865 GF-AAS See Graphite Furnace Atomic absorption Spectrometry GGI See Gas generation index G-IRMS See Gas isotope ratio mass spectrometer GIS See Greenland Interstadial Glaciological processes, 851 Global average concentration of Tl, 252 Global budget of Tl, 253 Global carbon cycle, 87, 520, 531, 542, 545 Global fallout, 367, 370, 372, 374, 377, 382, 383, 385, 395, 397, 406, 407, 490–493, 497, 510, 595 Global homogeneity of Tl isotopes, Global marine Ca budget, 108 Global meteoric water line (GMWL), 705, 709–710, 712 Global Network of Isotopes in Precipitation (GNIP), 621, 628, 809 Global rivers, 520, 527–530, 535, 536, 540 Global Si isotopic balance, 93 Global Sr flux, 527, 528, 530, 535 GM counter See Geiger-M€uller counter GMWL See Global meteoric water line GNIP See Global Network of Isotopes in Precipitation Gobi, 215–216, 598 Granitic soil chronosequence, 522–523 Granitoid weathering, 522, 525, 526 Graphite furnace atomic absorption spectrometry (GF-AAS), 209–211, 768 Grasshopper Pueblo, 731, 752, 755 Gravitational effects, 868, 869 Greenhouse gases, 348, 451–453, 853, 862, 879 Greenland, 211, 217, 377, 410, 843, 849–851, 862, 863, 869, 871–873, 876–878, 880 ice, 842, 844, 852 ice cores, 842, 844, 851, 863, 875–877 Greenland Interstadial (GIS), 863, 870 Greenland Stadial (GS), 863, 870 Greenockite (CdS), 125, 140 GRIP drilling site, 862 Groundwater, 99–100, 191–192, 279–280, 285–302, 354–358, 748 discharge into lakes, 357–358 GS See Greenland Stadial H HA See Hydroxyapatite Half-residence time (HRT), 593, 598 Hanford, 18, 410 HAO See Hydroxylamine oxidate Harmful algal blooms, 8, 418 Hatch-Slack cycle, 704, 725 Headspace equilibration method, 864 extraction, 613 944 Headwaters, 529, 532–533, 541–542 Heavy rare earth elements (HREE), 521, 525 Helium (He), 285–302, 331, 864, 865 components, 290–294 flux, 289, 292, 295 isotope, 289–298, 301 Herbivores, 116, 117, 726–728 Heterogeneous hydrolysis, 617 Heterogeneous oxidation reactions, 838 202 Hg/198Hg, 21, 23, 230 196 Hg 198Hg 199Hg, 200Hg, 201Hg, 202Hg, 204Hg, 181, 230 Higher Himalaya, 539, 541, 542 High mobility, 436 Hill slope hydrology, Himalayan-Tibetan region, 530, 535 Himalayan tributaries, 539 Himalaya-Tibet (HT), 534 rivers, 528, 535, 536 Homogenous oxidation reactions, 584 Hopanes, 652 Horizontal eddy diffusivity, 352, 354 Hot spot, 539, 540 Hot springs, 543 HREE See Heavy rare earth elements HRT See Half-residence time HT See Himalaya-Tibet Human diet, 36, 703–716, 733 Human enamel, 746 Hummingbird Island, 427 Hydrocarbon exploration, 637–668 Hydrochromate (HCrO4¯), 156 Hydrogen bonds, 866–867 and oxygen ratios record glaciations, 709–711 Hydrogen isotopic composition (dD), 36, 652 Hydrolysis constant, 65 product, 65 Hydrothermal, 50–53, 135, 145–146, 235, 254, 260, 262–263, 419, 535, 798, 800, 802 alteration, 35, 216, 257–258, 265 deposits, 146 Hydroxyapatite (HA), 724, 740 Hydroxylamine oxidate (HAO), 452, 461, 462 Hydroxylamine oxidation, 452, 462, 463, 465, 467, 468 Hydroxyl (OH) radical, 584, 617, 622, 623, 853 Hydroxyl radicals (OH), 584 I Institute Reference Materials and Measurements (IRMM), 188, 399, 403 Iron (55Fe), 376–377 J Juan de Fuca ridge, 216, 254, 258 Juvenile effect, 816 K Kd, 65, 68, 307, 366–367, 383, 394–395 Kerogen, type II, type III, 657–658 KIE See Kinetic isotope effect Subject Index Kinetic and equilibrium fractionation, 5, 21, 94, 115, 163, 168, 233–234, 418, 616, 644, 722, 813 provenance, Kinetic fractionation, 21, 233–234, 644 Kinetic isotope effect (KIE), 156, 158, 189, 422, 643, 676, 683–685, 722–723 Kinetic isotope fractionation, 137, 156, 252, 683–684 Kjeldahl digestion, 836 Kosa, Kosa events, 597, 600, 602, 604 K-rich minerals, 521 Krypton (85Kr), 18, 377 K-T boundary, 536 Kuroshio sub-surface water (KSSW), 336–337 Kuroshio surface water (KSW), 336 L Labile Tl, 256 Lake Erie, 428–429 Large deficiency of 210Po, 276 Laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS), 746, 750 Last glacial maximum (LGM), 541 Late horizon, 754 Late intermediate period, 753, 755 Lead (Pb) in blood, 767, 774 in breast milk to Pb in blood, 775 from food, 765–766 isotopes in environmental health, 769–778 in human studies, 769 in teeth, 768 isotopic analyses of teeth, 770 isotopic composition, 770 levels in humans, 765 in mining and smelting communities, 770–772 Leaf boundary layer effects, 813 Lesser Himalaya, 533, 540 LGM See Last glacial maximum Li/Ca ratio, 54 Light rare earth elements (LREE), 521, 525, 526 Lipids, 642, 706, 733 Liquid scintillation counting (LSC), 25, 346, 582 Lithium (Li) abundances in mantle rocks, 42 deuteride, 42 fluoride, 42 in foraminiferal records, 53 isotopes composition of seawater, 48, 55 fractionation, 46–47, 54–55 as tracers of continental weathering, 45–50 as tracers of hydrothermal processes, 50–52 in marine records, 52–55 Lithology, 44, 529 Local and regional transuranic sources, 409–412 Loess, 134, 141, 251 Long-term exposure to Pb, 765 Loss of biogenic (87Sr/ 86Sr) signatures, 743 Low-frequency climate, 808 Subject Index Low-frequency variations in climate, 808 LREE See Light rare earth elements LSC See Liquid scintillation counting M Machu Picchu, 754 Magnetic isotope effect (MIE), 147–148, 233–234 Manganese (54Mn), 376 Mantle flux, 290 Mantle helium, 289, 297 Margin, 76, 191, 255–256, 386 Marine biogenic sulfate, 842 Marine calcium cycle, 105–108 Marine environment, 67–69, 75–78, 134, 141–147, 254–258 processes, 365–387 Marine Hg isotope composition, 237 Marine output fluxes, 255, 257–258 Markers of prehistoric mobility, 740–741 Mass balance, 97, 215–217, 262, 290, 315, 318, 334, 356, 506, 584, 616–617, 628 equation, 262, 263, 290, 291, 319, 320, 356, 534, 583, 625, 628 Mass bias, 43, 91, 130, 131, 159–161, 187, 233, 249 correction, 91, 127, 130, 161, 233, 249 shifts, 161 Mass burials, 261–262 Mass conservation, 623 Mass dependent fractionation (MDF), 5–6, 89, 157, 181, 188, 230–231, 233–235, 436, 740 Mass dependent isotope fractionation, 5, 132, 137, 148, 616 Mass dependent Rayleigh-type isotope fractionation, 440 Mass discrimination, 27 Mass fractionation, 91, 95, 96, 106, 129, 131, 135, 750 correction, 110, 129, 131 Mass-growth model, 792–793, 800 Mass independent composition, 611 Mass independent fractionation (MIF), 5–6, 147, 181, 230–231, 233–235, 237, 241, 242, 612, 616, 832 Mass independent isotope fractionation, 230 Mass interference, 457–458, 469 corrections, 457–458, 469 Mass laws, 832 Mass spectrometry (MS), 6, 25–28, 90, 129–131, 159–162, 184, 185, 188, 248–249, 400, 453–454, 592, 676–682, 834, 865, 866 Maternal Pb exposure, 765 Matrix effects, 90, 91, 101, 834 Maturity, 646–647, 657, 660 MC-ICPMS See Multi-collector inductively coupled plasma mass spectrometry MDF See Mass dependent fractionation Mean free path, 479, 480 Mechanisms of Hg isotope fractionation, 233–234 Mediterranean, 35, 382, 752 Melt ponds, 77, 383 Melt-refreeze method, 864–866 Mercury (Hg) bioaccumulation, 229 biogeochemistry, 229 isotopes, 229–243 in fish tissues, 236–237 945 in food webs, 235, 237 in marine sediments, 237 in tree lichens, 238 Meridional mixing, 575 Metal redox cycles, 195–196 Metal scavenging, 74 Metal toxicity, 196 Metamorphism, 140, 533, 657 Meteoric, 61–81, 212, 705 Meteorites, 16, 134, 206, 211–213 Methane, 653, 657, 658, 660, 877 Methylated Tl, 260 Methyl tert-butyl ether (MTBE), 643, 664 Microbes, 168, 169, 179, 279 Microbial ClO4–reduction, 440, 441 Microbial degradation of MeHg, 241 Microbial Hg methylation, 235, 237, 241, 242 Microbial redox reactions, 159 Microbial reduction, 163, 169, 179, 234, 242, 439–441 Microbial Se(VI) reduction, 169, 171 MID See Multiple ion detection Mid-ocean ridge basalts (MORB), 43–44, 134 MIE See Magnetic isotope effect MIF See Mass independent fractionation Migration of hydrocarbon, 647–648 of radionuclides, 497–498 Migratory patterns prehistoric animals, 739 Milk isotope ratios, 713–714 Milk water line, 714 Mineralization, 112–116 Mineralogical composition, 522, 537–538 Mineral weathering kinetics, 522–527 Mineral weathering rates, 522, 524, 563 Minimum detectable activity, 787 Missing anthropogenic carbon, 485–486 Mixing, 76, 144, 166, 191, 192, 329–339, 351–354, 387, 427, 602–604, 657, 660, 729–730, 817 of air masses, 397 in the coastal ocean, 351–354 in the deep ocean, 351–354 dynamics, 329 models, 167, 353–354, 602–604, 704, 730 rates, 76, 352–354, 387 54 Mn, 18, 376 Mobilisation of lead from bone, 772 of Pb from the maternal skeleton, 773–774 of Pb in the body, 769, 773–774 of skeletal Pb, 773–774 Mobility of lead in human body, 765–779 Modulation parameter, 477 Mojave desert, 164, 166, 292–294 Molecular interference, 27, 127–129, 132 Mollusk shells, 787, 789, 791–793, 798–800 Molybdenum isotopes, 180 Monazite, 521, 526 Monochromatic compounds, 643 Monocyclic alkanes, 652 Monomethylmercury (MeHg), 181 Monsoon, 63, 524–525 946 Monte Carlo simulation, 818 MORB See Mid-ocean ridge basalts MS See Mass spectrometry Mt Agung, 842 MTBE See Methyl tert-butyl ether MTBX, Multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS), 42–43, 91, 110–111, 129–131, 159–161, 184–187, 232 Multiple ion detection (MID), 638, 640, 668 N NAA See Neutron activation analysis n-alkanes, 638, 645–647, 650–653 N and Ar as tracers, 861–880 Naphthalene, 652, 665 National Institute of Standards and Technology (NIST), 107, 189, 230, 272–273, 402 Natural and anthropogenic sources of perchlorate, 435 Natural attenuation, 166, 639, 643, 662–665, 667, 668 Natural ClO4¯, 435, 436, 441–443, 447 Natural gas isotope analyses, 653–661 143 Nd/144Nd release, 525–527 Neanderthal, 733–734, 747, 752 Negative thermal ionization mass spectrometry (N-TIMS), 5, 207–209, 215 Neodymium (Nd), 521 isotopes, 519, 523, 527, 537, 539–543, 545 Neogene, 108, 526 Neolithic, 733, 752, 754, 757 Net isotope effects (NIE), 459, 460 Neutron activation analysis (NAA), 207–209, 211, 215, 221 Neutron capture, 14, 16, 126, 394, 397, 409, 410 Nevada Test Site (NTS), 18, 371, 383–384, 396, 409–411 60 Ni/58Ni, 23, 179 NiR See Nitrite reductase NIST See National Institute of Standards and Technology NIST SRM–997, 230, 233 NIST SRM–3133, 230, 236 Nitrate (NO3¯), 611–630, 836–837, 846–852 Nitric oxide reductase (NOR), 452, 461–463 Nitrification, 452, 460–463, 468–470, 863 Nitrite reductase (NiR), 461–463 Nitrogen cycle, 704 isotopes (d15N), 465, 666, 668, 704–705, 708, 709, 715, 726, 742, 833, 836 analysis of human hair, 705 ratios of a secondary consumer, 705 ratios of the web’s baseline, 705 trace the flow of organic matter, 704–705 Nitrogen oxides (NOx), 611, 612, 615, 621, 622, 624–627, 629–630, 836, 842, 846–847, 850, 852 Nitrous oxide (N2O), 451–470 Ni/V elemental ratio, 638 NMD See Non-mass dependent fractionation Noble gas, 5, 17, 27, 285, 345, 357, 366–367, 578 Non-climatic factors, 808, 816 Non-linear model, 503–504 Non-local trophy heads, 755 Non-mass dependent fractionation (NMD), 832 Subject Index Non-mass-dependent isotope effects, 148 Non-photochemical oxidation pathway, 840–841 Non-sea-salt (nss) sulfate, 275, 840, 841, 843 Non-spectral interferences, 130–131 Non-stochiometric release of Sr, 522–523, 525, 544, 545 NOR See Nitric oxide reductase; N2O reductase N2O reductase (NOR), 452, 460–468, 613, 837 North Atlantic, 35, 44, 323, 324, 331, 351, 373, 383, 794, 798 Northern hemisphere deposition, 372, 396, 575, 589, 593 North San Francisco Bay, 426 Norwegian sea, 373, 377, 379 Nova Zemlya, 365 237 Np, 283, 367, 368, 372, 383, 394–402, 409–411 NTBT See Nuclear test ban treaty N-TIMS See Negative thermal ionization mass spectrometry NTS See Nevada Test Site Nubians, 733, 754 Nuclear field shift effects, 147, 148 Nuclear fuel reprocessing plant, 372, 380 Nuclear power plants, 34, 365, 366, 377 Nuclear test ban treaty (NTBT), 4, 575 Nuclear testing, 385, 387, 395, 410, 575, 589, 593, 599, 605, 606 Nuclear volume effects (NVE), 147, 148, 233, 235, 833 Nuclide production rate, 61–62, 477, 479–480, 577 Nutrient pathways, 120 NW Pacific Ocean, 331, 377, 378, 381, 384 O O anomaly, 436, 455, 467–470, 618, 625, 847 Ocean circulation tracers, 36 Ocean-floor weathering, 50–52 Ocean island basalt (OIB), 134, 141, 263, 264, 266 Oceanographic Si cycle, 101 Ocean sediments, 402, 520, 544 Octahedral coordination, 45–46, 190 O-ethyltoluene, 665 OH radical See Hydroxyl radical OIB See Ocean island basalt Omnivores, 709, 728, 729 Open ocean methylation, 241 Optical spectroscopy, 834, 837, 853 Optimum multi-parameter (OMP), 331–332 Organic fertilizers, 422 Organophosphorous compounds, 417–418 Origins, 382–383, 460–461, 709–711, 713–714 Orinoco, 48, 66, 67, 353, 527–529, 532, 533 Orthophosphate, 421 Os/Ir in marine sediments, 206, 208, 211–213 Os/Ir ratios, 212, 213, 215, 217 Osmium (Os), 6, 20, 23, 205–221, 262 isotopes, 206, 208, 209, 212, 214, 218–220, 262 mass balance in oceans, 215–217, 221 residence time in oceans, 216 Osteopontin, 724 Otliths, Otolith, 786, 789793, 800 ă tzi, 745 O Oxidation capacity of the atmosphere, 842, 853 pathways, 23, 584, 615, 617, 838–841, 843, 846–847 17 Subject Index pathways using d18O in sulfate, 617, 628 of S(IV) species, 841 Oxidative species, 833 Oxidative stress, 179 Oxidized Tl, 256, 260 Oxyanions, 435, 831–853 Oxygen isotopic composition of protein, 710 O-xylene, 665 Ozone (O3), 6, 34, 435, 467, 583, 612, 616–626, 628, 629, 832, 833, 836, 839, 841, 842, 847–849, 853 formation, 612, 616, 618, 624, 835 oxidation pathways, 840–842 P Pacific ocean test sites, 368 Pacific proving ground (PPG), 385, 397, 406 PAH See Polycyclic aromatic hydrocarbon Paleodiet, 23, 110, 721–735, 742 Paleomobility studies, 739 Paleo-silicate erosion, 520 Paleo-volcanism, 845 Particle, 4, 11, 13, 16, 23–25, 45, 61, 68, 72–78, 183, 194, 217–221, 229, 247, 256, 271, 274–281, 305–325, 329, 330, 345, 351, 366, 368, 376, 379, 386, 387, 394, 397–399, 402, 405–407, 477, 493, 557, 558, 560, 577, 585, 594, 604, 611, 666, 787, 850 dynamics in a river, 319–320 Particulate dynamics, 72, 74 Particulate organic matter, 281, 324, 344, 376, 386, 727 Partition coefficients, 308, 494, 495 Past air temperature, 861–880 Past temperature, 832, 861–863, 871, 872, 874 Patterns in the modern American diet using stable isotopes, 714–715 210 Pb, 14, 16, 28, 30, 34, 75, 218, 271–281, 305–325, 346, 386, 403, 485–510, 576, 584, 591, 605, 785–802 inventories in Northern Hemisphere, 493 226Ra disequilibrium, 785–802 Southern hemisphere, 493 PbB during pregnancy and the postpartum period, 773 PCE, 639, 662–665, 667 Pe´clet effect, 814 Pe´clet number, 814 Pelagic sediments, 146, 150, 212, 214, 261 Peninsular indian rivers, 528 Perchlorate, 435–447, 667 Permanent molars, 743 Perylene, 666 Pharmacokinetic models for Pb, 772 Pharmacokinetic studies, 772 Phosphate in the ocean, 418 sources, 419–422, 426–429 Phosphohydrolase enzymes, 423 Phospholipids, 417, 418 Phosphorous (P) abundance, 417 cycling, 429–430, 432 dynamics, 417 oxidation states, 417 947 Phosphorylation, 418 Photochemical box modeling, 625, 849 Photochemical degradation of MeHg, 236, 239, 241 Photochemical reduction of Hg(II), 234–236, 238, 239 Photolysis, 620, 622, 624, 630, 833, 845, 846, 849–851 Photoreduction, 234, 237, 239, 833 Photosynthesis, 119, 374, 376, 459, 624, 641, 642, 645, 649, 650, 678, 704, 725, 809, 814–817, 819, 822 Phreatophytes in Death Valley, California, 109 Physical erosion, 519–545, 551–566 Physical weathering, 519, 557 Physiological models, 813, 818–820 Phytoliths, 88, 93, 95, 97, 99, 101 Pinatubo, 845 Pioneer agricultural revolution, 842 Plants nutrition, 190, 196–198 physiological models, 813, 818–820 physiological processes, 813–815 uptake, 94, 97, 118, 168, 171, 495, 812 Platinum group elements (PGE), 6, 206–208, 210–213, 217–221 magmatic sulfide ores, 212, 213 Plutonium, 36, 369, 372, 377, 383–387, 397, 410, 490, 509, 592, 594, 598 P450NOR, 462 210 Po, 14, 16, 23, 28, 34, 271–282, 306–314, 320–321, 786, 787, 793 P-O bond, 419, 423 Podiform chomitiite deposits, 213 210 Po in sulfide-bearing shallow groundwater, 272, 278 Polar ice cores, 861, 863 Polyatomic interferences, 91, 92 Polychlorinated biphenyls (PCBs), 75, 308, 322–323, 643, 662, 666, 667, 680, 681, 683, 685–690, 692, 696 Polycyclic aromatic hydrocarbon (PAH), 220, 308, 323–325, 643, 662, 663, 666 Pore waters, 42, 47, 48, 51, 52, 172, 255, 256, 266, 279, 289, 346, 355, 369 Post-photosynthetic processes, 816–818, 822 Potato hydrogen and oxygen isotopes, 712–713 PPG See Pacific proving ground Preconcentration methods, 69–71, 836 Prehistoric mobility, 740 Primary use of thallium, 247 Pristine/phytane ratio, 649 Production method of food items and stable isotopes, 704, 706, 715 Production of cosmogenic radionuclides, 479, 577 Production rate, 4, 15, 16, 61, 62, 73, 179, 189, 219, 289, 294, 323, 476–478, 481, 482, 561, 563, 577, 580, 582, 797 of Be–7, 312 Progressive dissolution, 523 Progressive distillation, 861 Protein synthesis, 706, 710 Provenance studies, 520, 521, 525, 537 Provenance tracers, 520, 525, 545 Provenience of artifacts, 759 Proxies, 308, 375, 378, 418, 537, 543–545, 739, 741, 751, 785, 786, 807, 808, 842, 844 Proxy of silicate weathering, 525, 532, 533 948 Pseudomorph, 723 238 Pu, 367, 368, 370, 372, 379, 394, 395, 397, 400–402, 408, 411 239 Pu, 18, 367–370, 379, 383–387, 394–411, 488, 509, 589, 592, 598 240 Pu, 18, 321, 367–370, 372, 380, 383–387, 394–398, 395, 400, 402–412, 485–510, 589–593, 600, 604 241 Pu, 18, 367, 368, 370, 383, 387, 394–398, 402, 409–412 239,240 Pu, 18, 321, 372, 384, 485–510, 589–593, 595–598, 600, 604 Pyrolysis, 426, 612, 613, 647, 648, 655, 657, 659, 666, 681, 835 method, 612, 613, 835 Pyrophosphatase, 422, 423 Q qCuNOR, 462 qNOR, 462, 463 QUAD-ICP-MS, 42 Quadrupole ICP-MS, 235 R Radiative effect, 845 Radicals, 6, 179, 584, 617, 623, 625, 627, 832, 848, 853 ions, 179 pair reactions, 6, 234 Radioactive decay law, 11 Radiocarbon (14C), 35, 374–376 Radiogenic carbonates, 537 Radiogenic isotopes, 19, 20, 44, 87, 131, 248, 261, 263, 520, 537 Radiogenic Sr isotopes in archaeology, 741, 743, 750, 751, 756–758 Radiogenic strontium isotope analysis ( 87Sr/86 Sr), 739 Radionuclide profiles, 495–498 Radium isotope, 329–339, 344–348, 353, 599 Radon–222, 346, 575 Radon daughters, 271 Radon emanation method, 788, 789 Radon extraction, 346 Rainwater sampling, 591 Rare earth elements (REE), 521 Rate of diagenetic processes, 743 Rates of exchange of Pb in blood, 775 Ratio of calcium to phosphorus (Ca/P), 751 Rayleigh denitrification equation, Rayleigh distillation, 21, 158, 459, 616, 628 Rayleigh fractionation model, 165, 166, 258, 466, 663–664 Rayleigh-type mechanism, 851 Rb/Sr, 19, 739, 741 fractionation, 521 Reactive halogens, 679, 847–848 Recoil, 4, 17, 35, 310, 552, 555, 560, 564–566, 793, 799 Reconstruction of past climate, 807, 816 Record of oceanic Ca isotopes, 107 Records of seawater isotope composition, 150 Redox cycles, 195–196, 271 dynamics, 189 processes, 22, 155–173, 190, 196 sensitive metals, 189 Reduction-azide technique, 613 REE See Rare earth elements Subject Index Relationship between coral skeletal d44/40Ca and temperature, 114 Relative humidity, 288, 623, 625, 713, 809, 811–815, 818, 822 Remediation of contaminated site, 664 Remineralization, 16, 144, 271, 272, 276, 420, 430, 431 Reservoirs, 3, 4, 13, 14, 41, 76, 93, 118, 134, 140–141, 196, 259, 260, 294, 343–359, 373, 486, 579, 645, 661, 845 effect, 172 Residence time, 3, 14, 18, 67–69, 74, 216, 217, 275, 285, 289, 293–296, 308, 318, 325, 329–339, 396, 489, 559, 575, 581–583, 598, 817 of Cs, Be, 489–490 of Th, Po, 34, 273, 276, 318, 565 of Tl, 266 Resonance ionization mass spectrometer (RIMS), 208, 209, 400, 402 Resuspension, 16, 67, 74–75, 271, 305, 308, 314–320, 322, 325, 372, 376, 419, 488, 509, 596, 598, 605 of particulate matter, 316–317 of top soils, 271 Rhenium (Re), 182 RIMS See Resonance ionization mass spectrometer Ring-width, 808, 816, 818, 822 Riverine input, 106, 216, 230, 307, 325, 356 River, 16, 19, 44, 48–49, 53, 65, 74–75, 95, 98–101, 106, 138, 214–216, 247, 252–255, 271, 305–325, 343, 344, 351, 386, 402, 410, 419, 426, 428, 429, 520, 522–525, 527–543, 554–558, 560, 785, 794 sediments, 75, 138, 139, 237, 539, 553, 554 water, 44, 45, 54, 98, 100, 180, 192–193, 211, 212, 254, 329, 334, 344, 428, 508, 528, 530, 543, 554, 556, 564, 739, 748 RNAA, 207, 214 Rock-water interaction, 3, 520 Rock weathering, 55, 118, 520, 522–527 Rocky flats, 402, 409, 410 Ruthenium (103Ru and 106Ru), 379–380 S 35 S, 14, 577, 582–584 Samarium/Neodymium (Sm/Nd), 521, 525–527, 530, 531 San Bernardino, 301, 446, 447 San Joaquin River (SJR), 428 Sargasso Sea, 214, 215, 276–277, 373, 430, 431 125 Sb, 332, 380 Scavenging effectiveness (SE), 66, 276, 318, 516, 752 Scavenging ratio, 605 SE See Scavenging effectiveness Se(IV), 159, 161, 162, 168–173 Se(VI), 159, 162, 168–173 Sea ice sediments, 80, 383 Sea of Japan (East Sea), 382–383, 385, 386 Seasonal variations in (87Sr/ 86Sr), 524, 525, 746 Seawater, 207, 213–215, 254, 278, 534–537 Secondary ion mass spectrometry (SIMS), 6, 110, 207, 208, 400, 401 Secondary minerals, 45–49, 52, 55, 65, 73, 88, 93, 95, 98 Sector field inductively coupled plasma mass spectrometry (SFICP-MS), 398, 401, 402, 406, 408, 769 Sediment, 74–78, 141–143, 145–147, 235–238, 305–325, 383, 387, 507–508, 559–561 Subject Index accumulation, 14, 76, 305, 322, 369, 387, 404 erosion and focusing using 210Pb, 7Be and 234Th, 76, 317–319 focusing, 14, 76, 78, 317–319, 322 provenance, 537, 542, 544 transport, 73, 75, 315–316, 369, 487, 537, 560–561, 849 transport in estuary, 315–316 traps, 76, 77, 80, 276–277, 314, 325, 377, 380 Sedimentary carbonates, 524, 529, 533, 544 Sedimentary diffusion coefficient, 355 Seepage velocity, 355 Segment length curse, 808 Se isotopes, 155, 159, 161, 167–173 Selenate, 157, 168–172 Selenium (Se) isotope, 167–173 oxidation, 169–170 Selfoss Iceland, 301 Sellafield, 18, 372, 380–383, 395, 397, 402, 408–410 Se(IV) oxidation, 159, 169–170 SER See Silicate erosion rates Se(VI) reduction, 168–173 80 Se/76Se, 23, 167, 170 82 Se/76Se, 157, 161, 167 SF-ICP-MS See Sector field inductively coupled plasma mass spectrometry SGD See Submarine groundwater discharge Short-lived radionuclides, 7, 305–325, 578, 581, 594 Siang, 539–540 Sierra Nevada, 280, 522, 523 Silcretes, 100–101 Silicate erosion rates (SER), 520, 531, 532 Silicates, 12, 43, 48, 55, 65, 88, 90, 93, 101, 112, 128, 134, 140–141, 150, 208, 211, 265, 399, 520, 522, 524–525, 529–537, 543, 544, 552, 554, 561, 562, 613, 748 proxies, 544 Silicic acid, 88, 91, 94, 96–98, 101 Silicon (Si), 15, 23, 24, 87–101, 346, 347, 400, 502, 543, 579 isotopes, 87–101 Siltation, 486 Silver (Ag), 182, 272, 273, 311, 423–426, 432, 618, 835–837 Silver phosphate (Ag3PO4), 423–426, 432 SIMS See Secondary ion mass spectrometry Site preference (SP), 453, 456–458, 461–470 Siwaliks, 536 SJR See San Joaquin River Skeletal contribution to PbB, 772, 774 Skeletal Pb contribution to PbB, 774 Skeletal Pb to PbB during the post-pregnancy, 774 Smelter, 139, 194, 220, 770, 772 Sm/Nd See Samarium/Neodymium SMOC See Standard Mean Ocean Chloride SNAP See Systems Nuclear Auxiliary Power Program SNAP–9A, 368, 397 Soil, 47–48, 72–73, 95–97, 561–563, 596–599, 748 erosion, 404–406, 485–511 hydrological processes, 809, 812–813 profiles, 62, 498–499, 526, 527, 562 Solar activity, 62, 476, 477, 582 Solid-solution partitioning, 394 Solubility coefficient, 348 949 Soot particles, 220, 221 Source apportionment studies using Pb isotopes in humans, 770 Source discrimination, 665–667 Source of Pb–210, 307 Sources and pathways of Pb in urban environments, 770 Sources of lead using lead isotopes, 765–779 Sources of radionuclides, 305–325 Source tracking, 20, 23 South America, 731, 751, 753 Southern hemisphere, 397, 404, 406, 493, 615 deposition, 396 SP See Site preference Spallation, 16, 61, 488, 577 SPARTAH See Syringe pump apparatus for the retrieval and temporal analysis of helium Spatial variability, 500 Species effect, 54 Speleothems, 790, 791, 793, 796–798 Sphalerite (ZnS), 125, 140 SPIME extraction, 662 SRM–979, 161, 165 SRM–3149, 161, 170 SRM for calcium measurements, 111 Stable isotopes, 19–22, 36–37, 136–137, 155–173, 177–199, 418–420, 637–668, 675–697, 706, 714–715, 721–735, 838–846, 861–880 of Cl, 436 of Cr and Se, 155–173 fractionation, 4, 21, 22, 113, 126, 136–137, 147, 148, 178, 179, 248, 252, 259 processes, 189–190, 192, 198 of nitrate, 846–852 of O, 436, 445, 454 of post-transition metals, 177–199 of transition metals, 177–199 Stable mercury isotopes, 229–243 Stable Tl, 249, 252 Standard Mean Ocean Chloride (SMOC), 436, 439 Standards, 710–712, 187–189, 249–251, 288, 502–503, 866 corrections, 866 Statospheric D17O signature, 846–848 STE See Stratosphere-troposphere exchange Steady state erosion island, 480, 481 Stem water, 818, 819, 822 Steranes, 638, 651 Stochiometric release of Sr, 544–545 Stomata, 726, 819 Strains of denitrifying bacteria, 837 Stratosphere, 34, 306, 372, 395, 396, 467, 468, 488–489, 493, 574, 575, 578–583, 592–594, 845–846, 848 Stratosphere-troposphere exchange (STE), 581–583, 593 Stratospheric, 34, 306–307, 490, 491, 508, 575, 581–582, 593, 594, 843, 845, 846, 848 fallout, 395–398, 400, 403–405, 407–411, 490, 510 nitrate, 848, 849 Strengbach watershed, 524 Strontium (89Sr and 90Sr), 377–379 Strontium (Sr) flux, 527, 528, 530, 534–536, 543 isotopes, 519–545, 739–760 origins of food stuffs, 757 signatures in tooth and bone, 744 950 to trace woolen textiles, 756 to track silicate weathering, 524 Subduction zones, 266 Submarine groundwater discharge (SGD), 305, 314, 330, 355–357, 355–359, 544 Sucrose, 814 Suess effect, 726, 734, 816 Sulfate, 378, 584, 831, 834–835, 838–846 in ice, 842–844 Sulfur and nitrogen cycles, 831 Sulfur dioxide (SO2), 831, 838 Sulfur isotopes, 639, 838–835, 842–846 Sulfur isotopic anomalies, 833, 845 Sulfur isotopic signature, 842 Sulphur dioxide (SO2), 220, 583 oxidation, 584 Supernovae, 475–476 Surface exposure age, 475–483 Symbiotic algae, 786, 794 Symmetry effect, 618, 624, 833 Synthetic ClO4¯, 437 Synthetic perchlorate, 439–441 Syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH), 300–302 Systems Nuclear Auxiliary Power Program (SNAP), 368, 397 accident, 395 T Taiwan strait warm water (TSWW), 336, 337 Taklamakan, 598, 602 Tambora, 846 99 TC, 368, 369, 379–382 TCE, 7, 662–665, 667, 694 TCEA See Thermal combustion elemental analyzer Tectonics, 520, 522, 525, 531, 540, 543–545, 559 activity, 107, 555 weathering-climate, 520, 531, 534 Temperature sensitivity of Ca isotopic composition, 115 Teotihuacan, 753, 755 Terrestrial biogenic Ca fractionation, 108 Terrestrial calcium cycle, 108–109 Terrestrial fractionation line, 467–468, 612 Terrestrial Si cycle, 88, 101 Thallium (Tl) absorbed onto clay minerals, 256, 257 in authigenic Mn-oxides, 257 in continental crust, 251, 252 enrichment factors, 257 flux, 252, 254–257, 298 isotopes, 247–266 change, 645 composition, 248, 252–256, 258, 261, 264–266 compositon of seawater, 253, 254, 258 fractionation, 251–253, 255, 258–261, 259–261, 265, 266 in hydrothermal systems, 265 mobility, 253, 264, 266 in volcanic systems, 252 isotopic variation, 22 loss, in mineral aerosols, 255 Subject Index in Mn nodules, 256 reduction/oxidation processes, 256 as a tracer of ocean crust recycling, 263 Th–234 as a tracer of particle-reactive species, 308, 318–319 Thermal combustion elemental analyzer (TCEA), 424 Thermal diffusion, 868, 871, 873 Thermal fractionation, 869, 870, 872, 873, 877 Thermal ionization mass spectrometry (TIMS), 5–7, 26, 42, 53, 110, 111, 129–132, 147–149, 159, 161, 184, 186, 248, 348, 398, 401, 402, 606, 750, 769, 789, 793, 834 Thermal maturation, 646–648, 652 Thermodynamic law, 832 Thorium, 17, 35, 308, 346, 379, 552, 589–606, 769 Thoron, 346–347 Three-end-member mixing, 332, 335 Thyroidal hormone, 436 Tillage, 404, 486, 498–499, 504–506 Time-averaged erosion rates, 475–483 TIMS See Thermal ionization mass spectrometry Titanium (Ti), 182, 183, 287 205 Tl, 248–258, 260, 261, 263–265 Tl speciation, 260 205 Tl/203Tl, 23, 230, 233, 248 TNT, 395, 666 Tombos, 752, 754 Tooth enamel, 724, 733, 734, 740–750, 759 Topsoil erosion, 63, 72, 486 Total body burden of Pb, 767 Total deposition sampling, 591–593 Total water flux in dairy cows, 713 Trace minerals, 523–524 Tracers, 3, 7, 13, 33–37, 41–55, 61–81, 87–101, 105–121, 149, 155–173, 177–199, 205–222, 263–265, 277, 285, 296, 305, 314–323, 329–339, 343–359, 365–388, 393–412, 426–427, 443, 452, 468, 475, 486, 501, 508–509, 519–545, 573–585, 589–606, 629, 675–697, 703–716, 721–735, 777, 788, 848, 861–880 of human diet, 22, 703–716 for paleo-diet reconstruction, 721–735 studies on cheese, 704 studies on olive oil, 704 studies on wine, 704 Tracing food source, 703 Tracing perchlorate in contaminated aquifer, 445–447 Tracing the origin of dairy products, 713–714 Tracing the pathways of 7Be and 210Pb after a heavy thunderstorm, 319 Trade and exchange, 758 Transfer of isotope anomaly, 839 Trans-Himalayan plutonic belt, 539 Transient tracers, 375, 574, 575, 785 Transient Tracers in the Ocean (TTO), 375 Transport, 3, 20, 35, 72–77, 97, 108, 113, 120, 195, 220, 252–255, 281, 298, 305–325, 332, 351, 369, 404–409, 422, 485, 526, 559–561, 590–594, 596–599, 666, 766, 817, 839, 847 in rivers, 74–75, 554 Transuranics, 18, 369, 393–412, 594 elements, 393, 398 Subject Index Trap, 76, 77, 80, 186, 215, 219, 232, 276, 287, 453, 536, 554, 662, 866 Tree physiology, 822 Tritiogenic helium, 290, 295–297 Tritium (3H), 18, 295–297, 296, 368, 373–374, 575, 577 Trophic level effect, 724, 727–728 Trophic transfer of MeHg, 241 Tropical isotope dendroclimatology, 822 Troposphere, 14, 33, 62, 306, 307, 372, 467, 475, 489, 574–580, 583, 592–596, 623, 841, 848 Troposphere-stratospheric exchange, 593, 594 Tropospheric fallout, 384, 385, 395, 405, 407, 411 Tropospheric O3, 617–621 Tropospheric OH, 617, 622–623 TSWW See Taiwan strait warm water TTO See Transient Tracers in the Ocean Tungsten, 180, 182 Turnover rates of bones, 744 Tyrolean Iceman, 745 U Uluru Basin, 292–294 UNSCEAR, 366, 367, 379, 589, 594 Upwelling, 51, 52, 144, 263, 386–387, 420, 429, 430 Uranium, 17, 23, 33, 35, 42, 259, 272, 280, 367, 371, 394, 487, 551, 553, 555, 560, 565, 589–606, 769, 770, 777, 793 Urine measurements of the isotopic ratios, 768 U-Th series, 3, 5–7, 17, 24, 73, 564, 573, 576, 799 V Valence states of Tl, 247, 248, 255, 259 Vanadium, 182 Variability of e114Cd/110Cd, 138, 141 Variations of d44/40Ca with trophic level, 108, 116 Vein calcites, 524, 533, 534 Vienna Pee Dee Belemnite (VPDB), 119, 640, 722, 808 Vienna Standard Mean Ocean Water (VSMOW), 426, 436, 454, 611–613, 619, 624, 677, 678, 707, 808 Violence/warfare, 751, 755 Vital effects in tree rings, 109, 119–120 951 Volcanic sulfate, 833, 835, 845, 846, 872 VSMOW-SLAP scale, 438 W Wari, 751, 754, 755 Washout ratio, 605, 606 Water exchange, 343–359, 468, 469 rate, 351 Water mass, 14, 16, 142, 144, 305, 310, 329, 331, 332, 336, 339, 379, 380, 386, 578 analysis technique, 331 mixing, 144, 331–339, 345, 352 Water mixing tracers, 331, 379 Water parcel, 332, 333 Watershed, 63, 66, 67, 99, 106, 308, 315, 379, 508, 509, 524, 527, 555, 629 residence time, 315 Weapons testing, 292, 307, 308, 369, 374, 387, 488, 489, 574, 589, 598 Weathering, 19, 20, 23, 45–50, 55, 78, 87, 93, 95, 99, 108, 119, 157, 164, 170, 206, 252, 263, 419, 485, 519, 521–537, 541, 551–552, 555, 557–559, 563–566 kinetics, 522–527, 529 properties, 522 provenance, 537 tracer, 46 and transport, 48, 527, 537, 541 Wind erosion, 486, 506–507 Wine, 704, 776–777 X Xylem water, 808, 813, 814, 817 Y 90 Y, 365, 379 Yamuna, 532, 533 Young orogenic belts, 531, 544 Z Zinc isotopes, 180 66 Zn/64Zn, 23, 146, 180 ... reviewing many tried and tested techniques as well as presenting state of the art advances in Environmental Isotope Geochemistry xi xii Preface The field of Environmental Isotope Geochemistry is... them in the initial generation were conventional ICPMS, comprised of quadrupole ICPMS, high-resolution sector field ICPMS (HR-ICPMS), and time of flight ICPMS (TOF-ICPMS) Very high ionization... scales of minutes to billions of years and the reconstruction of the evolution of human civilization has been developed in great part by the measurement of isotopic ratios The field of isotope geochemistry