Ideas in Chemistry and Molecular Sciences Edited by Bruno Pignataro Related Titles Pagliaro, Mario Pignataro, Bruno (ed.) Nano-Age Ideas in Chemistry and Molecular Sciences How Nanotechnology Changes our Future 2010 ISBN: 978-3-527-32676-1 Garcia-Martinez, Javier (ed.) Nanotechnology for the Energy Challenge 2010 ISBN: 978-3-527-32401-9 Where Chemistry Meets Life 2010 ISBN: 978-3-527-32541-2 Pignataro, Bruno (ed.) Tomorrow’s Chemistry Today Concepts in Nanoscience, Organic Materials and Environmental Chemistry Second edition 2009 ISBN: 978-3-527-32623-5 Pignataro, Bruno (ed.) Ideas in Chemistry and Molecular Sciences Advances in Synthetic Chemistry 2010 ISBN: 978-3-527-32539-9 Cademartiri, Ludovico/Ozin, Geoffrey A Concepts of Nanochemistry 2009 ISBN: 978-3-527-32626-6 (Hardcover) ISBN: 978-3-527-32597-9 (Softcover) Ideas in Chemistry and Molecular Sciences Advances in Nanotechnology, Materials and Devices Edited by Bruno Pignataro The Editor Prof Bruno Pignataro University of Palermo Department of Physical Chemistry Viale delle Scienze 90128 Palermo Italy All books published by Wiley-VCH are carefully produced Nevertheless, authors, editors, and publisher not warrant the information contained in these books, including this book, to be free of errors Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate Cover Library of Congress Card No.: applied for We would like to thank Dr Frank Hauke and Mrs Cordula Schmidt (both FriedrichAlexander University Erlangen-Nuremberg) for providing us with the graphic material used in the cover illustration British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at 2010 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not to be considered unprotected by law Cover Design Adam Design, Weinheim Typesetting Laserwords Private Limited, Chennai, India Printing and Binding betz-druck GmbH, Darmstadt Printed in the Federal Republic of Germany Printed on acid-free paper ISBN: 978-3-527-32543-6 Set ISBN: 978-3-527-32875-8 V Contents Preface XIII List of Contributors Part I 1.1 1.2 1.2.1 1.2.1.1 1.2.1.2 1.2.2 1.2.3 1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.4 1.4.1 1.4.2 1.4.3 1.4.4 1.4.4.1 1.4.4.2 1.4.4.3 XIX Preparation of New Materials and Nanomaterials Self-Assembling Cyclic Peptide-Based Nanomaterials Roberto J Brea Introduction Types of Self-Assembling Cyclic Peptide Nanotubes Nanotubular Assemblies from Cyclic D,L-α-Peptides Solid-State Ensembles: Microcrystalline Cyclic Peptide Nanotubes Solution Phase Studies of Dimerization Nanotubular Assemblies from Cyclic β-Peptides Nanotubular Assemblies from Other Cyclic Peptides Applications of Cyclic Peptide Nanotubes Antimicrobials Biosensors Biomaterials 10 Electronic Devices 11 Photoswitchable Materials 11 Transmembrane Transport Channels 12 Nanotubular Assemblies from Cyclic α, γ -Peptides 13 Design 14 Homodimers Formation 14 Heterodimers Formation 16 Applications 17 Artificial Photosystems 17 Multicomponent Networks: New Biosensors 17 Other Applications 19 Ideas in Chemistry and Molecular Sciences: Advances in Nanotechnology, Materials and Devices Edited by Bruno Pignataro Copyright 2010 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim ISBN: 978-3-527-32543-6 VI Contents 1.5 Summary and Outlook 19 References 19 Designer Nanomaterials for the Production of Energy and High Value-Added Chemicals 23 Rafael Luque Introduction 23 State of the Art in the Preparation of Designer Nanomaterials for the Production of Energy and Chemicals 27 Preparation of Nanomaterials 27 Physical Routes 27 Chemical Routes 30 Physicochemical Routes 33 Production of Energy and Chemicals: the Biorefinery Concept 34 Energy 34 Catalysis 38 Other Applications 41 Highlights of Own Research 41 Sustainable Preparation of SMNP and Catalytic Activities in the Production of Fine Chemicals 41 Supported Metallic Nanoparticles: Preparation and Catalytic Activities 41 Supported Metal Oxide Nanoparticles: Preparation and Catalytic Activities 44 Other Related Nanomaterials 46 Preparation of Designer Nanomaterials for the Production of Energy 49 Biodiesel Preparation Using Metal Oxide Nanoparticles 49 Fuels Prepared via Thermochemical Processes 50 Future Prospects 53 Future of the Preparation of SMNPs 53 Applications of SMNPs for the Future 54 Fuel Cells 54 Catalysis of Platform Molecules 54 Environmental Remediation 56 Advanced NMR Applications 56 Conclusions 57 Acknowledgments 57 References 58 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.3 2.3.1 2.3.1.1 2.3.1.2 2.3.1.3 2.3.2 2.3.2.1 2.3.2.2 2.4 2.4.1 2.4.2 2.4.2.1 2.4.2.2 2.4.2.3 2.4.2.4 2.5 3.1 3.2 Supramolecular Receptors for Fullerenes 65 Gustavo Fern´andez, Luis S´anchez, and Nazario Mart´ın Introduction 65 Classic Receptors for Fullerenes Based on Curved Recognizing Units 66 Contents 3.3 3.4 3.5 3.6 4.1 4.2 4.2.1 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.3 4.3 5.1 5.2 5.2.1 5.2.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.5 Receptors for Fullerenes Based on Planar Recognizing Units 71 Concave Receptors for Fullerenes 75 Concave Electroactive Receptors for Fullerenes 79 Conclusions and Future Perspectives 86 Acknowledgments 87 References 88 Click Chemistry: A Quote for Function 93 David D´ıazD´ıaz Introduction 93 New Applications in Materials Synthesis 95 Metal Adhesives 95 Synthesis and Stabilization of Gels 102 Strength Enhancement of Nanostructured Organogels 102 Synthesis of Polymer Thermoreversible Gels 106 Synthesis of Degradable Model Networks 107 Functionalization of SWNTs with Phthalocyanines 107 Perspective 110 Acknowledgments 111 References 111 Supramolecular Interactions and Smart Materials: C–X · · · X –M Halogen Bonds and Gas Sorption in Molecular Solids 115 Guillermo M´ınguez Espallargas Introduction 115 Interactions Involving Halogens: Nucleophiles versus Electrophiles 116 Halogens as Nucleophiles 117 Halogens as Electrophiles 118 Combining Complementary Environments: C–X · · · X –M Halogen Bonds 120 Smart Materials for Gas Sorption 124 Physisorption of Gases (Type I) 124 Chemisorption of Gases (Type II) 126 Chemisorption of Gases with Incorporation into the Framework (Type III) 127 Combined Physisorption and Chemisorption of Gases with Incorporation into the Framework (Type IV) 128 Double Chemisorption of Gases with Incorporation into the Framework (Type V) 128 Conclusions 132 Acknowledgments 133 References 133 VII VIII Contents Part II 6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.6 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8 6.8.1 6.8.2 6.8.3 6.8.4 6.9 7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 Innovative Characterization Methods 139 Application of Advanced Solid-State NMR Techniques to the Characterization of Nanomaterials: A Focus on Interfaces and Structure 141 Niki Baccile Introduction 141 Solid-State NMR Tools 141 Nanocarbons 147 Fullerenes 147 Nanotubes 148 Nanoparticles 151 Quantum Dots 154 Self-Assembly 157 Mesostructured Materials 159 Structure 160 Interaction at Interfaces 162 Confinement of Organic Molecules within Nanopores 163 Surface and Bulk Functionalization 165 Study of Interfaces and Structure by Solid State NMR 165 Double Cross-Polarization Experiments to Probe the Silica/CTAB Interface 166 Heteronuclear Correlation Experiments to Probe the Phenyl Functionalization in Silica/CTAB Interface 168 Structural Study of Mesoporous Silica/Calcium Phosphate Composite Materials for Bone Regeneration via TRAPDOR Experiments 169 Structural Resolution of Amorphous Carbon Microspheres via 2D13 C– 13 C Double Quantum NMR Experiments 170 Conclusion 172 Acknowledgments 172 References 173 New Tools for Structure Elucidation in the Gas Phase: IR Spectroscopy of Bare and Doped Silicon Nanoparticles 183 Philipp Gruene, Jonathan T Lyon, Gerard Meijer, Peter Lievens, and Andr´e Fielicke Introduction 183 Methods for Structural Investigation of Silicon Clusters 185 Ion Mobility Measurements 185 Anion Photoelectron Spectroscopy 186 Matrix Isolation Vibrational Spectroscopy 187 Infrared Multiple Photon Dissociation Spectroscopy 188 Gas Phase Spectroscopy Using Free-Electron Lasers 188 Working Principles of an FEL 188 Infrared Multiple Photon Excitation 189 Contents 7.3.4 7.3.5 7.4 7.4.1 7.4.2 7.5 7.5.1 7.5.2 7.6 7.6.1 7.6.2 7.7 8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.5 Dissociation Spectroscopy with the Messenger Technique 190 Experimental Realization 191 IR-Spectroscopy on Bare Silicon Cluster Cations 193 Introduction 193 Results and Discussion 194 Chemical Probe Method for Endo- and Exohedrally Doped Silicon Clusters 196 Introduction 196 Results and Discussion 197 IR-Spectroscopy on Exohedrally Doped Silicon Cluster Cations 199 Introduction 199 Results and Discussion 199 Summary and Outlook 201 References 202 Direct Observation of Dynamic Solid-State Processes with X-ray Diffraction 207 Panˇce Naumov Introduction 207 The Basics: Principles, Applications, Advantages and Drawbacks of the X-ray Photodiffraction Method 209 Steady-State X-ray Photodiffraction: Examples 213 Transfer of Chemical Groups or Atoms, and Electrocyclization/Ring Opening 213 Bond Isomerizations and Photolytic Reactions 215 Structures of Species in Excited States, Electron Transfer, and Spin Crossover 218 Time-Resolved X-ray Photodiffraction: Representative Examples 221 Conclusions and Future Outlook 223 Acknowledgments 224 References 224 Part III 9.1 9.2 9.2.1 9.2.2 9.2.3 9.3 9.3.1 Understanding of Material Properties and Functions 229 Understanding Transport in MFI-Type Zeolites on a Molecular Basis 231 Stephan J Reitmeier, Andreas Jentys, and Johannes A Lercher Introduction 231 Experimental Section: Materials and Techniques 236 Rapid Scan Infrared Spectroscopy 236 Preparation and Characterization of Zeolite Samples 237 Kinetic Description of the Transport Process 239 Surface and Intrapore Transport Studies on Zeolites 240 Sorption and Transport Model Identified for MFI-type Zeolites 240 IX 15 Sculpting Nanometric Patterns: The Top-Down Approach 8.107 1.2 0.7 7.2 10.2 11.90 7.107 0.7 7.2 10.2 11.9 6.107 0.8 5.107 CPS Absorption 0.6 4.107 3.107 0.4 2.107 0.2 1.107 250 300 350 400 350 450 Wavelength (nm) (a) 400 (b) 450 500 550 Wavelength (nm) Figure 15.13 Steady-state (a) absorption and (b) fluorescence emission of 1-(2-nitroethyl)-2-naphthol in 2% methanol in water solution 0.001 Initial pH = ∆ Absorption 396 Drop to pH = −0.001 −0.002 −0.003 0.001 0.01 0.1 t (s) Figure 15.14 Transient bleaching and recovery of bromocresol green absorption at 616 nm following flash photolysis of [1-(2-nitroethyl)-2-naphthol] = × 10−4 M in 2% MeOH : H2 O More importantly is the fact that the magnitude of the pH jump is directly proportional to the laser energy With intense laser pulses, the proton concentration should approach the solubility limit of 1-(2-nitroethyl)-2-naphthol Because of the reversible nature of the acidification mechanism, it is possible to use a second red-shifted wavelength STED beam, with a light distribution of zero intensity in the center and nonzero intensity around, in order to achieve a subdiffraction acidification of the photoresist Also, the need to use base additives to achieve greater resolution and linewidth roughness is diminished, if not eliminated The coupled acid diffusion of an iodonium PAG in polymer matrix has been determined to have a diffusion length of nm for a postexposure bake at 100 ◦ C for References minutes [119] This is probably the major problem for a STED optical projection lithography proposal that can have a regular focal spot of 20–30 nm [120] 15.3 Conclusions and Outlook What is going to be the technology to take lithography beyond the 22-nm node is still unknown but there are several promising candidates The development of new materials with tailored properties, either new resists or lenses and mask, is required New approaches with multiple masking also need new robust and fast algorithms for mask image decomposition to be an option The use of reversible switching molecules can perhaps take nanophotolithography beyond the diffraction limit, taking the theoretical attainable resolution to the molecular level maintaining much of the lithography technology used at present Acknowledgments The author deeply appreciates the supervision and guidance of Prof Luis Arnaut, with whom part of this work was done The author acknowledges Prof Luis Arnaut, Drs Marta Pi˜ neiro, and Raquel Rond˜ao, University of Coimbra, and Dr David Noga and Prof Laren Tolbert, Georgia Institute of Technology, for fruitful discussion and reviewing Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin 5.1.4, 2008, ChemAxon (http://www.chemaxon.com) Funding from Fundac¸˜ao para a Ciˆencia e Tecnologia (SFRH/BD/24005/2005) and project POCI/QUI/55505/2004 References Kilby, J.S.C (2001) ChemPhysChem, 2 (8-9), 482 Wallraff, G.M and Hinsberg, W.D (1999) Chem Rev., 99, 1801 Avouris, P (1995) Acc Chem Res., 28 (3), 95 Campbell, S.A (2001) The Science and Engineering of Microelectronic Fabrication, Oxford University Press, New York Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S.W (2005) Proc Natl Acad Sci, 102 (49), 17565 Bouhelier, A., Hartschuh, A., and Novotny, L (2005) Scanning near-field optical microscopy in nanosciences, in 10 11 12 Handbook of Microscopy for Nanotechnology (eds N Yao and Z.L Wang), Kluwer Academic Publishers, Boston, p 25 Lin, B.J (2002) J Microlith Microfab Microsyst., (1), Reiser, A (1989) Photoreactive Polymers, the Science and Technology of Resists, Wiley-VCH Verlag GmbH, New York Hephner, M and Wagner, H.M (1954) Patent BP762.985 Sues, O (1944) Annalen, 556, 65 Sues, O (1947) Annalen, 557, 237 Dammel, R (1993) Diazonaphthoquinone-based Resists, SPIE, Bellingham 397 398 15 Sculpting Nanometric Patterns: The Top-Down Approach 13 Leeson, M.J., Pawloski, A.R., Levering, 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 V., Yueh, W., and Willson, C.G (1997) Proc SPIE, 3049, 861 Willson, C.G (1994) Organic resist materials in introduction to microlithography, in Introduction to Microlithography (eds L.F Thompson, C.G Willson, and M.J Bowden), American Chemical Society, Washington, DC, p 139 Schlesinger, S.I (1974) Polym Eng Sci., 14 (7), 513 Schlesinger, S.I (1974) Photogr Sci Eng., 18 (4), 387 Crivello, J.V and Lam, J.H.W (1977) Macromolecules, 10 (6), 1307 Crivello, J.V and Lam, J.H.W (1979) J Polym Sci A: Polym Chem., 17, 977 Crivello, J.V and Lam, J.H.W (1979) J Polym Sci A: Polym Chem., 17, 3845 Crivello, J.V and Conlon, D.A (1983) J Polym Sci A: Polym Chem., 21, 1785 Crivello, J.V., Lee, J.L., and Conlon, D.A (1983) J Radiat Curing, 10 (1), Crivello, J.V and Conlon, D.A (1984) J Polym Sci A: Polym Chem., 22, 2105 Rajaraman, S.K., Mowers, W.A., and Crivello, J.V (1999) Macromolecules, 10 (6), 1307 Dektar, J.L and Hacker, N.P (1990) J Org Chem., 55, 639 Dektar, J.L and Hacker, N.P (1991) J Org Chem., 56, 1838 Hacker, N.P., Leff, D.V., and Dektar, J.L (1991) J Org Chem., 56, 2280 Dektar, J.L and Hacker, N.P (1987) J Chem Soc Chem Commun., 20, 1591 Dektar, J.L and Hacker, N.P (1990) J Am Chem Soc., 112, 6004 Crivello, J.V (1999) J Polym Sci A: Polym Chem., 37, 4241 Allen, R.D., Conley, W.E., and Kunz, R.R (1997) Deep-UV resist technology, in Handbook of Microlithography, Micromaching, and Microfabrication, Microlithography, Vol (ed P Rai Choudhury), SPIE Optical Engineering Press, Bellingham, p 321 31 Castellanos, F., Fouassier, J.P., Priou, 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 C., and Cavezzan, J (1996) J Appl Polym Sci., 60 (5), 705 Mulkens, J., Fahey, T.J., McClay, J.A., Stoeldraijer, J.M.D., Wong, P., Brunotte, M., and Mecking, B (2002) Proc SPIE, 4691, 613 Macdonald, S.A., Willson, C.G., and Frechet, J.M.J (1994) Acc Chem Res., 27 (6), 151 Shirai, M and Tsunooka, M (1996) Prog Polym Sci., 21 (1), Hinsberg, W.D., Houle, F.A., Sanchez, M.I., and Wallraff, G.M (2001) IBM J Res Dev., 45 (5), 667 Ito, H (2005) Microlith.: Mol Imprint., 172, 37 Moon, S.Y and Kim, J.M (2007) J Photochem Photobiol., C, (4), 157 Moore, G.E (1965) Cramming more componants onto integrated circuits, Electronics, 38 (8), 114–117 Hien, S et al (2001) Proc SPIE, 4345, 439 Martin, L.C and Johnson, B.K (1958) Practical Microscopy, Blackie and Son, Ltd, London Mulkens, J., Flagello, D.G., Streefkerk, B., and Graeupner, P (2004) J Microlithogr Microfabr Microsyst., (1), 104 Switkes, M., Kunz, R.R., Rothschild, M., Sinta, R.F., Yeung, M., and Baek, S.-Y (2003) J Vac Sci Technol., B, 21 (6), 2794 Switkes, M., Kunz, R.R., Sinta, R.F., Rothschild, M., Gallagher-Wetmore, P.M., Krukonis, V.J., and Williams, K (2003) Proc SPIE, 5040, 690 Slezak, M., Liu, Z., and Hung, R (2004) Solid State Technol., 47 (7), 91 Ichimura, I., Hayashi, S., and Kino, G.S (1997) Appl Opt., 36 (19), 4339 Taylor, J.C., Chambers, C.R., Deschner, R., LeSuer, R.J., Conley, W.E., Burns, S.D., and Willson, C.G (2004) Proc SPIE, 5376, 34 Smith, B.W., Bourov, A., Kang, H.Y., Cropanese, F., Fan, Y.F., Lafferty, N., and Zavyalova, L (2004) J Microlithogr Microfabr Microsyst., (1), 44 Wei, A., Abdo, A., Nellis, G., Engelstad, R.L., Chang, J., Lovell, E.G., and References 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Beckman, W (2004) Microelectron Eng., 73-74, 29 Sewell, H., Graeupner, P., McCafferty, D., Markoya, L., Samarakone, N., van Wijnen, P., Mulkens, J., and Benschop, J (2008) J Photopolym Sci Technol., 21 (5), 613 Kawai, A and Tanaka, D (2008) J Photopolym Sci Technol., 21 (6), 727 Benschop, J.P.H (2007) 32 nm: lithography at a crossroad, in Future Trends in Microelectronics – Up the Nano Creek (eds S Luryi, J Xu, and A Zaslavsky), John Wiley & Sons, Inc., Hoboken, p 167 Brunton, A et al (2004) Proc SPIE, 5448, 681 Benschop, J., Banine, V., Lok, S., and Loopstra, E (2008) J Vac Sci Technol., B, 26 (6), 2204 Komori, H., Soumagne, G., Hoshino, H., Abe, T., Suganuma, T., Imai, Y., Endo, A., and Toyoda, K (2004) Proc SPIE, 5374, 839 Srivastava, S.N., Thompson, K.C., Antonsen, E.L., Qiu, H., Spencer, J.B., Papke, D., and Ruzic, D.N (2007) J Appl Phys., 102 (2), 023301 Owa, S and Nagasaka, H (2004) J Microlithogr Microfabr Microsyst., (1), 97 Henke, B.L., Smith, J.A., and Attwood, D.T (1977) J Appl Phys., 48 (5), 1852 Alegaonkar, P.S and Bhoraskar, V.N (2004) Radiat Eff Defects Solids, 159 (8/9), 511 Tawarayama, K., Magoshi, S., Tanaka, Y., Shirai, S., and Tanaka, H (2008) Jap J Appl Phys., 47 (6), 4866 Mutschler, A.S (2007) Survey: No EUV Until 2015 or Later, Electronics Design, Strategy, News Lammers, D (2008) Intel: ‘EUV Facts Don’t Add Up’ for 22 nm in 2011, Semiconductor International Hand, A (2008) Double Patterning Battles Cost, Complexity, Semiconductor International Saul, L., Jeffrey, B., Kane, J., Paul, Z., Bryan, R., Nicholas, J.T., and Willson, C.G (2008) Proc SPIE, 6924, 69242A Chen, K.-J.R., Huang, W.-S., Li, W.-K., and Varanasi, P.R (2008) Proc SPIE, 6923, 69230G 65 Hori, M et al (2008) Proc SPIE, 6923, 69230H 66 Kuang-Jung Rex, C., Wu-Song, H., 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Wai-Kin, L., and Varanasi, P.R (2008) Proc SPIE, 6923, 69230G Kim, R.H and Levinson, H.J (2007) J Vac Sci Technol., B, 25 (6), 2466 Owe-Yang, D.-C., Yu, S.S., Chen, H., Chang, C.Y., Ho, B.-C., Lin, J.C., and Lin, B.J (2005) Proc SPIE, 5753, 171 Choi, Y.K., King, T.J., and Hu, C.M (2002) Solid-State Electron., 46 (10), 1595 Choi, Y.K., King, T.J., and Hu, C.M (2002) IEEE Trans Electron Devices, 49 (3), 436 Choi, Y.K., King, T.J., and Hu, C.M (2002) IEEE Electron Device Lett., 23 (1), 25 Lin, B.J (2006) C R Phys., (8), 858 Pain, L., Tedesco, S., and Constancias, C (2006) C R Phys., (8), 910 Chang, T.H.P et al (1996) J Vac Sci Technol., B, 14 (6), 3774 Pease, R.F and Chou, S.Y (2008) Proc IEEE, 96 (2), 248 Kim, E., Xia, Y.N., and Whitesides, G.M (1995) Nature, 376 (6541), 581 Xia, Y.N and Whitesides, G.M (1998) Angew Chem Int Ed., 37 (5), 551 Xia, Y.N., Mrksich, M., Kim, E., and Whitesides, G.M (1995) J Am Chem Soc., 117 (37), 9576 Kim, E., Xia, Y.N., and Whitesides, G.M (1996) J Am Chem Soc., 118 (24), 5722 Beh, W.S., Kim, I.T., Qin, D., Xia, Y.N., and Whitesides, G.M (1999) Adv Mater., 11 (12), 1038 Xia, Y.N., Rogers, J.A., Paul, K.E., and Whitesides, G.M (1999) Chem Rev., 99 (7), 1823 Jackson, M.J (2006) The future of micro-and nanomanufacturing, in Microfabrication and Nanomanufacturing (ed M.J Jackson), CRC Press, Taylor & Francis Group, Boca Raton, p 367 Steed, J.W., Turner, D.R., and Wallace, K.J (2007) Nanochemistry, in Core Concepts in Supramolecular Chemistry and Nanochemistry (eds J.W Steed, D.R Turner, and K.J Wallace), John Wiley & Sons, Ltd, Chichester, p 229 399 400 15 Sculpting Nanometric Patterns: The Top-Down Approach 84 Xia, Y.N and Whitesides, G.M (1998) 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 Annu Rev Mater Sci., 28, 153 Kim, P., Kwon, K.W., Park, M.C., Lee, S.H., Kim, S.M., and Suh, K.Y (2008) BioChip J., (1), Ruiz, S.A and Chen, C.S (2007) Soft Matter, (2), 168 Innocenzi, P., Kidchob, T., Falcaro, P., and Takahashi, M (2008) Chem Mater., 20 (3), 607 Austin, M.D., Ge, H.X., Wu, W., Li, M.T., Yu, Z.N., Wasserman, D., Lyon, S.A., and Chou, S.Y (2004) Appl Phys Lett., 84 (26), 5299 Chou, S.Y., Krauss, P.R., and Renstrom, P.J (1996) J Vac Sci Technol., B, 14 (6), 4129 Chou, S.Y and Xia, Q.F (2008) Nat Nanotech., (5), 295 Houle, F.A., Miller, D.C., Fornof, A., Truong, H., Raoux, S., Sooriyakumaran, R., Ito, H., and Hart, M (2008) J Photopolym Sci Technol., 21 (4), 563 Lin, M.W et al (2008) J Micro-Nanolithogr MEMS MOEMS, (3), McMackin, I., Martin, W., Perez, J., Selinidis, K., Maltabes, J., Xu, F., Resnick, D., and Sreenivasan, S.V (2008) J Vac Sci Technol., B, 26 (1), 151 Landis, S., Chaix, N., Gourgon, C., Perret, C., and Leveder, T (2006) Nanotechnology, 17 (10), 2701 He, Q.H and Chen, S.A (2008) Prog Chem., 20 (12), 2061 Ali, M., Wagner, T., Shakoor, M., and Molian, P.A (2008) J Las Appl., 20 (3), 169 Sreenivasan, S.V (2008) MRS Bull., 33 (9), 854 Schift, H (2008) J Vac Sci Technol., B, 26 (2), 458 Hell, S.W and Wichmann, J (1994) Opt Lett., 19 (11), 780 Hell, S.W., Hanninen, P.E., Schrader, M., Wilson, T., and Soini, E (1995) Zool Stud., 34, 70 Klar, T.A., Engel, E., and Hell, S.W (2001) Phys Rev E, 64 (6), 066613 Hell, S.W (2009) Nat Met., (1), 24 103 Westphal, V and Hell, S.W (2005) Phys Rev Lett., 94 (14), 143903 104 Hell, S.W., Jakobs, S., and Kastrup, L (2003) Appl Phys A, 77 (7), 859 105 Hell, S.W (2004) Phys Lett A, 326 (1-2), 140 106 Menon, R and Smith, H.I (2006) 107 108 109 110 111 112 113 114 115 116 117 118 119 120 J Opt Soc Am A: Opt Im Sci Vis., 23 (9), 2290 Menon, R., Tsai, H.Y., and Thomas, S.W (2007) Phys Rev Lett., 98 (4), 043905 Tsai, H.Y., Wallraff, G.M., and Menon, R (2007) Appl Phys Lett., 91 (9), Tolbert, L.M and Haubrich, J.E (1994) J Am Chem Soc., 116 (23), 10593 Tolbert, L.M and Solntsev, K.M (2002) Acc Chem Res., 35, 19 Nunes, R.M.D., Pi˜ neiro, M., Gonsalves, A.Md.A.R., and Arnaut, L.G (2008) Submitted Nunes, R.M.D., Pi˜ neiro, M., and Arnaut, L.G (2009) J Am Chem Soc., 131 (26), 9456 doi: 10.1021/ja901930c Arnaut, L.G and Formosinho, S.J (2008) Chem Eur J., 14 (22), 6578 Arnaut, L.G., Pais, A.A.C.C., Formosinho, S.J., and Barroso, M (2003) J Am Chem Soc., 125 (17), 5236 Barroso, M., Arnaut, L.G., and Formosinho, S.J (2007) J Phys Chem A, 111 (4), 591 Barroso, M., Arnaut, L.G., and Formosinho, S.J (2008) J Phys Org Chem., 21 (7-8), 659 Oliveira, D., Barroso, M., and Arnaut, L.G (2006) Intersecting/ Interacting State Model, http://www.ism.qui.uc.pt:8180/ism/ (accessed March 2009) Bordwell, F.G and Bartmess, J.E (1978) J Org Chem., 43 (16), 3101 Houle, F.A., Hinsberg, W.D., Morrison, M., Sanchez, M.I., Wallraff, G., Larson, C., and Hoffnagle, J (2000) J Vac Sci Technol., B, 18 (4), 1874 Hell, S.W (2007) Science, 316 (5828), 1153 401 Index a absorbance-modulation technique 394 accelerating ligands addition 99 addition reactions to carbon–carbon multiple bonds 93 amine-containing monomers 97 anion photoelectron spectroscopy 186 antimicrobials 8–9 artificial photosystems 17 aspartic acid 55 atom transfer radical polymerization (ATRP) 107, 322 azides and alkynes (AAC) 93–98 azo-linked cyclic peptides 12 – fuels prepared via thermochemical processes 36 – hydroisomerization of n-alkanes 36 – isomerization 37 biosensors 9–10 bipolar plates 284 bisarylazide-rubber system 382 bond isomerizations 215–218 buckyballs 147 bulk functionalization 165 c carbon nanotubes (CNTs) 36, 147 carbonyl-chemistry of nonaldol type 93 catalysis, biorefinery concept 38–41 – C–C coupling reactions 40 b – hydrogenations 40 Back-to-Back (BABA) pulse sequence 158 – oxidations 38 Bingel-type fullerene derivative 78 cationic clay 256 biocatalytic biodiesel 35 C–C coupling reactions, biorefinery concept biodiesel 34 40 – biocatalytic 35 chemical catalytic biodiesel 35 – chemical catalytic 35 chemical liquid deposition technique (CLD) – noncatalytic processes 35 236 – preparation using metal oxide nanoparticles chemical phenomena, X-ray photodiffraction 49–50 method 210 – TGs transesterification 34 chemical probe method 196–198 biofuels 27 – for endohedrally doped silicon clusters – prepared via selective hydrogenation 35 196–198 biomaterials 10–11 – for exohedrally doped silicon clusters biorefinery concept 26 196–198 – biofuels prepared via selective chemical reduction in SCF 29 hydrogenation 35 chemical routes of nanomaterials preparation – in chemicals production 34–41 30–33 – cracking 37 – chemical vapor deposition (CVD) 32 – in energy 34–38 – electrochemical reduction 32–33 – – biodiesel 34 – microemulsions 31–32 – – TGs transesterification 34 – photochemistry 32 Ideas in Chemistry and Molecular Sciences: Advances in Nanotechnology, Materials and Devices Edited by Bruno Pignataro Copyright 2010 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim ISBN: 978-3-527-32543-6 402 Index chemical routes of nanomaterials preparation (contd.) – traditional methods 30 – – coprecipitation 30 – – impregnation 30 – – recipitation/deposition 30–31 – – wetness impregnation 30 chemical shift anisotropy (CSA) 141–142 chemical vapor deposition (CVD), in nanomaterial preparation 32 chemicals production, catalytic activities in 41–49 – supported metal oxide nanoparticles 44–46 – supported metallic nanoparticles 41–44 chemisorption process 361 – of gases (Type II) 126–127 click chemistry 93–111, See also gels – addition reactions to carbon–carbon multiple bonds 93 – carbonyl-chemistry of the nonaldol type 93 – ‘the cream of the crop’ of click chemistry 94 – cycloaddition reactions 93 – in materials synthesis, applications 95–110 – – accelerating ligands addition 99 – – amine-containing monomers 97 – – azides and alkynes (AAC) 93–98 – – CuI catalyst addition 99 – – metal adhesives 95–102 – – networked triazoles formation 99 – – polymerization reaction 96 – – temperature effect 99 – nucleophilic ring-opening reactions 93 clusters 151 computer simulation techniques 257–260 concave electroactive receptors for fullerenes 79–86 – concave–convex interactions 84 concave receptors for fullerenes 75–79 – curved molecules 75 – – Bingel-type fullerene derivative 78 – – exTTF receptor 79–81 – – nano-onions 78 – – subphthalocyanines (SubPcs) 76–77 confocal laser scanning microscopy (CLSM) 104 contact printing 393 coprecipitation 30 corannulene-based receptors 75–76 cracking 37 Cu(I) complexes, optical properties 340–347 – alternative N,P-ligands types to enhance properties photophysical 346–347 – excited states, structural aspects 341–342 – ground state, structural aspects 341–342 – heteroleptic diimine/diphosphine [Cu(NˆN)(PˆP)]+ complexes 342–346 CuI catalyst addition 99 curved recognizing units – classic receptors for fullerenes based on 66–71 – – binding stoichiometry 66 – – chemical structure 67 – – hydroxycalixarene-based receptors, chemical structures of 68 – – solvophobic forces in 68 C–X· · ·X –M halogen bonds 120–124 C–X· · ·X –M halogen bonds and gas sorption in molecular solids 115–133 cyclic d, l-α-peptides, nanotubular assemblies from 4–6 cyclic peptide nanotubes, applications 8–13, See also self-assembling cyclic peptide-based nanomaterials – antimicrobials 8–9 – azo-linked cyclic peptides 12 – biomaterials 10–11 – biosensors 9–10 – electronic devices 11 – lethal ion channels, carpet-like action mode of – photoswitchable materials 11–12 – transmembrane transport channels 12–13 cyclic α, γ -peptides, nanotubular assemblies from 13–19 – applications 17–19 – – artificial photosystems 17 – – multicomponent networks 17–18 – design 14 – heterodimers formation 16–17 – homodimers formation 14–16 – – α, γ -cyclic peptide nanotubes, self-assembling design for 15 – – α –α interaction 14–15 – – γ –γ interaction 14–15 cyclic β-peptides, nanotubular assemblies from 6–7 cycloaddition reactions 93 cyclotriveratrylenes (CTVs) 66 d 2D13 C– 13 C double quantum NMR experiments 170–172 Daumas–H´erold model 273 Index deep ultraviolet (DUV)–novolac resist 383 degradable model networks (MNs), synthesis 107 deoxyribonucleic acid (DNA) 261 diazonaphthoquinone (DNQ) derivatives 382 dimerization, solution phase studies 5–6 direct liquid methanol (DLM) fuel cells 301 direct methanol fuel cells (DMFCs), portable applications of 283–312 – backing layer 286 – catalytic layer 286 – components 286–287 – current status 293–310 – diffusion layer 286 – direct liquid methanol (DLM) fuel cells 301 – µDMFC 306 – electrode and MEA preparation 292–293 – fundamental aspects 286–293 – graphite-based integrated anode plate for 302 – methanol oxidation electrocatalysts 287–289 – microelectromechanical system (MEMS) technology 305 – microfuel CellTM 294 – nanoporous proton-conducting membrane (NP-PCM) 304 – open circuit voltage (OCV) of DMFC electrolyte 286 – oxygen-reduction electrocatalysts 289–290 – passive DMFC, discharge performance of 304 – processes 286–287 – proton exchange membrane fuel cells (PEFCs) 291–292 – – acid-doped polyacrylamide 291 – – polybenzimidazole 291 – water loss and water recycling in 304 Direct methanol proton exchange membrane fuel cell (DMPEMFC) 283 dissociation spectroscopy with the messenger technique 190–191 double chemisorption 129–132 double cross-polarization experiments to probe silica/CTAB interface 166–167 double-patterning method 389–391 double resonance experiments 162 double-well potential model of SMM 359 DQ-SQ experiments 161 drop casting 361 Dummies, SMM for 358–360 dynamic mechanical analysis (DMA) 101 dynamic solid-state processes with X-ray diffraction 207–224, See also steady-state X-ray photodiffraction; X-ray photodiffraction method e electrochemical reduction, in nanomaterial preparation 32–33 electron beam lithography 391 Electron pair donor and electron acceptor interaction (EPD–EPA) 238 electronic devices 11 electrophiles, halogens as 118–120 endohedrally doped silicon clusters 196–198 energy and high value-added chemicals production, designer nanomaterials for 23–57, See also biorefinery concept; energy production – biodiesel 27 – bioethanol 27 – biofuels 27 – biorefinery 26 – future prospects 53–56 – – advanced NMR applications 56 – – environmental remediation 56 – metal nanoparticles (MNPs) 24–25 – porous materials 25 – state of the art in 27–41 – – nanomaterials preparation 27–34 energy production 49–53 – biodiesel preparation using metal oxide nanoparticles 49–50 – designer nanomaterials preparation 49–53 – fuels prepared via thermochemical processes 50–53 environmental remediation, SMNPs in 56 exohedrally doped silicon clusters 196–198 – IR-spectroscopy on 199–201 external quantum efficiencies (EQEs) 333–334 extreme ultraviolet lithography (EUVL) 388 f flame spray pyrolysis 33 fluoroantimonic acid 384 forcefield 257 Frank–Kasper polyhedra 197 free-electron laser for infrared experiment (FELIX) 184 fuel cells 54 403 404 Index – – nucleophiles versus electrophiles 116–120 – – organic halogens 116 – iodoperfluorocarbon moieties 120 – as nucleophiles 117–118 hard mask 381 HETCOR 161 g heterodimers formation, cyclic α, γ -peptides gas-diffusion layers (GDLs) 284 16–17 gas phase spectroscopy using free-electron heteroleptic diimine/diphosphine lasers 187–188 [Cu(NˆN)(PˆP)]+ complexes 342–346 gas phase, structure elucidation in 183–202, homodimers formation, cyclic α, γ -peptides See also IR multiple photon dissociation 14–16 spectroscopy; IR-spectroscopy – α, γ -cyclic peptide nanotubes, gas sorption, smart materials for 124–132 self-assembling design for 15 – chemisorption of gases (Type II) 126–127 – α –α interaction 14–15 – – with incorporation into the framework – γ –γ interaction 14–15 (Type III) 127–128 hybrid process in nanolithography 391 – combined physisorption and chemisorption hydrogenations, biorefinery concept 40 of gases with incorporation into 3-hydroxybutyrolactone 55 framework (Type IV) 128 3-hydroxypropionic acid 55 – double chemisorption of gases with hydroxycalixarene-based receptors, chemical incorporation into the framework (Type structures of 68 V) 128–132 – physisorption of gases (Type I) 124–126 – – nonporous materials, gas–solid reactions i image projection lithography 394 in 125 impregnation 30 – – porous materials, gas–solid reactions in in situ cross-linking process 104 125 inorganic halogens 116 gels, synthesis and stabilization of 102–110 interacting-state model-(ISM) 394 – degradable model networks (MNs), γ –γ interaction in homodimers formation synthesis 107 14 – nanostructured organogels, strength International Zeolite Association (IZA) enhancement 102–106 231 – polymer thermoreversible gels synthesis α –α interaction in homodimers formation 106–107 14 – in situ cross-linking process 104 intrapore transport studies on zeolites glucaric acid 55 240–242 glutamic acid 55 ion mobility measurements 185–186 glycerol 54–55 IR multiple photon dissociation spectroscopy graphene 147 187–193 greenhouse gas (GHG) emissions 27 – dissociation spectroscopy with the Grignard Metathesis Polymerization (GRIM) messenger technique 190–191 322 – experimental realization 191–193 fullerenes 147–148 – supramolecular receptors for 65–88, See also supramolecular receptors for fullerenes 2,5-furan dicarboxylic acid 55 h halogens – bromoperfluorocarbon moieties 120 – C–X· · ·A halogen bonds 119 – D–H· · ·A hydrogen bonds 119 – as electrophiles 118–120 – halogen bond 118 – interactions involving 116–120 – – inorganic halogens 116 – FEL, working principles 188–189 – gas phase spectroscopy using free-electron lasers 187–188 – IR multiple photon excitation 189–190 IR multiple photon excitation 189–190 IR-spectroscopy – on bare silicon cluster cations 193–196 – – ab initio methods 193 – – density functional theory (DFT) methods 193 Index – to deduce sticking probabilities 242–243 – of doped silicon nanoparticles 183–202 isomerization 37 itaconic acid 55 j Jahn–Teller distortion 358 J-coupling 142 Job Plot analysis 80, 86 l Langmuir–Blodgett approach 357, 361 laser light-induced excited spin-state trapping (LIESST) 220 laser, in nanomaterials preparation 27 layered double hydroxide (LDH) 256 layered-mineral organic interactions (LMOs), modeling 255–275, See also computer simulation techniques; nanocomposites – atomistic simulation methods 257 – catalytic cycles in solid-base catalysts modeling 271–272 – – t-butoxide organo-LDHs 271–272 – cationic clay 256 – data analysis 260 – forcefield 257 – geometry optimization 258 – layered double hydroxide (LDH) 256 – LMOs, formation mechanisms 272274 DaumasHerold model 273 Răudorff model 273 – molecular dynamics 258 – Monte Carlo (MC) 258 – oil and gas industry, simulating organomineral interactions in 261–266 – – atomistic computer simulations 262 – – clay swelling 261–265 – – coupled experiments 262 – – forcefield-based simulations 262 – – oil forming reactions, understanding 266 – – polyethylene glycol (PEG) 263 – periodic systems 260–261 – potential energy surface, definition 257–258 – prebiotic chemistry 260 – quantum mechanical simulations 257 – statistical ensembles 259 – structural and statistical data 258–259 levulinic acid 55 lithographic process 381 low molecular weight organogelators (LMWOGs) 102 low-temperature co-fired ceramic (LTCC) technology 294 m magnetic dichroism for SMM 365–368 – orbital magnetic moment 365 – spin magnetic moment 365 magnetic memory effect 372 magnetic molecules, deposition 362–364 matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 323 matrix isolation vibrational spectroscopy 187 membrane electrode assemblies (MEAs) 284 mercaptopropyl trimethoxysilane (MPTMS) 41 Mermin–Wagner theorem 267 mesostructured materials (MMs) 159–165 – bulk functionalization 165 – double resonance experiments 162 – DQ-SQ experiments 161 – HETCOR 161 – interaction at interfaces 162–163 – mesoporous silica/calcium phosphate composite materials for bone regeneration via TRAPDOR experiments 169–170 – organic molecules confinement within nanopores 163–164 – – molecules with specific function 164 – – nonpolar organic molecules 163–164 – – polar organic molecules 163–164 – – water 164 – structure 160–162 – surface functionalization 165 messenger technique, dissociation spectroscopy with 190–191 metal adhesives 95–102 metal nanoparticles (MNPs) 24–25 – unsupported MNPs 25 metal oxide nanoparticles, biodiesel preparation using 49–50 metal-organic frameworks (MOFs) 124 metal-to-ligand charge transfer (MLCT) 341–346 methanol oxidation electrocatalysts 287–289 methicillin-resistant Staphylococcus aureus (MRSA) methyl triethoxy silane (MeTES) 41 MFI-type zeolites transport, on a molecular basis 231–251 – chemical liquid deposition technique (CLD) 236 – electron pair donor and electron acceptor interaction (EPD–EPA) 238 405 406 Index MFI-type zeolites transport, on a molecular basis (contd.) – external surface modification 246–250 – – benzene sorption enhancement on modified H-ZSM5 248–249 – – postsynthesis treated ZSM5, surface properties 246–248 – – tailor-made surface structures 249–250 – future opportunities for research and industrial application 250–251 – initial collision and adsorption of aromatic molecules, sticking probability 242–246 – – IR spectroscopy to deduce sticking probabilities 242–243 – materials 236–240 – rapid scan infrared spectroscopy 236–237 – surface and intrapore transport studies 240–242 – – sorption and transport model 240–242 – techniques 236–240 – tetraethyl orthosilicate (TEOS) 236 – theoretical sticking probability, statistical thermodynamics approach 243–246 – transport process, kinetic description 239–240 – zeolite samples – – characterization 237–239 – – preparation 237–239 – – in situ FTIR spectroscopy 238 microcontact printing (µCP) 392 microcrystalline cyclic peptide nanotubes 4–5 microelectromechanical system (MEMS) technology 305 microemulsions, in nanomaterials preparation 31–32 microfuel arrays 294 microtransfer moulding (µTM) 392 microwave irradiation (MWI), in nanomaterials preparation 27–28 modulated differential scanning calorimetry (MDSC) 101 molecular traffic control (MTC) concept 233 multicomponent networks, cyclic α, γ -peptides 17–18 multi-e-beam maskless lithography 391 multiwalled carbon nanotubes (MWCNTs) 32 multiwalled nanotubes (MWNTs) 148 n Nafion membranes 291–298 n-alkanes, hydroisomerization 36 nanocarbons 147–151, See also fullerenes; nanotubes nanocomposites 266–269 – catalysts, characterization and simulation of 269–272 – constrained media, understanding photochemistry in 269–271 – – cinnamate LDHs 269–271 – – ‘retrosynthesis’ approach 269 – LDH hybrid biomaterials 267 – materials properties, determining 266–269 – nanoscale reaction vessels 269–272 – nonequilibrium molecular dynamics (NEMDs) 268 nanoimprint lithography 393 – casting nanoimprint 393 – contact printing 393 – roller nanoimprint 393 – step-and-flash imprint 393 – transfer nanoimprint 393 nanolithography, present day in 386–387 nanomaterials preparation, 27–34 See also biorefinery concept – chemical routes 30–33 – physical routes 27–30 – – laser 27 – – microwave irradiation (MWI) 27 – – plasma 27 – – sonication 27 – – supercritical fluids (SCFs) 27 – physicochemical routes 33–34 nanomedicine 272 nano-onions 78 nanoparticles 151–154 – clusters 151 – particle, definition 151 – Rotational Echo DOuble Resonance (REDOR) experiments 154 – self-assembled monolayers (SAMs) 152 nanoporous proton-conducting membrane (NP-PCM) 304 nanorings 77 nanostructured organogels, strength enhancement 102–106 nanotubes 148–151 – multiwalled nanotubes (MWNTs) 148 – single-walled nanotubes (SWNTs) 148 nanotubular assemblies from cyclic d, l-α-peptides 4–6 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) 11 networked triazoles formation 99 Index photoswitchable materials 11–12 phthalocyanines, SWNTs functionalization with 107–110 physical phenomena, X-ray photodiffraction method 210 physical routes of nanomaterials preparation 27–30 – laser 27 – microwave irradiation (MWI) 27–28 – plasma 27, 30 – pulsed laser ablation (PLA) 28–29 – sonication 27–28 – supercritical fluids (SCFs) 27, 29 o – ultrasounds (USs) 28 oil forming reactions, understanding 266 physical vapor deposition (PVP) 28 onium salts 383 physicochemical routes of nanomaterials open circuit voltage (OCV) of DMFC preparation 33–34 electrolyte 286 optical lithography beyond the diffraction limit – flame spray pyrolysis 33 – sonoelectrochemistry 33 393–397 physisorption of gases 124–126 – absorbance-modulation technique 394 – nonporous materials, gas–solid reactions in – image projection lithography 394 125 – interacting-state model-(ISM) 394 – porous materials, gas–solid reactions in – reversible photoacids 394 125 – stimulated emission depletion (STED) physisorption process 361 microscopy 393–394 planar recognizing units organic field effect transistors (OFETs) 79, – receptors for fullerenes based on 71–75 336 organic halogens 116 – – porphyrin-based in-tripodal receptors organic photovoltaic (OPV) device 317 74 organogels, strength enhancement 102–106 – – porphyrin-based tweezer-like receptors oxidations, biorefinery concept 38 72 oxygen-reduction electrocatalysts 289–290 plasma, in nanomaterials preparation 27, 30 platform molecules catalysis 54–56 p – glycerol 54 P3HT-b–PPerAcr 321–335 – succinic acid 54 – device performance of 333–336 polar organic molecules 163–164 – external quantum efficiencies (EQEs) poly(3-hexythiophene) (P3HT) 319 333–334 polydimethylsiloxane (PDMS) 392 – morphology of 331–333 polyethylene glycol (PEG) 28, 263 – optical properties 327–330 – organic field effect transistors (OFETs) 336 polymer thermoreversible gels synthesis 106–107 – photoluminescence (PL) behavior of 330 polytetrafluoroethylene (PTFE) 292 – synthesis 322–325 Porous carbon plate (PCP) 303 – thermal properties 326 porous materials 25 para-hydrogen induced polarization (PHIP) porphyrins 71–72 56 portable power, DMFCs in 284–312 Perylene bisimides (PBIs) 317 potential energy surface, definition 257–258 phenanthroline-based ligand 342 photochemistry, in nanomaterials preparation prebiotic chemistry 260 precipitation/deposition 30–31 32 proton exchange membrane fuel cells (PEFCs) photocrystallographic method 209 292 photoelectron spectroscopy 186 proton exchange membranes 291–292 photolytic reactions 215–218 photoreactive acid generator (PAG) 383 pulsed laser ablation (PLA) 28–29 nitroxide mediated radical polymerization (NMRP) 319 noncatalytic processes, biodiesel 35 nonequilibrium molecular dynamics (NEMDs) 268 nonpolar organic molecules 163–164 nonradiation-based patterning techniques 392 novolac resin 382 nucleophiles, halogens as 117–118 nucleophilic ring-opening reactions 93 407 408 Index q – crystalline–crystalline D–A block copolymers P3HT-b–PPerAcr 321–335, See also P3HT-b–PPerAcr – D–A block copolymers 319 – donor–acceptor active layer morphologies 319 r – nitroxide mediated radical polymerization rapid scan infrared spectroscopy 236–237 (NMRP) 319 replica moulding (REM) 392 – poly(3-hexythiophene) (P3HT) 319 resonance-enhanced Raman spectroscopy – ring-opening metathesis polymerization 187 (ROMP) 319 ‘retrosynthesis’ approach 269 reversible addition fragmentation termination silica/CTAB interface – double cross-polarization experiments to polymerization (RAFT) 322 probe 166–167 ring-opening metathesis polymerization – heteronuclear correlation experiments to (ROMP) 319 probe 168–169 Rotational Echo DOuble Resonance (REDOR) silicon clusters experiments 154 endohedrally doped 196198 Răudorff model 273 exohedrally doped 196–198 silicon clusters, structural investigation s methods 185–187, See also secondary building units (SBUs) 231 IR-spectroscopy on bare silicon cluster selective hydrogenation, biofuels prepared via cations 35 – anion photoelectron spectroscopy 186 self-assembled monolayers (SAMs) 152 – ion mobility measurements 185–186 ‘self-assembling’ concept 157–159, 360–362 – matrix isolation vibrational spectroscopy – Back-to-Back (BABA) pulse sequence 158 187 – chemisorption process 361 – – surface-enhanced Raman spectroscopy – drop casting 361 (SERS) 187 – Langmuir–Blodgett approach 361 single crystal X-ray diffraction 209 – for magnetic molecules, deposition single-molecule magnets (SMMs) on surface, 362–364 understanding 357–374 – physisorption process 361 – double-well potential model of 359 – self-assembling of monolayers (SAMs) 361 – for Dummies 358–360 – templating effect 361 – electronic characterization of monolayer of – ‘wet-chemistry’ approach 361 368–370 self-assembling cyclic peptide-based – integrity of SMM on surface, assessing nanomaterials (SPNs) 3–19 364–365 – applications 8–13 – magnetic dichroism for 365–368 – representation – – orbital magnetic moment 365 – types 4–8 – – spin magnetic moment 365 – – cyclic d, l-α-peptides, nanotubular – magnetic molecules, deposition 362–364 assemblies from 4–6 – magnetism of SMMs using XMCD – – cyclic β-peptides, nanotubular assemblies 370–373 from 6–7 – magneto-optical techniques 364 – – microcrystalline cyclic peptide nanotubes – molecular structure 359 4–5 – perspectives 373–374 – – proton-triggered self-assembly – properties, tuning strategies 359 – – solid-state ensembles 4–5 – ‘self-assembling’ concept 360–362 – – solution phase studies of dimerization – X-ray absorption for 365–368 5–6 single-wall carbon nanotubes (SWNTs) semiconductor block copolymers 317–335 107–110, 148 – conjugated poly(phenylene vinylene) (PPV) – functionalization with phthalocyanines 319 107–110 quadrupolar coupling (I>1//2) 143–144 quantum dots (QD) 154–157 – tri-n-octylphosphine oxide (TOPO) 155 Index smart materials 115–133 – combining complementary environments 120–124 – – C–X· · ·X –M halogen bonds 120–124 – C–X· · ·X –M halogen bonds and gas sorption in molecular solids 115–133 – for gas sorption 124–132 – – nucleophiles versus electrophiles 116–120 – supramolecular interactions and 115–133 SMNPs 25–38 – applications for future 54–56 – – catalysis of platform molecules 54–56 – – fuel cells 54 – in catalysis 40 – in C–C coupling reactions 39 – in hydrogenations 39 – in oxidation reactions 38 – preparation, future of 53 – sustainable preparation 41–49 soft lithography 392 solid-state ensembles 4–5 solid-state NMR techniques in nanomaterials characterization 141–172, See also quantum dots – chemical shift anisotropy (CSA) 141–142 – dipolar coupling (DC) in solution NMR 141 – dipolar coupling (DC, I = 1/2) 143 – J-coupling 142 – quadrupolar coupling (I > 1//2) 143–144 – tools 141–147 solution phase studies of dimerization 5–6 sonication, in nanomaterials preparation 27–28 sonoelectrochemistry 33 sorbitol 56 spirooxazines 214 spiropyrans 214 sputtering techniques 298 steady-state X-ray photodiffraction 213–221 – bond isomerizations 215–218 – chemical groups or atoms, transfer of 213–215 – electrocyclization/ring opening 213–215 – electron transfer, species structures in 218–221 – excited states, species structures in 218–221 – photolytic reactions 215–218 – spin crossover, species structures in 218–221 – time-resolved X-ray photodiffraction 221–223 sticking probability 242–246 stimulated emission depletion (STED) microscopy 393–394 subphthalocyanines (SubPcs) 76–77 succinic acid 54 supercritical fluids (SCFs), in nanomaterials preparation 27, 29 – advantages 29 – chemical reduction in 29 – thermal reduction in 29 supported metal nanoparticles (SMNPs) 23 supported metal oxide nanoparticles 44–46 – catalytic activities 44–46 – preparation 44–46 supported metallic nanoparticles 41–44 – catalytic activities 41–44 – preparation 41–44 supramolecular interactions and smart materials 115–133 supramolecular receptors for fullerenes 65–88 – classic receptors based on curved recognizing units 66–71 – interactions involved 65 surface-enhanced Raman spectroscopy (SERS) 187 surface functionalization 165 surface studies on zeolites 240–242 t t-butoxide organo-LDHs 271–272 templating effect 361 terahertz spectroscopy 222 tetraethyl orthosilicate (TEOS) 236 11,11,12,12-tetracyano-9,10anthraquinodimethane (TCAQ) 84 tetrathiafulvalene (TTF) 79 thermal reduction in SCF 29 thermochemical processes, fuels prepared via 36, 50–53 throughput 380 time-resolved X-ray photodiffraction 221–223 – femtosecond scale 222 – ultrashort timescales 222 top-down approach, in nanometric patterns sculpting 379–397 – conventional lithographic process 381 – future for nanolithography 387–397 – – cost-effective solutions 388 – – double-exposure approach 390–391 – – double-patterning method 389 – – electron beam lithography 391 409 410 Index top-down approach, in nanometric patterns sculpting (contd.) – – extreme ultraviolet lithography (EUVL) 388 – – hybrid process 391 – – litho–litho–etch double exposure concept 389–390 – – microcontact printing (µCP) 392 – – microtransfer moulding (µTM) 392 – – multi-e-beam maskless lithography 391 – – nanoimprint lithography 393 – – nonradiation-based patterning techniques 392 – – optical lithography beyond the diffraction limit 393–397 – – replica moulding (REM) 392 – – soft lithography 392 – hard mask 381 – micro patterns production 380–397 – nanolithography, present day in 386–387 – optical microlithographic techniques 380 – resist history 382–386 – – bisarylazide-rubber 382 – – deep ultraviolet (DUV)–novolac resist 383 – – diazonaphthoquinone (DNQ) derivatives 382 – – novolac resin 382 – – onium salts 383 – – photoreactive acid generator (PAG) 383 – sub-micro patterns production 380–397 – Throughput 380 transmembrane transport channels 12–13 TRAPDOR experiments 169–170 tri-capped trigonal prism (TTP) 186 tri-n-octylphosphine oxide (TOPO) 155 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) 220 u ultrasounds (USs), in nanomaterials preparation 28 undulator of period λU 188 unsupported MNPs 25 w ‘wet-chemistry’ approach 361 wetness impregnation 30 x X-ray absorption for SMM 365–368 X-ray diffraction, dynamic solid-state processes with 207–224 X-ray photodiffraction method 209–213 – advantages 209–213 – applications 209–213 – chemical phenomena 210 – drawbacks 209–213 – increased mosaicisity 212 – physical phenomena 210 – principles 209–213 – single crystal X-ray diffraction 209 – thermal effects 211 xylitol 56 z zeolites 231–251 ... Prebiotic Chemistry 260 Simulating Organomineral Interactions in the Oil and Gas Industry 261 Inhibiting Clay Swelling during Drilling Operations 261 Understanding Oil Forming Reactions 266 Determining... 30 95440 Bayreuth Deutschland Part I Preparation of New Materials and Nanomaterials Ideas in Chemistry and Molecular Sciences: Advances in Nanotechnology, Materials and Devices Edited by Bruno... I-98126 Messina Italy Ideas in Chemistry and Molecular Sciences: Advances in Nanotechnology, Materials and Devices Edited by Bruno Pignataro Copyright 2010 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim