1. Trang chủ
  2. » Khoa Học Tự Nhiên

Molten salts chemistry from lab to applications

592 144 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 592
Dung lượng 28,36 MB

Nội dung

Molten Salts Chemistry From Lab to Applications Intentionally left as blank Molten Salts Chemistry From Lab to Applications Edited By Fre´de´ric Lantelme Henri Groult AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First edition 2013 ©2013 Elsevier Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (ỵ44) (0) 1865 843830; fax (ỵ44) (0) 1865 853333; email: permissions@elsevier.com Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made Library of Congress Cataloging-in-Publication Data Molten salts chemistry: from lab to applications / edited by Fre´de´ric Lantelme, Henri Groult – First edition pages cm Summary: “In recent years, molecular modelling has become an indispensable tool for studying the structure and dynamics of molten salts In this chapter we first provide a short description of the state-of-the-art models and methods used for modelling molten salts at the atomic scale In particular, we discuss the importance of polarization effects for obtaining accurate results We then give some examples of the structure of several molten salts, as yielded by the simulations We finish by describing how the transport properties, which encompass the diffusion coefficients, electrical conductivities, viscosities and thermal conductivities, are computed By comparing the values given by the simulations to reference experimental data, we show that this technique can now be considered as highly predictive”– Provided by publisher Includes bibliographical references and index ISBN 978-0-12-398538-5 (hardback) Fused salts–Analysis I Lantelme, Fre´de´ric II Groult, Henri QD189.M597 2013 546¢.34–dc23 2013023166 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library For information on all Elsevier publications visit our web site at store.elsevier.com Printed and bound in USA 13 14 15 16 17 10 ISBN: 978-0-12-398538-5 Contents Contributors Preface Modeling of Molten Salts M Salanne, C Simon, P Turq, N Ohtori, and P.A Madden 1.1 Introduction 1.2 Methods and Models 1.3 Structure of Molten Salts 1.4 Dynamic Properties of Molten Salts 1.5 Conclusion Raman Spectroscopy and Pulsed Neutron Diffraction of Molten Salt Mixtures Containing Rare-Earth Trichlorides: Trial Approaches from Fundamentals to Pyrochemical Reprocessing Yasuhiko Iwadate 2.1 Introduction 2.2 Experimental 2.3 Results and Discussion 2.4 Conclusions In Situ Spectroscopy in Molten Fluoride Salts Catherine Bessada and Anne-Laure Rollet 3.1 Introduction 3.2 Experimental Techniques: Specificity, Limitation, Setup 3.3 Spectroscopic Studies of Molten Fluorides 3.4 Conclusion Thermodynamic Calculations of Molten-Salt Reactor Fuel Systems O Benesˇ and R.J.M Konings 4.1 Introduction 4.2 Development of Thermodynamic Database 4.3 Status of ITU’s Salt Database 4.4 Binary Systems 4.5 Most Relevant Ternary Systems 4.6 Application of the Database 4.7 Summary xi xvii 1 13 17 17 18 19 29 33 33 34 37 43 49 49 50 54 56 63 70 76 vi Contents Ionic Transport in Molten Salts Isao Okada 5.1 Introduction 5.2 Electric Conductance 5.3 Concluding Remarks 79 79 79 97 Salt Bath Thermal Treating and Nitriding Fre´de´ric Lantelme, Henri Groult, Hugo Mosqueda, Pierre-Louis Magdinier, Herve´ Chavanne, Vincent Monteux, and Philippe Maurin-Perrier 6.1 Introduction 6.2 General Aspects of Molten Salt Heat Treating 6.3 Steel Nitriding 6.4 Salt Bath Nitriding 6.5 Conclusion 101 Catalysis in Molten Ionic Media Soghomon Boghosian and Rasmus Fehrmann 7.1 Introduction 7.2 Physicochemical Properties of the Catalyst Model System 7.3 Phase Diagrams of Molten Binary Systems of Relevance to the SO2 Oxidation Catalyst 7.4 Multi-instrumental Investigations and Complex Formation in Catalyst Model Melts 7.5 Activity and Deactivation of SO2 Oxidation Vanadia–Pyrosulfate Bulk Melts and Supported Molten Salts: Formation of Crystalline V Compounds 7.6 Vanadium Crystalline Compound Formation: A Summary of Structural and Vibrational Properties and Implications of Catalytic Activity and Deactivation 7.7 In Situ Spectroscopy of Catalyst Models and Industrial Catalysts 7.8 Mechanism of the SO2 Oxidation Catalytic Reaction 7.9 Concluding Remarks 131 The Ability of Molten Carbonate for Gas Cleaning of Biomass Gasification M Kawase 8.1 Introduction 8.2 Gas-Cleaning Method 8.3 Desulfurization Using Molten Carbonate 8.4 Dehalogenation Using Molten Carbonate 8.5 Tar Cracking 8.6 Power Generation Test with a Molten-Carbonate Fuel Cell 8.7 Conclusions Inert Anode Development for High-Temperature Molten Salts Dihua Wang and Wei Xiao 9.1 Introduction 9.2 Inert Anode Development in Molten Chlorides 9.3 Experimental Evaluations 101 101 104 115 127 131 134 137 138 142 145 147 149 152 159 159 160 161 166 167 168 169 171 171 173 177 Contents 9.4 9.5 9.6 9.7 10 11 12 13 14 vii Carbon as an Inert Anode in the Absence of Oxygen in Molten Chlorides Inert Anode Development in Molten Oxides Inert Anode for Molten Carbonate Electrolysis Perspectives 181 181 183 184 Boron-Doped Diamond Electrodes in Molten Chloride Systems Takuya Goto, Yuya Kado, and Rika Hagiwara 10.1 Introduction 10.2 Stability of a Boron-Doped Diamond Electrode in Molten Chloride Systems 10.3 Thermodynamics of Oxygen Electrode Reaction on a Boron-Doped Diamond Electrode 10.4 Conclusions 187 NF3 Production from Electrolysis in Molten Fluorides Akimasa Tasaka 11.1 Introduction 11.2 Anodic Behavior of Nickel and Nickel-Based Composite Electrodes in NH4FÁ2HF at 100  C for Electrolytic Production of NF3 11.3 Anodic Behavior of Carbon Electrode in NH4FÁKFÁmHF (m¼3 and 4) at 100  C for Electrolytic Production of NF3 11.4 New Development for Electrolytic Production of NF3 Using Boron-Doped Diamond (BDD) Anode 11.5 Conclusions 207 Corrosion in Molten Salts K Sridharan and T.R Allen 12.1 Introduction 12.2 Corrosion in Molten Fluoride Salts 12.3 Corrosion in Molten Chloride Salts 12.4 Corrosion in Molten Fluoroborate Salts 12.5 Radiolysis Effects on Corrosion 12.6 Conclusions 187 189 196 203 207 207 216 223 235 241 241 242 261 263 264 264 Plasma-Induced Discharge Electrolysis for Nanoparticle Production Yasuhiko Ito, Tokujiro Nishikiori, and Manabu Tokushige 13.1 Introduction 13.2 Principle and Outline of Plasma-Induced Discharge Electrolysis 13.3 Nanoparticle Size Control Using Rotating Disk Anode 13.4 Conclusions 269 Electrochemical Formation of Rare Earth-Nickel Alloys Toshiyuki Nohira 14.1 Introduction 14.2 Electrochemical Formation of Rare Earth Alloys in Molten Salts 14.3 LiCl(59)-KCl(41) Melts 14.4 NaCl(50)-KCl(50) Melts 287 269 270 279 283 287 288 289 294 viii Contents 14.5 LiF(80.5)-CaF2(19.5) Melts 14.6 A New Recycling Process for RE Metals 14.7 Conclusions 15 16 17 18 19 20 Electrochemical Synthesis of Novel Niobium and Tantalum Compounds in Molten Salts S A Kuznetsov 15.1 Introduction 15.2 Experimental 15.3 Results and Discussion 15.4 Conclusions 298 301 305 311 311 312 313 327 Preparation of Carbonaceous Materials in Fused Carbonate Salts Henri Groult, K Le Van, Fre´de´ric Lantelme, C.M Julien, E Briot, T Brousse, P Simon, B Daffos, S Komaba, and N Kumagai 16.1 Synthesis of Carbon Nanopowders (CNPs) in Molten Carbonates 16.2 Use of CNPs in Electrochemical Capacitors 16.3 General Conclusions 331 Molten Carbonates from Fuel Cells to New Energy Devices Michel Cassir, Armelle Ringuede´, and Virginie Lair 17.1 Introduction 17.2 Physicochemical Properties of Molten Carbonates 17.3 Molten Carbonate Fuel Cell 17.4 New Topics 17.5 Conclusion 355 Synthesis and Liỵ Ion Exchange in Molten Salts of Novel Hollandite-Type Ky(Mn1ÀxCox)O2ÁzH2o Nanofiber for Lithium Battery Electrodes Y Kadoma and N Kumagai 18.1 Introduction 18.2 Experimental 18.3 Results 18.4 Conclusion Hybrid Molten Carbonate/Solid Oxide Direct Carbon Fuel Cells Andrew C Chien and John T.S Irvine 19.1 Introduction 19.2 Direct-Carbon Solid Oxide Fuel Cell 19.3 Hybrid Direct Carbon Fuel Cell 19.4 Conclusion High-Temperature Molten Salts for Solar Power Application Thomas Bauer, Nicole Pfleger, Doerte Laing, Wolf-Dieter Steinmann, Markus Eck, and Stefanie Kaesche 20.1 Introduction 20.2 Physicochemical Properties and Corrosion Aspects of Molten Alkali Nitrate Salts 332 345 350 355 355 359 365 366 373 373 374 377 400 403 403 404 409 412 415 415 418 Contents 20.3 Molten Salt Thermal Energy Storage Applications for Concentrated Solar Power 20.4 Summary and Conclusion 21 22 23 24 25 The Sodium Metal Halide (ZEBRA) Battery: An Example of Inorganic Molten Salt Electrolyte Battery Akane Hartenbach, Michael Bayer, and Cord-Henrich Dustmann 21.1 Introduction 21.2 Battery-Relevant Properties of the Molten Salt Electrolyte 21.3 Involvement of the Molten Electrolyte in Battery’s Safety and Operation Limits 21.4 Future Use of the ZEBRA Technology in Grid Applications Hydrogen Storage and Transportation System through Lithium Hydride Using Molten Salt Technology Yuzuru Sato and Osamu Takeda 22.1 Introduction 22.2 Hydrogen Storage into Lithium (Production of LiH) 22.3 Electrolysis of LiOH 22.4 Conclusion Nuclear Energy Based on Thorium Molten Salt Ritsuo Yoshioka 23.1 Introduction 23.2 Synergetic Nuclear System: THORIMS-NES 23.3 Molten Salt Power Reactor FUJI 23.4 Accelerator Molten Salt Breeder for 233U production 23.5 Regional Center for Chemical Processing and Fissile Production 23.6 Other Applications 23.7 Conclusion Molten Salts for Nuclear Applications Sylvie Delpech 24.1 Introduction 24.2 Existing Industrial Nuclear Processes 24.3 Processes in Progress for Future Nuclear Applications (GEN IV Systems) 24.4 Pyrochemical Treatments 24.5 Molten Salts as Coolants in Nuclear Energy 24.6 Conclusion Lanthanides Extraction Processes in Molten Fluoride Media Pierre Chamelot, Laurent Massot, Mathieu Gibilaro, and Pierre Taxil 25.1 Introduction 25.2 Selection of the Solvent 25.3 Electrodeposition of Bulk Lanthanides 25.4 Oxygenated Compounds Precipitation 25.5 Extraction by Electrodeposition of Alloys 25.6 Conclusions ix 429 432 439 439 439 445 448 451 451 454 461 468 471 471 476 482 489 491 492 493 497 497 498 503 513 515 516 521 521 522 523 525 527 538 Development of Pyrochemical Separation Processes 559 [36] Serp, J., Allibert, M., Terrier, A.L., Malmbeck, R., Ougier, M., Rebizant, J., Glatz, J.-P (2005) Electroseparation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts J Electrochem Soc., 152, C167–C172 [37] Osipenko, A., Maershin, A., Smolenski, V., Novoselova, A., Kormilitsyn, M., Bychkov, A (2011) Electrochemical behaviour of curium(III) ions in fused 3LiCl-2KCl eutectic J Electroanal Chem., 651, 67–71 [38] Koyama, T., Kinoshita, K., Inoue, T., Ougier, M., Malmbeck, R., Glatz, J.-P (2008) Equilibrium distribution of actinides including Cm between molten LiCl-KCl eutectic and liquid cadmium Radiochim Acta, 96, 311–313 [39] Masset, P., Konings, R.J.M., Malmbeck, R., Serp, J., Glatz, J.-P (2005) Thermochemical properties of lanthanides (Ln ¼ La, Nd) and actinides (An ¼ U, Np, Pu, Am) in the molten LiCl-KCl eutectic J Nucl Mater., 344, 173–179 [40] Vandarkuzhali, S., Gogoi, N., Ghosh, S., Prabhakara Reddy, B., Nagarajan, K (2011) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl-KCl eutectic melt Electrochim Acta, 59, 245–255 ˜ nez, A.M., Barrado, E., DA ˜ az Arocas, P (2007) Application [41] Castrillejo, Y., Bermejo, R., MartA of electrochemical techniques in pyrochemical processes: Electrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes J Nucl Mater., 360, 32–42 [42] Kurata, M., Sakamura, Y., Matsui, T (1996) Thermodynamic quantities of actinides and rare earth elements in liquid bismuth and cadmium J Alloy Comp., 234(1), 83–92 [43] Castrillejo, Y., Bermejo, M.R., Pardo, R., Martinez, A.M (2002) Use of electrochemical techniques for the study of solubilization processes of cerium-oxide compounds and recovery of the metal from molten chlorides J Electroanal Chem., 522, 124–140 [44] Castrillejo, Y., Bermejo, M.R., Diaz Arocas, P., Martinez, A.M., Barrado, E (2005) Electrochemical behaviour of praseodymium (III) in molten chlorides J Electroanal Chem., 575(1), 61–74 [45] Castrillejo, Y., Bermejo, M.R., Arocas, P.D., Martinez, A.M., Barrado, E (2005) The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl J Electroanal Chem., 579(2), 343–358 [46] Yan, Y.-D., Xu, Y.-L., Zhang, M.-L., Xue, Y., Han, W., Huang, Y., Chen, Q., Zhang, Z.-J (2013) Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl-KCl molten salt J Nucl Mater., 433(1–3), 152–159 [47] Caravaca, C., de Co´rdoba, G., Toma´s, M.J., Rosado, M (2007) Electrochemical behaviour of gadolinium ion in molten LiCl-KCl eutectic J Nucl Mater., 360(1), 25–31 [48] Bermejo, M.R., Go´mez, J., Medina, J., Martı´nez, A.M., Castrillejo, Y (2006) The electrochemistry of gadolinium in the eutectic LiCl–KCl on W and Al electrodes J Electroanal Chem., 588(2), 253–266 [49] Serp, J., Chamelot, P., Fourcaudot, S., Konings, R.J.M., Malmbeck, R., Pernel, C., Poignet, J.C., Rebizant, J., Glatz, J.-P (2006) Electrochemical behaviour of americium ions in LiCl-KCl eutectic melt J Electroanal Chem., 51, 4024–4032 [50] Serp, J., Malmbeck, R., Yakub, E., Glatz, J.-P (2003) Electroseparation of actinides on solid aluminum in LiCl-KCl eutectic In: Proceedings of Global 2003 November 16-20, New Orleans, LA [51] Conocar, O., Douyere, N., Glatz, J.-P., Lacquement, J., Malmbeck, R., Serp, J (2006) Promising pyrochemical actinide/lanthanide separation processes using aluminum Nucl Sci Eng., 153, 253–261 [52] Westphal, B.R., Vaden, D., Li, S.X., Fredrickson, G.L., Mariani, R.D (2009) Fate of noble metals during the pyroprocessing of spent nuclear fuel In: Proceedings of Global 2009; pp 1291–1297, September 6-11, Paris, France, Paper 9309 [53] Soucˇek, P., Cassayre, L., Malmbeck, R., Mendes, E., Jardin, R., Glatz, J.-P (2008) Electrorefining of U-Pu-Zr-alloy fuel onto solid aluminium cathodes in molten LiCl-KCl Radiochim Acta, 96, 315–322 [54] White, W.B., Johnson, S.M., Dantzig, G.B (1958) Chemical equilibrium in complex mixtures J Chem Phys., 28(5), 751–755 560 Molten Salts Chemistry [55] Cassayre, L., Soucek, P., Mendes, E., Malmbeck, R., Nourry, C., Eloirdi, R., Glatz, J.-P (2011) Recovery of actinides from actinide-aluminium alloys by chlorination J Nucl Mater., 414(1), 1218 [56] Meier, R., Soucek, P., Malmbeck, R., Fanghaănel, T (2012) Recycling of uranium from uraniumaluminium alloys by chlorination with HCl(g) Procedia Chem., 7, 785–790 [57] MacPherson, H.G (1985) The molten salt reactor adventure Nucl Sci Eng., 90, 374–380 Index Note: Page numbers followed by f indicate figures and t indicate tables A Accelerator molten salt breeder (AMSB), 489–490 Acid–base reactions, 187–188 Actinide production, 477–478 Actinide recovery chlorination, 554–555 electrochemistry An-Ln separation, 551, 551f diffusion coefficient, 550 electrochemical energy, 550 LiCl-KCl eutectic salt, 549–550, 550t, 551f electrorefining An-Al alloy, 552, 553f destructive and nondestructive analyses, 552 principles of, 551, 552f total mass of, 552, 553t exhaustive electrolysis, 553–554 flow sheet for, 548, 549f Advanced high-temperature reactor, 516 Agitation effect, 95–96 Aircraft reactor experiment (ARE), 475, 475f Alkali and alkaline earth chlorides, 187 Alkali nitrate salts multicomponent salt systems, 427–429 phase diagrams, 427–429 steel corrosion, 425–427 thermal decomposition DLR measurement, 422f dry and wet melt, 424–425 equilibrium reaction, 421–422 mass losses of, 420 metal-nitrate bond, 420–421 polarizing effect, 420–421 reaction kinetics, 422, 423f secondary reactions, 422–423 temperature vs cation metallic radius, 421, 421f thermogravimetry, 423–424, 424f thermal properties, 418–420, 419f Aluminum ions, lanthanide extraction with advantages, 533 Al-Nd binary diagram, 533, 533f, 534 efficiencies, 534–535, 537t experimental reduction potential, 534, 536f Nernst equations, 533–534 short electrolysis, 534, 535f square wave voltammogram, 534, 534f Anodic discharge electrolysis copper oxide and iron oxide, 275–276, 277f nickel oxide, 275–276, 277f principle of, 275, 276f Ta nanoparticles, 277–279, 278f titanium oxide particles, 275–276, 277f transition metal sulfides, 276, 278f XPS spectra, 276, 278f Argonne National Laboratory (ANL), 17 B Beta"-alumina separator, ZEBRA system, 447 b-Tantalum (b-Ta) electrocrystallization cubic KTa1ỵzO3 bronze morphology, 319, 320f NaCl-KCl-K2TaF7-K3TaOF6 melt, 319, 320t O/Ta molar ratio, 321–322, 321f phase composition, cathode products, 320, 321t electrodeposition, CsCl-K3TaOF6, 322–324 Biomass gasification system conventional molten-salt gasification process, 159, 160f molten carbonate, 159–160, 160f dehalogenation, 166–167, 166f 562 Index Biomass gasification system (Continued) desulfurization, 161–166 (see also Desulfurization test) gas-cleaning method, 160–161, 161f tar cracking benzene, 167, 167f biomass pyrolysis gas, 167–168, 168f Biostable nanoparticles, 269 Boron-doped diamond (BDD) anode, NF3 production NH4F concentration and Ni2ỵ additive current efficiencies, 229230, 230f electrochemical fluorination, 222f, 230 nickel anode, 230–231 in NH4F 2HF chronopotentiogram, 225, 225f current efficiencies, 227, 229f, 229t diiodomethane drops, 225–226, 225f, 226t FE-5 anode, 224–225 galvanostatic polarization curves, 224–225, 224f SEM, 226, 227f, 228f steam-activated BDD electrode anodic polarization, 233–235, 234f current density and efficiency, 235, 236f galvanostatic polarization, 234–235, 235f Boron-doped diamond (BDD) electrodes electromotive force, 188 (see also Electromotive force (EMF)) inert oxygen evolution electrode, 189 LiCl-KCl eutectic melt Raman spectra, 193–194, 194f scanning electron microscopy, 193–194, 193f X-ray diffraction (XRD), 193–194, 194f LiCl-NaCl-CaCl2-Li2O system, 189 melt compositions, 194–195 oxygen electrode reaction (see also Oxygen electrode reaction, BDD) activity coefficient, 202–203 standard formal potential, 196–200 oxygen gas evolution cyclic voltammograms, 190–191, 191f infrared spectra, 190–191, 192f LiCl-Li2O and CaCl2-CaO systems, 192 standard potentials, 192 platinum anodes, 188–189 thermal stability, 190, 190f Boudouard reaction, 361–362, 406–407 Brnsted-Lowry acid-base theory, 442 l C Calculation of phase diagrams (CALPHAD) method, 50 Carbon dioxide capture and valorization, 366 Carbon nanopowders (CNPs) in electrochemical capacitors, 345–350 (see also Electrochemical capacitors) electrodeposition mechanism cyclic voltammograms, Li2CO3-Na2CO3K2CO3, 333–334, 333f, 336f gas evolution, 336 Gibbs energy, 334, 335t lithium carbide, 335–336 physical–chemical characterizations adsorption–desorption analyses, 343–344, 344t atomic force microscopy, 336–337, 339–340, 339f, 341f 2D-band, 338–339 micro- and mesoporosity, 344 Raman spectra, 338, 338f RMS value, 339–340 SEM and TEM, 337, 337f specific surface area, 344, 345f X-ray diffraction, 341, 342f X-ray photoelectron spectroscopy, 341–342, 342t, 343f Castner process, 463 Catalysis, molten ionic media historical development, 132–133 in situ spectroscopy, 147–149 multi-instrumental investigations, 138–142 physicochemical properties densities, 135, 135t electrical conductivities, 135–137 thermal properties, 135, 136t SO2 oxidation, 133–134 activity and deactivation, 142–145 mechanism of, 149–152 phase diagrams, 137–138, 138t vanadium crystalline compound formation, 145–146 V(IV) complex formation, 140–142 V(V) complex formation, 139–140 Cathodic discharge electrolysis current-voltage feature, 270, 271f FePt and CoPt nanoparticles, 275t metallic nanoparticles, 272 Plank’s black-body radiation law, 270–272 Index principles of, 270, 270f scanning electron microscope, 272, 272f visible spectra, 270–272, 271f X-ray diffraction, 273, 274f, 276f Chemla effect, 81–85 Chloride-fluoride melts, niobium synthesis NaCl and KCl, 314 NbO and Nb4O5, 314 oxygen content, cathodic deposit, 313, 313f phase composition, cathodic deposit, 314, 314f Chlorination actinide recovery principle of, 554, 555f quartz reactor, 555, 556f thermodynamic calculations, 554, 555f pyrochemical treatment, 513 Chlorine evolution reaction, 175 Composite electrolytes, 365 Compressed hydrogen gas, 451, 452t Contact and noncontact scheme, DC-SOFC, 404–405 by mixing, 409 in situ gasification, 406–408 nickel oxide, 406 physical contact, 405–406, 407t pyrolysis, 409 solid carbon anode, 408–409 Copper-neodymium system, 528–531, 529f, 531t Corrosion chloride salts, 261–263 molten fluoride salts (see also Molten fluoride salts, corrosion in) dissimilar material corrosion, 249–251 impurity-driven corrosion, 244–247 material development and performance, 255–260 redox control and electrochemistry, 252–254 thermal gradient-driven corrosion, 247–248 thermodynamic considerations, 242–244 molten fluoroborate salts, 263–264 radiolysis effects, 264 Countercurrent migration method, 80 advantages, 81 principle of, 80–81, 80f Critical current density (CCD), 219–220 563 Cyclic voltammetry LiF-CaF2 melt, 298–299 NaCl-KCl melt, 294–296 D Dehalogenation, 166–167, 166f Desulfurization test biomass pyrolysis gas, 165–166 simulated gas conditions, 162f CO2 effect, 164 desulfurization and gas composition, 163–164, 163t desulfurization and temperature, 162, 163f Dimensionally stable electrode (DSE), 189 Direct carbon fuel cell (DCFC), 365–366 Direct-carbon solid oxide fuel cell (DC-SOFC) advantages, 403 characteristics, 404 contact scheme by mixing, 409 in situ gasification, 406–408 physical contact, 405–406, 407t pyrolysis, 409 solid carbon anode, 408–409 DCFC, 403 high-temperature liquid electrolyte, 409–410 molten carbonate based HDCFC anode microstructure, 411, 411f carbon oxidation, 410–411, 410f, 411f lithium oxide, 412–413 MCFC working conditions, 411 OCV, 410, 412, 412f noncontact scheme, 404–405 Double strata concept, 546–547 Durathon® See Sodium metal halide (ZEBRA) battery system E Electric conductance agitation effect, 95–96 charge asymmetric binary anion systems, 90–91 charge symmetric multivalent binary systems, 88–90 Chemla effect, 81–85 dynamic dissociation, 95f agitation effect, 95–96 free space effect, 96–97 tranquilization effect, 97 564 Electric conductance (Continued) free space effect, 96–97 internal mobility, 80–81, 91–93 mobility, 79 molar conductivity, 79 monovalent binary cation systems, 86–88 self-exchange velocity, 91–93 transport number, 79 Electrochemical capacitors hybrid CNPs/MnO2 capacitors in K2SO4 charge/discharge cycle, 349, 349f cyclic voltamogramms, 348, 348f equivalent series resistance (ESR), 347 galvanostatic cycling, 347 PICACTIF carbon electrode, 349 1M NEt4BF4 in acetonitrile charge/discharge cycle, 349, 350f EDLC device, 349 XPS analyses, 349 Electrochemical stability LiCl-KCl eutectic melt Raman spectra, 193–194, 194f scanning electron microscopy, 193–194, 193f X-ray diffraction (XRD), 193–194, 194f melt compositions, 194–195 molten carbonate, 359, 360f Electrochemical synthesis niobium (see Niobium synthesis) tantalum (see Tantalum synthesis) Electrocrystallization, b-Tantalum (b-Ta) cubic KTa1ỵz O3 bronze morphology, 319, 320f NaCl-KCl-K2TaF7-K3TaOF6 melt, 319, 320t O/Ta molar ratio, 321–322, 321f phase composition, cathode products, 320, 321t Electrodeposition, 513 bulk lanthanides electrochemical behavior, 523 extraction efficiency, 523–524 gap potential, 525, 525t reduction potential, 523–524 carbon nanopowders cyclic voltammograms, 333–334, 333f, 336f gas evolution, 336 Gibbs energy, 334, 335t lithium carbide, 335–336 tantalum, 322–324 Index Electromotive force (EMF), 188 electrochemical reduction, 202 vs oxygen pressure, 197–200, 198f Electro-oxidation, 513 Electroreduction oxide fuel, 546–547 tantalum mono-oxyfluoride complexes, 324–327 Electrorefining actinide (see Actinide recovery, electrorefining) metal fuel, 544–546 oxide fuel, 546–547 Extended X-ray absorption fine structure (EXAFS) spectroscopy, 37 Extraction efficiency, 523–524 F Fast breeder reactor (FBR), 473 cycle, 543, 543f Fluctuating charge model, 92 Fluoride ion exchange, 8, 8f Fluorination, 513 Fluoroaluminates, NMR spectroscopy, 40–41 19 F NMR chemical shift, 38–39, 38f, 39f Force-matching method, 4–5 Free space effect, 96–97 FREGAT technology, 481 FUJI reactor, MSR graphite, 488 Hastelloy N, 486–487 mini-FUJI, 486 minor actinides, transmutation of, 485 primary system of, 483, 484f Pu as fissile, 484 safety of, 488–489 schematic diagram of, 483f super-FUJI, 485 233 U as fissile, 482–484 G Galvanostatic electrolysis chloride-fluoride melts, 313–314, 314f LiCl-KCl eutectic melt, 193–194 LiH production, 468t Gas-cleaning test, 160–161, 161f GEN IV systems advantages, 503–504 molten salt reactor Index concepts and characteristics, 505–512, 506t design, 504–505 fertile materials, 511 fissile materials, 511 liquid fuel, 504 minor actinide burner, 511 structural materials, 505 TRU, 512 Gibbs free energy carbon nanopowders, 334, 335t hydride formation, 452, 454f LiF-KF system, 51–53 lithium hydroxide, 461–462, 462t molten fluoride salts, 243, 243t Graphite, MSR, 488 Green-Kubo relation, 11 H Hall–He´roult cell, 171 inert anode merits for, 171 targets, 172 Hastelloy N, 486–487 composition, 256, 257f intergranular cracking behavior, 256f MSRE experiments, 255 316 stainless-steel, 258 weight change results, 259f Heat-transfer fluid (HTF) See Thermal energy storage (TES) system High-level liquid waste, pyropartitioning of, 547–548 Highly oriented pyrolytic graphite (HOPG), 338, 338f Hittorf method, 79–80 Hollandite-type a-Ky(Mn1-xCox )O2 nanofibers characterization, 375–377 cycling characteristics, 382–384, 384f discharge and recharge curves, 382–384, 383f energy-dispersive spectroscopy, 382, 382f oxidation state, 380 selected-area diffraction pattern, 380, 381f SEM, 382f TEM, 380–382, 381f XANES analysis, 380 XRD, 376t, 377, 379f chemical analysis of, 375–377 crystal structure of, 373, 374f 565 electrochemical measurements, 377 Liỵ ion-exchange reaction, 375, 384399 lithium batteries, 373 preparation of, 374–375, 376t Hot isostactic pressing (HIP), 210–213 Hybrid direct carbon fuel cell (HDCFC) molten carbonate anode microstructure, 411, 411f carbon oxidation, 410–411, 410f, 411f lithium oxide, 412–413 MCFC working conditions, 411 OCV, 410, 412, 412f Hydrofluoric acid (HF), 243, 245–246 Hydrofluorination, 513 Hydrogen-absorbing alloy, 451, 452t Hydrogen storage and transportation system characteristics, 451–452 chemical hydride, 452, 453t compressed hydrogen gas, 451, 452t cycle of, 452, 453f electrolysis, 453–454 chloride melt and hydroxide raw materials, 464–465 of hydroxide, 463–464, 465f experimental results capacitance voltage measurements, 466–467 electrode potentials, 467, 468f galvanostatic electrolysis, 468t hydrogen-absorbing alloy, 451, 452t LiH production experimental apparatus and procedure, 456–457 industrial applications, 461, 462f kinetic studies, 454–456, 455t process under isothermal state, 458–460 reaction initiation, 457–458 reaction rate, 458–460 thermodynamic base of, 454, 455f LiOH properties and thermodynamics, 461–462 liquid hydrogen, 451, 452t I Incoloy 800H, 251, 252f, 260f Inert anode candidate materials, 172–173 carbon as, 181 definition of, 172 566 Inert anode (Continued) experimental evaluations metal polarization curves, 177–179 solubility test, 179–181 Hall–He´roult cell, 171, 172 molten carbonate electrolysis, 183–184 in molten chloride metal stability, 176 oxide/compounds, stability and conductivity, 176–177 thermodynamic reactions, 175–176 in molten oxides, 181–183 Inorganic molten salt electrolyte batteries See Sodium metal halide (ZEBRA) battery system In situ gasification, DC-SOFC, 406–408 In situ spectroscopy, molten fluoride salts alkali fluorides, 37–39 alkaline-earth fluorides, 39–40 EXAFS, 37 fluoroaluminates, 40–41 local structure, 36 nuclear magnetic resonance spectroscopy, 35f, 36 Raman spectroscopy, 34–36, 35f rare earth fluorides, 41–42 X-ray scattering, 37 zirconium and thorium fluorides, 42–43 Integral fast reactor (IFR) process, 514 Internal mobility dynamic dissociation, 95f agitation effect, 95–96 free space effect, 96–97 tranquilization effect, 97 experimental method for, 80–81 isotherms of, 82f vs mole fraction, 86f reciprocals of, 83f and self-exchange velocity, 91–93 Ionic conductivity, AlCl3-NaCl system, 443, 444f Ionic transport See Electric conductance Iridia-mediated kinetically stable inert anode (IMIA), 182–183, 182f ITU’s salt database, 54–56 K Kelvin equation, 343–344 Klemm method See Countercurrent migration method Index L Lanthanide separation See Pyrochemical process Lanthanides extraction process of alloys advantages, 527 coreduction with aluminum ions, 533–535 depolarization effect, 527, 528f Nernst law, 527, 528t reactive solid cathode, 528–532 reduction on liquid cathode, 535–538 electrodeposition electrochemical behavior, 523 extraction efficiency, 523–524 gap potential, 525, 525t reduction potential, 523–524 nuclear spent fuel reprocessing, 521 oxygenated compound precipitation Nd and Gd systems, 526, 527f precipitation equilibrium constants, 525, 526t samarium, 526, 527f square wave voltammetry, 526, 526f thermodynamic analysis, 525, 526t partitioning and transmutation concept, 521 solvent selection, 522–523 Latent heat storage system, 415, 431–432 See also Thermal energy storage (TES) system LiCl-KCl eutectic salt actinide recovery (see Pyrochemical process) electrochemical dealloying, 293–294 electrochemical recycling, 242 electrochemical stability Raman spectra, 193–194, 194f scanning electron microscopy, 193–194, 193f X-ray diffraction (XRD), 193–194, 194f RENi2 phase cathodic current density vs time, 291, 291f cyclic voltammetry, 289–291, 290f DyNi2 film vs electrolysis time, 291, 292f, 293f Dy-Ni phase diagram, 289, 290f scanning electron microscope, 291, 292f standard formal potential, 199f LiF-CaF2 melt cyclic voltammetry, 298–299 Index Nd-Ni and Dy-Ni alloys, 300 open-circuit potentiometry, 298–299 RE-Ni alloys and equilibrium potentials, 300 LiF-KF system diffusion coefficients, 11, 12f thermodynamic assessment enthalpy, 54 excess Gibbs energy, 53–54 Gibbs energy functions, 51–53 liquid solution, 53 phase diagram shape, 51, 52f Light scattering, 19–20 Light water reactor (LWR), 474 Li-ion batteries, 331–332 Liquid cathode, lanthanide extraction cyclic voltammograms, 537–538, 537f melting point and vapor pressure, 535–537, 537t metallurgical preparation, Nd and Bi, 538, 538f Liquid hydrogen, 451, 452t Liquid-liquid extraction, 513 Lithium hydride (LiH) production See also Hydrogen storage and transportation system experimental apparatus and procedure, 456–457 industrial applications, 461, 462f kinetic studies, 454–456, 455t process under isothermal state, 458–460 reaction initiation, 457–458 reaction rate, 458460 thermodynamic base of, 454, 455f Lithium (Liỵ) ion-exchange reaction electrochemical lithium insertion properties charge-discharge curves, 390–393, 392f, 393f cycle performances, 394, 395f initial discharge curves, 394, 395f performances of, 390–393, 392t, 394t kinetic and structural properties charge-discharge cyclings, 398–399, 399f chemical compositions and BET surface areas, 396t chemical diffusion coefficients, 398f K-Co-Hol vs Li-Co-Hol, 394–397, 396t K-Hol vs Li-5-Hol, 394–397, 396t lattice parameters, 396t N2 adsorption-desorption isotherms, 394–397, 395f 567 Nyquist plot, 397–398, 397f pore distribution and properties, 394–397, 395f, 396t single-phase reaction, 397–398, 398f structural variations, 398–399 XRD, 398–399, 399f KyMnO2.zH2O chemical compositions, 384–385, 385t dehydration process, 387–388, 387f Kỵ-type a-MnO2, 387388, 387f lattice parameters, 386, 386f a-MnO2, 386–387 oxide structure exchange, 386 TEM, 386, 387f unit-cell parameters, 384–385, 385t XRD, 384–385, 385f Ky(Mn1-xCox)O2 zH2O, co-doping chemical compositions, 388–389, 389t dehydrated products, 389–390, 391f, 391t SEM-EDX, 389, 390f TEM, 389, 390f unit-cell parameters, 388–389, 389t XRD, 388–389, 388f l M MCFC See Molten carbonate fuel cell (MCFC) Metal dissolution reaction, 175 METAPHIX experiment, 544 Molecular dynamics simulations, 2–3 Molten carbonate fuel cell (MCFC) electrode materials anode, 363–364 cathode, 363 interconnects, 364, 364f electrolyte compositions and matrix, 362–363 LiAlO2 matrix, 359–360 power generation test with, 168 principle and electrochemical reactions anode, 360 Boudouard reaction, 361–362 cathode, 361 superoxide mechanism, 361 prospects, 364–365 Molten carbonates HDCFC (see Direct-carbon solid oxide fuel cell (DC-SOFC)) physicochemical properties conductivity, 357–358 568 Molten carbonates (Continued) density value, 356, 356t electrochemical stability diagrams, 359, 360f oxoacidity, 358–359 (see also Oxoacidity) surface tension, 356–357, 357t Molten fluoride salts, corrosion in development and performance FLiBe salt, 257–258 FLiNaK salt, 257–258, 260t graphite samples, 259f Hastelloy N, 256 (see also Hastelloy N) Ni plating, 258–260, 260f SEM and EDS, 259f tellurium, 255–256 dissimilar material corrosion alloy testing, 249–251 Cr-carbide, 251 high chromium alloys and weight loss, 250f Incoloy 800H, 251, 252f scanning electron microscopy, 251f weight loss measurements, 250f impurity-driven corrosion FLiBe salt, 246 hydrofluorination treatment, 246–247 Inconel 600 alloy, 246, 247f moisture, 245 vacuum-drying process, 246–247 redox control and electrochemistry redox potential, 253 thermodynamic free energies, 252–253 UF3/UF4, 252 weight-loss 316 stainless steel, 253f thermal gradient-driven corrosion Hastelloy N, 247–248, 249f molten salt convection flow loop, 247–248, 248f thermodynamic considerations Gibbs free energy, 243, 243t hydrofluoric acid, 243 Lewis acid–base properties, 244 NASA study, 244 Molten salt heat treating characteristics, 101–102 heating systems, 103 salt containers, 102–103 surface coatings, 104 Molten salt reactor cell, 142, 143f Index Molten salt reactors (MSRs) See also Thorium molten salt nuclear energy synergetic system (THORIMS-NES) binary systems BeF2-PuF3, 61–62, 62f LiF-BeF2, 57–58, 57f LiF-NaF, 56, 56f LiF-PuF3, 61, 61f LiF-ThF4, 58, 59f, 59t LiF-UF4, 58–59, 60f NaF-BeF2, 57–58, 58f NaF-PuF3, 61, 62f ThF4-UF4, 59–60, 60f chemistry of, 488 concepts for, 49 FUJI-Pu, 484 FUJI-U3, 482–484 GEN IV systems concepts and characteristics, 505–512, 506t design, 504–505 fertile materials, 511 fissile materials, 511 liquid fuel, 504 minor actinide burner, 511 structural materials, 505 TRU, 512 graphite, 488 ITU’s salt database, 54–56 mini-FUJI, 486 minor actinides transmutation, 485 MOSART concept, 71–73 MSFR concept, 74 safety of, 488–489 structural alloy, 486–487 super-FUJI, 485 ternary systems LiF-BeF2-PuF3, 64–66, 66f, 67f LiF-BeF2-ThF4, 64, 65f LiF-CeF3-ThF4, 68–70, 70f, 70t LiF-NaF-BeF2, 63, 63f, 64t LiF-NaF-PuF3, 66–68, 67f, 68f LiF-ThF4-UF4, 63–64, 65f NaF-BeF2-PuF3, 68, 69f Molten salts dynamic properties diffusion coefficients, 11 electrical conductivity, 11–12 thermal conductivity, 10–11 viscosity, 8–10 Index industrial uses, 241 methods and models interaction potential parameterization, 4–5 molecular dynamics simulations, 2–3 polarizable ion model, rigid ion model, nuclear energy applications, 241–242 (see also Nuclear applications) primary and secondary salts, 241 structure, 6–8 N NaCl-KCl melt cyclic voltammetry, 294–296 Dy-Ni alloys, 297 equilibrium potentials, 297t, 298 Nd-Ni alloys, 296297 open-circuit potentiometry, 294296 Naỵ ions transport, ZEBRA sysytem, 440–441 Nanoparticles bottom-up methods, 269–270 magnetic, 269 production (see Plasma-induced discharge electrolysis method) size control (see Rotating disk anode) Nernst equations, 528t, 533–534 Nickel-oxide composites, 210–213 Niobium synthesis chloride-fluoride melts NaCl and KCl, 314 NbO and Nb4O5, 314 oxygen content, cathodic deposit, 313, 313f phase composition, cathodic deposit, 314, 314f experimental method, 312–313 fluoride and oxyfluoride-fluoride melts K3NbOF6, 315–317 NbO and RbF, 317, 317f phase composition, cathodic deposits, 316f tetragonal unit cell parameters, 318t oxygen, 311 Nitrogen trifluoride (NF3) production boron-doped diamond (BDD) anode (see also Boron-doped diamond (BDD) anode, NF3 production) current density and current efficiency, 232–233, 234f 569 galvanostatic polarization, 232, 232f NH4F concentration and Ni2ỵ additive, 228–231 in NH4F 2HF, 223–227 SEM observation, 232, 233f spicular structure, 232 steam-activated BDD electrode, 233–235 carbon electrode, in NH4F KF mHF ammonia and ammonium formation, 221, 222f anodic polarization curves, 216–217, 217f critical current density, 219–220 current efficiency vs density, 221, 221f electrochemical fluorination, 221–222 galvanostatic polarization curves, 219–220, 220f GIC, 218–219, 219f LFIC anode, 216–217 nickel fluorides, 223 X-ray diffraction, 218–219, 219f, 220f nickel-based composite, in NH4F 2HF anodic polarization curves, 210–213 cathode and anode gas, 209–210, 211t, 213, 214t, 216t current efficiencies, 211t, 214t, 216t hot isostactic pressing, 210–213 metal and alloy classification, 208t polarization curves, 208, 209f XRD and X-ray photoelectron spectroscopy, 213 Nuclear applications advantages, 497 coolants advanced high-temperature reactor, 516 figure of merit, 515, 515f heat transfer medium, 515 sodium fast reactor, 516 drawbacks, 497 fluorine production, 501–503 GEN IV (see GEN IV systems) hafnium separation, 498–501 pyrochemical treatments chlorination, 513 electrochemical reactions, 514, 514f electrodeposition/electro-oxidation, 513 fluorination, 513 hydrofluorination, 513 integral fast reactor process, 514 liquid-liquid extraction, 513 oxide precipitation, 514 l l l l 570 Nuclear applications (Continued) oxide reduction, 513 reductive extraction, 513 zirconium rolling and forming, 501 separation, 498–501 Nuclear energy technology applications, 492–493 energy problem fission energy production, 472, 473f logistic function, 471–472, 472f primary energy consumption, 471, 472f fast breeder reactor, 473 light water reactor, 474 THORIMS-NES (see Thorium molten salt nuclear energy synergetic system (THORIMS-NES)) thorium molten salt reactor, 474–476 aircraft reactor experiment, 475, 475f design of, 475, 475f graphite moderator, 475, 476f LWR dangers, 474 molten salt breeder reactor, 476 O Open-circuit potentiometry LiF-CaF2 melt, 298–299 NaCl-KCl melt, 294–296 Oxoacidity activity coefficient, 359 dissociation constant, 358 self-ionization equilibrium, 358 Oxygenated compound precipitation Nd and Gd systems, 526, 527f precipitation equilibrium constants, 525, 526t samarium, 526, 527f square wave voltammetry, 526, 526f thermodynamic analysis, 525, 526t Oxygen electrode reaction, BDD activity coefficient, 202–203 Gibbs free energy, 200–201, 200f, 202 standard formal entropy and enthalpy, 201–202, 201f, 201t, 202f standard formal potential cyclic voltammograms, 196, 196f electromotive force, 197–200, 197f EMF vs oxygen pressures, 197–200, 198f in LiCl-KCl mixtures, 199t Nernstian equation, 196–197 Index platinum electrode, 197–200 temperature dependence, 199f Oxygen evolution reaction, 175 P Partitioning and transmutation (P&T) strategy, 541 PFG NMR technique, 36 Phase-change materials (PCMs), 415 Phase diagrams AlCl3-NaCl system, 441–442, 441f alkali nitrate salts, 427–429 LiF-KF system, 51, 52f sulfur dioxide, 137–138, 138t Pilot plant, 486 Plank’s black-body radiation law, 270–272 Plasma-induced discharge electrolysis method anodic discharge electrolysis copper oxide and iron oxide, 275–276, 277f nickel oxide, 275–276, 277f principle of, 275, 276f Ta nanoparticles, 277–279, 278f titanium oxide particles, 275–276, 277f transition metal sulfides, 276, 278f XPS spectra, 276, 278f cathodic discharge electrolysis current-voltage feature, 270, 271f FePt and CoPt nanoparticles, 275t metallic nanoparticles, 272 Plank’s black-body radiation law, 270–272 principles of, 270, 270f scanning electron microscope, 272, 272f visible spectra, 270–272, 271f X-ray diffraction, 273, 274f, 276f rotating disk anode, 280f empirical equation, 279 median particles and variance, 283, 283t, 285t melt thickness vs rotation speed, 279, 280f relative frequency, 280–282 residence time, 280–282, 281t transmission electron microscopy, nickel, 280, 281f, 282f, 283, 284f, 285f Plutonium production, 477–478 Plutonium uranium extraction (PUREX) technology, 474 Polarizable ion model (PIM), Index Potential-oxoacidity diagram, of eutectic Li-K, 359, 360f Pulsed neutron diffraction CsCl-NaCl-LaCl3 system, 26–27 CsCl-NaCl system, 23–26 CsCl-NaCl-YCl3 system, 28–29 Pyrex glass, 102–103 Pyrochemical process advantages, 542–543 drawbacks, 542–543 metallic fuel reprocessing development electroreduction, 546–547, 546f electrorefining process, 544–547 fast breeder reactor cycle, 543, 543f METAPHIX experiment, 544 pyropartitioning of HLLW, 547–548, 548f molten salt reactor fuel cycle, 556–557 partitioning and transmutation strategy, 541 selective grouped recovery (see Actinide recovery) Q Quartz reactor, chlorination, 555, 556f R Radiolysis effects, 264 Raman spectroscopy industrial SO2 oxidation molten salt catalyst, 133 LaCl3, 19–22 molten fluoride salts, 34–36 Rare earth-nickel (RE-Ni) alloys applications, 287 LiCl-KCl eutectic melt (see also LiCl-KCl eutectic salt) electrochemical dealloying, 293–294 RENi2 phase, 289–292 LiF-CaF2 melt cyclic voltammetry, 298–299 Nd-Ni and Dy-Ni alloys, 300 open-circuit potentiometry, 298–299 molten salt electrochemical process features, 289 formation by, 306t principles, 288 NaCl-KCl melt cyclic voltammetry, 294–296 Dy-Ni alloys, 297 Nd-Ni alloys, 296–297 571 Nd-Ni and Dy-Ni alloys, formation potentials of, 298 open-circuit potentiometry, 294–296 recycling process Dy/Nd ratio, potential dependence of, 302–304 permeation cell, 304–305 Reactive solid cathode, lanthanide extraction copper-neodymium system, 528–531, 529f, 531t depolarization effect, 528, 529f efficiencies, 531, 532, 532t experimental reduction potential, 530f intensiostatic electrolysis, 531, 532f kinetics of, 531 potentiostatic electrolysis, 531 processing speed, 532 RE2Fe14B magnet, 301–302 Research Institute for Atomic Reactors (RIAR), 17 Rigid ion model (RIM), Rotating disk anode, 280f empirical equation, 279 median particles and variance, 283, 283t, 285t melt thickness vs rotation speed, 279, 280f relative frequency, 280–282 residence time, 280–282, 281t transmission electron microscopy, nickel, 280, 281f, 282f, 283, 284f, 285f S Salt bath nitriding aerated baths, 119–121 bath compositions, 124–127 electrochemical nitriding, 123–124 electrode potential, 121–123 thermodynamic properties, 115–119, 117t Samarium, 526, 527f Sensible heat storage system, 415, 429–431 See also Thermal energy storage (TES) system Sodium fast reactor, 516 Sodium metal halide (ZEBRA) battery system aims of, 439 grid applications, 448 molten salt electrolyte properties acid-base properties, 442–443 AlCl3-NaCl system, 443–445 cell design, 439–440, 440f 572 Sodium metal halide (ZEBRA) battery system (Continued) Naỵ ions transport, 440441 physicochemical properties, 443445 sodium tetrachloroaluminate, 441–442 safety and operation limits beta"-alumina separator, 447 lifetime/cycle life considerations, 447–448 maximal charging voltage, 446 overcharge, 445–446 overdischarge, 446–447 Sodium tetrachloroaluminate See also Sodium metal halide (ZEBRA) battery system density and viscosity of, 444t preparation of, 441–442 uses in ZEBRA technology, 439, 441–442 Solar power applications, high-temperature molten salt for See Thermal energy storage (TES) system SoNick® See Sodium metal halide (ZEBRA) battery system Square wave voltammogram aluminum ions, lanthanide extraction, 534, 534f oxygenated compound precipitation, 526, 526f Static high-temperature 51V NMR, 147–148 Steel nitriding carbon, 107 compound layers, 114–115 description, 104–105 hardness profile, 109–113 alloying elements, 110–112, 111f, 113t cooling rate, 110 metallurgical state, 113, 113f processing time, 109–110 temperature, 110 metallic alloying elements, 108–109 pure iron, 105–107 Stress corrosion cracking (SCC), 425–427 Sulfur dioxide (SO2) oxidation catalyst, 133–134 activity and deactivation, 142–145 mechanism of, 149–152 phase diagrams, 137–138, 138t Sulfuric acid production See Sulfur dioxide (SO2) oxidation catalyst Supercapacitors, 331–332, 346 Supported ionic liquid phase (SILP) catalysts, 131 Index T Tantalum synthesis electrodeposition b-tantalum, 318–319 (see also b-Tantalum (b-Ta)) CsCl-K3TaOF6, 322–324 electroreduction, CsCl melt cyclic voltammogram, 324–325, 325f, 326 K3TaOF6, 325–326 tantalum mono-oxyfluoride complexes, 324–325 TaO, 326–327 experimental method, 312–313 Tar cracking benzene, 167, 167f biomass pyrolysis gas, 167–168, 168f TES See Thermal energy storage (TES) system Tetrachloroaluminate, acid-base properties of, 442–443 Thermal conductivity, 10–11 Thermal decomposition, alkali nitrate salts DLR measurement, 422f dry and wet melt, 424–425 equilibrium reaction, 421–422 mass losses of, 420 metal-nitrate bond, 420–421 polarizing effect, 420–421 reaction kinetics, 422, 423f secondary reactions, 422–423 temperature vs cation metallic radius, 421, 421f thermogravimetry, 423–424, 424f Thermal energy storage (TES) system, 416t alkali nitrate (see also Alkali nitrate salts) multicomponent salt systems, 427–429 phase diagrams, 427–429 steel corrosion, 425–427 thermal decomposition, 420–425 thermal properties, 418–420, 419f anhydrous salt properties, 415–417, 417t characteristics, 415 concentrated solar power applications latent heat storage system, 431–432 sensible heat storage system, 429–431 phase-change materials, 415 solar salt, 417–418 types of, 415, 416f Thorium fluorides, 42–43 Index Thorium molten salt nuclear energy synergetic system (THORIMS-NES) abundant resource, thorium, 477, 478t accelerator molten salt breeder, 489–490 chemical processing, 491–492 features of, 477 fissile production, 491–492 molten salt as FLiBe, 479 fuel processing medium, 481–482 heat transfer medium, 480t, 481 liquid fuel element, 479–480 molten salt power reactor (see Molten salt reactors (MSRs)) plutonium and minor actinides production, 477–478 proliferation resistance, 478 reactor and fuel breeder separation, 482 573 Tranquilization effect, 97 T-x phase diagram, 50 V Vanadium crystalline compound formation, 145–146 VoltaMaster version 6, 312 W Windowless cell, 40 Z ZEBRA battery See Sodium metal halide (ZEBRA) battery system Zirconium fluorides, 42–43 rolling and forming, 501 separation, 498–501 .. .Molten Salts Chemistry From Lab to Applications Intentionally left as blank Molten Salts Chemistry From Lab to Applications Edited By Fre´de´ric Lantelme Henri Groult AMSTERDAM • BOSTON •... Corrosion in Molten Salts K Sridharan and T.R Allen 12.1 Introduction 12.2 Corrosion in Molten Fluoride Salts 12.3 Corrosion in Molten Chloride Salts 12.4 Corrosion in Molten Fluoroborate Salts 12.5... importantly from one system to another, and molecular simulations are techniques of choice for (i) filling Molten Salts Chemistry © 2013 Elsevier Inc All rights reserved 2 Molten Salts Chemistry

Ngày đăng: 13/03/2018, 15:16

TỪ KHÓA LIÊN QUAN