Nghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mì (NCKH)

124 243 0
Nghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mì (NCKH)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Nghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mìNghiên cứu quá trình tạo bùn hạt hiếu khí trên mô hình SBR (sequencing batch reactor) đối với nước thải tinh bột mì

M CL C Trang M C L C i DANH M C CÁC CH VI T T T iii DANH M C B NG BI U iv DANH M C HÌNH v TÓM T T viii M U NG QUAN TÀI LI U 1.1.Th c tr ng s n xu t công ngh x c th i tinh b t 1.1.1.Quy s n xu t .7 1.1.2.Tính ch c th i s n xu t tinh b t 1.1.3.M t s công ngh x c th i s n xu t tinh b t 11 1.2.Gi i thi u b SBR 19 c tính chung c a b SBR .19 m .20 1.3.T ng quan v công ngh bùn h t hi u khí ng d ng 21 1.3.1.Khái quát v bùn h t 21 hình thành 23 1.3.3.Các y u t 1.3.4.C u trúc s ng .29 ng c a vi sinh v t 46 1.3.5.Các ng d ng c a công ngh bùn h t hi u khí 50 U 55 i u tài li u 55 2.2 n nghiên c u 55 2.2.1.V t li u nghiên c u 55 2.2.2.Mơ hình nghiên c u 58 2.2.3.Thi t b s d ng trình thí nghi m 60 2.3 N u 61 2.3.1.Th c nghi nh t i tr ng thích h p 61 2.3.2.Th c nghi c tính c a bùn h t hi u khí 62 2.3 ân tích 67 2.4 lý s li u 67 T QU NGHIÊN C U VÀ TH O LU N 68 3.1 N i dung 1: S hình thành bùn h t hi u khí qua t i tr ng .68 3.1.1 S hình thành phát tri n c a bùn h t 68 3.1.2 ng c a t i tr ng h 3.2 N 3.2.3 S 3.2.4 M nh c a h t 81 c tính c a bùn h t hi u khí 86 3.2.1 S phân b 3.2.2 Kh n tính c h t bùn .86 ng c a h t bùn .89 ng sinh kh i b 93 vi sinh v t bùn h t hi u khí .96 K T LU N VÀ KI N NGH 99 TÀI LI U THAM KH O 101 PH L C .110 ii DANH M C CÁC CH AGS : Bùn h t hi u khí BOD : Nhu c u oxy sinh h c VI T T T CMTR : B ph n ng tu n hoàn h n h p COD : Nhu c u oxy hóa h c DO : Oxy hòa tan EBPR : ECP : S n ph m ngo i bào EGSB : Khu EPS : Ch t Polyne ngo i bào F/M : T l th GAO : Vi sinh v HRT : Th i gia MBR : B l c sinh h c b ng màng MLSS :N sinh kh MLVSS : N sinh kh ng lo i b photpho sinh h c i qua l p bùn h t t c ng OLR : T i tr ng h PAC : Polime aluminium chloride PAO : Vi sinh v SBR : B ph n ng theo m SRT : Th SS : Ch t r SVI : Ch s th tích bùn l ng TCN : T ng cyanua TCVN : Tiêu chu n Vi t Nam TKN :T UASB : B ph n ng k khí v i dòng ch n ng bùn ho t tính iii c qua l p DANH M C B NG BI U B c th i phát sinh t trình s n xu t tinh b t 10 B ng 1.2: Thành ph n tính ch B ng 1.3: Cơng ngh x c th i tinh b t B ng 2.1: Thơng s B ng 2.2: Thành ph c th i tinh b t .10 m ts ch bi n 14 c th i tinh b t .56 ng- ng 57 B ng 2.3: hóa ch t s d ng thí nghi m 58 B ng 2.4: Các thi t b dùng cho nghiên c u 60 B ng 2.5: Ch B ng v n hành th c nghi m kh o sát t i tr ng (OLR) 62 an sinh kh i m iv vi khu n (dtm) .98 DANH M C HÌNH Hình 1.1: Các khu v c tr ng khoai Vi t Nam .8 Hình 1.2: B trí chung h th ng x c th i công ty b t Tân Châu 11 Hình 1.3: B trí chung h th ng x c th i công ty b t Tây Ninh 12 h th ng x c th i công ty b c Long .13 Hình 1.5: Chu k ho ng c a b SBR .20 Hình 1.6: H th ng x c s d ng bùn h t hi u khí t i Hà Lan .22 Hình 1.7: hình phát tri n h xu t b i Pareboom 23 Hình 1.8: hình h 24 Hình 1.9: hình b c .24 Hình 1.10: hình chuy n v proton kh Hình 1.11: hình liên k c 25 26 Hình 1.12: S hình thành tan v c a h t 29 Hình 1.13: Vi c u trúc c a h t s d ng glucose (a) vi c u trúc c a h t s d ng acetate (b) .30 Hình 1.14: Ki u dòng ch y b ph n ng c c dòng (a) b ph n ng tu n hoàn h n h p (b) 32 Hình 1.15: So sánh tính k t cc ab m tt c (thanh màu tr ng) v n c dòng b m t khác (thanh t i) 34 Hình 1.16: S tích t c a cation hóa tr bùn h t hi u khí phát tri n th i l ng khác 38 Hình 1.17: Hình nh c a h c t o v i t l F/M t 0,3-1,1 40 Hình 1.18: C u trúc c a bùn ho t tính (A) bùn h t hi u khí (B) 47 v Hình 1.19: trình chuy n k khí hi u khí c u trúc bùn h t hi u khí 48 Hình 2.1: Quy trình chu n b c th i tinh b t gi nh 56 Hình 2.2: hình th c nghi m b SBR 59 Hình 2.3: Quy trình pha lỗng m u 65 Hình 3.1: Bùn gi ng 68 Hình 3.2: M m bùn sau tu n ho Hình 3.3: ng 69 n thích nghi .70 Hình 3.4: S i COD theo th i gian chu k n thích nghi 71 Hình 3.5: Bùn h t sau tu n 72 Hình 3.6: Bùn h t sau tu n 73 Hình 3.7: Bùn h t sau 11 tu n 73 Hình 3.8: Bùn h t sau 14 tu n 74 Hình 3.9: Bùn h t sau 16 tu n 74 Hình 3.10: Bùn h t sau 18 tu n .75 Hình 3.11: MLSS b ph n ng SS dung d gian kh c th i th i ng 77 Hình 3.12: S n hình m t chu trình tr ng thái nh (tu n th c a thí nghi m) 78 Hình 3.13: Quá trình l ng c a h t .79 Hình 3.14: S i t l F/M trình ho ng 80 Hình 3.15: Bùn h t sau 20 tu n .81 Hình 3.16: Hi u su t x lý COD trình ho vi ng 82 Hình 3.17: S Hình i amoni trình ho i nitrit, nitrat trình ho ng 84 ng .85 Hình 3.19: Quan sát bùn h t hi u khí qua kính hi n vi 87 Hình 3.20: Phân b c h t bùn qua t i tr ng 88 Hình 3.21 ch Hình 3.22 i hình SVI ho Hình i t l MLVSS/MLSS b ph n ng 93 Hình i MLSS b ph n ng .94 Hình 3.26: S im c trình v n hành SBR 89 ng 68 ngày 91 vi sinh v t qua t i tr ng 97 vii TĨM T T Tình hình nhi c Vi m t nh ng ngu n gây ô nhi m c n quan tâm xu t tinh b t Trong nghiên c u tác gi nghi m d a b khí Nghiên c c th i t ho n hành xây d ng hình thí kh o sát s hình thành phát tri n c a bùn h t hi u c th c hi n v ng s c khí l/phút ngu n cacbon t c th i tinh b t K t qu thí nghi m cho th y r ng, v i OLR = 5kgCOD/m3.ngày, bùn h t hình thành sau tu n v h t hi u khí t u cho kh 5kgCOD/m3.ngày N t hi ng kho ng 90ng h p thí nghi m bùn có th trì kho ng 7-11 g/l SVI ml/g, s hình thành h t hi u khí SBR v ng t 0,1 30-50 c th i tinh b t V n n 3,8 cm/s T i tr kgCOD/m3ngày lên 7,5 kgCOD/m3 kh l ng t c l n 1-2 mm Bùn lý COD t 94% T i tr ng t t c l ng c a bùn h ng s n 2,5 ng c a bùn h t hi u khí sau m t th i gian c h t l n nên gây khó t khu ch tán vào lõi c a h t, làm cho h t b n t K t qu là, l p phá v m vi sinh v t t 8,5×1011 n T l MLVSS/MLSS cao 90-94%, 9,5×1011 u 1,23×1011(CFU/g) viii u so v i bùn ho t M Lý ch U tài [12] 3000 mg/l, nit 70 mg/l BOD 450 mg/l, photpho 14750 mg/l, 17000 mg/l[11], Vi t Nam, ho t tính c th i tinh b t ch y u mc ch t r c x lý b ng h th ng bùn ng sinh kh 2kg COD/m3 u cao, t i tr ng x lý th p (0,5 c n ph i tìm nh ng cơng ngh m i v m b o hi u qu v m ng yêu c u v m t kinh t phù h p v Quá trình t o bùn h n, n u ki n th c t c a doanh nghi p c nghiên c u vào nh ng th p niên 1980, t p trung ch y u bùn h t k khí b UASB[81] Cơng ngh t o bùn h nghiên c u r ng rãi kho ng t h bùn h t m c a bùn ho t tính truy n th ng, cn tr ng ch t h c phát tri n [93] Nhi u nghiên c hi u khí có th kh c ph c h u h kh ng v a sinh kh i cao, có kh o, c c, r n ch c, có kh ct i ng th i ch t nitrogen[52, 70, 83, 115] Bùn h t có v n t c l ng l s th tích bùn SVI nh ml/g[102], kh tích c a cơng trình l ng phía sau Ch ng t t s làm gi c t i tr ng h [54], ch c di n n 15 kgCOD/m3.ngày[18] H u h t nghiên c u t o h t hi u khí th gi i Vi t Nam c th c hi c th i t ng h p bao g m glucose, sucrose, axetat, ethanol [2, 5, 31, 106, 107] m t s nghiên c u x ng bùn h t hi u khí c th i th c t [32, 55] Tuy nhiên s hình thành h t hi u khí nh ng ng h p v v i vi c gi àng thi u h t v hi u qu c a h t hi ng ch t h u lo i c th i công nghi i a, khơng có nghiên c u v vi c s d ng h t hi u khí vào x lý m t nh ng ngu n ô nhi m nh t Vi t Nam T nh ng phân tích cho th y vi c th c hi trình t o bùn h t hi iv s c c n thi t; nh m m n tài: u h t c th i tinh b kh o sát s hình thành nh c a h t hi u khí t n h t hi u khí hình thành khoai mì; t bùn h c th i tinh b t - c th i tinh b t cho vi c phát tri n công ngh sinh h c hi u khí s d ng x c th i tinh b c bi t công ngh SBR D ki n c t trình nghiên c u s r t có ích cho vi c c i thi n s nh phát tri n c a h t hi u khí d a ph n ng sinh h v y, nghiên c g thành h t hi u khí x nh t i tr ng h c th i tinh b t mì, nh n c th i Vì p cho s hình iv c tính v t lý sinh h c c a bùn h t 2.1 M c tiêu chung T o bùn h t hi iv i c th i tinh b t T bùn h t hi u khí vào vi c x 2.2 cho vi c phát tri n công ngh s d ng c th i tinh b t quy công nghi p M c tiêu c th u ki n hình thành nh c a bùn h t hi u khí b SBR c tính c a bùn h t hi u khí Nhi m v nghiên c u i u ki n hình thành nh t i tr ng h nh c a bùn h t hi u khí b SBR p cho vi c hình thành bùn h t b t nh ng c a t i tr ng h n tính nh c a h t bùn c th i tinh [14] Tr c (2007), c, th c ph m, NXB Giáo d c [15] Vi n Khoa h c Công ngh ng (2010), Tài li ng d n s n xu t s n xu t tinh b t s n, B Giáo d o-B Tài li u ti ng Anh [16] M.K de Kreuk A Mosquera-Corral, J.J Heijnen, M.C.M van Loosdrecht (2005), "Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor", Water Research, 39, 2676 2686 [17] W R Abma, Willie Driessen, R Haarhuis, Mark van Loosdrecht (2010), "Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater", Water Science and Technology, 61(7), 17151722 [18] Sunil S Adav, Duu-Jong Lee, Juin-Yih Lai (2010), "Potential cause of aerobic granular sludge breakdown at high organic loading rates", Appl Microbiol Biotechnol, 85(5), 1601 1610 [19] Sunil S Adav, Duu-Jong Lee, Kuan-Yeow Show, Joo-Hwa Tay (2008), "Aerobic granular sludge: Recent advances", Biotechnology Advances, 26(5), 411423 [20] Emmanuel I Ugwu and Jonah C Agunwamba (2012), "Detoxification of cassava wastewater by alkali degradation", Journal of Research in Environmental Science and Toxicology, 1(7), 161-167 [21] James Barnard (2015), Granular activated sludge the future of biological nutrient removal, Clarke Prize Conference On Water Sustainability [22] J P Bassin, R Kleerebezem, M Dezotti, Mark Van Loosdrecht (2012), "Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge", Chemosphere, 89(10), 1161-1168 [23] J J Beun, A Hendriks, Mark van Loosdrecht, E Morgenroth, P A Wilderer, J J Heijnen (1999), "Aerobic granulation in a sequencing batch reactor", Water Research, 33(10), 2283-2290 [24] J J Beun, Mark Van Loosdrecht, J J Heijnen (2002), "Aerobic granulation in a sequencing batch airlift reactor", Water Research, 36(3), 702-712 [25] Paul L Bishop, Tian C Zhang, Yun-Chang Fu (1995), "Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes", Water Science and Technology, 31(1), 143-152 [26] Peter Balmér Britt-Marie Wilén (1999), "The effect of dissolved oxygen concentration on the structure , size and size distribution of activated sludge flocs ", Water Research, 33(2), 391-400 [27] McSwain BS, Irvine RL, Wilderer PA (2004), "The influence of settling time on the formation of aerobic granules", Water Science and Technology, 50(10), 195202 [28] Guang-Hao Chen, Kyoung-Jin An, Sébastien Saby, Etienne Brois, Malik Djafer (2003), "Possible cause of excess sludge reduction in an oxic-settling102 anaerobic activated sludge process (OSA process)", Water Research, 37(16), 38553866 [29] Yao Chen, Wenju Jiang, David Tee Liang, Joo-Hwa Tay (2008), "Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reator", Applied Microbiology Biotechnology, 79(2), 301-308 [30] Yao Chen, Wenju Jiang, David Tee Liang, Joo Hwa Tay (2008), "Aerobic granulation under the combined hydraulic and loading selection pressures", Bioresource Technology, 99(16), 7444-7449 [31] Santo Fabio Corsino, Marco Capodici, Michele Torregrossa, Gaspare Viviani (2017), "Physical properties and Extracellular Polymeric Substances pattern of aerobic granular sludge treating hypersaline wastewater", Bioresource Technology, 229, 152-159 [32] Santo Fabio Corsino, Alessandro di Biase, Tanner Ryan Devlin, Giulio Munz, Michele Torregrossa, Jan A Oleszkiewicz (2017), "Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater", Bioresource Technology, 226, 150-157 [33] De Beer D, van der Heuvel JC, Ottengraf SPP (1993), " Microelectrode measurements in n itrifying aggregates.", Appl Environ Microbiol, 59(2), 573-579 [34] Peng Dangcong, Nicolas Bernet, Jean-Philippe Delgenes, Rene Moletta (1999), "Aerobic granular sludge-a case report", Water Research, 33(3), 890-893 [35] Miaomiao Dong, Chen Yao, Huang Peng-cheng, Zhang Zhi-min, Yu Gang (2015), "Effect of Organic Loading and DO on Stability of Hypersaline Aerobic Granular Sludge", Jacobs Journal of Civil Engineering, 1(1), 1-6 [36] T Etterer, P.A Wilderer (2001), "Generation and properties of aerobic granular sludge", Water Science and Technology, 43(3), 19-26 [37] Xu Hailou, Jiao Xuanmao, Liu Shusen (1993), "Fluorescence measurement of surface dielectric constant of cell membrane", Acta Biophysica Sinica, 9(2), 234239 [38] Mohd Hakim Ab Halim, Aznah Nor Anuar, Nur Syahida Abdul Jamal, Siti Izaidah Azmi, Zaini Ujang, Mustafa M Bob (2016), "Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater", Journal of Environmental Management, 184(2), 271-280 [39] Sheng-Bing He, Gang Xue, Hai-Nan Kong (2007), "The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load", Journal of Hazardous Materials, 143(1 2), 291-295 [40] V Pick J Fettig, U Austermann-Haun, M Blumberg and N V Phuoc (2013), "Treatment of tapioca starch wastewater by a novel combination of physical and biological processes", Water Science & Technology, 68(6), 1264-1270 [41] Am Jang, Young-Han Yoon, In S Kim, Kwang-Soo Kim (2003), "Characterization and evaluation of aerobic granules in sequencing batch reactor", Journal of Biotechnology, 105(1 2), 71-82 103 [42] Am Jang, Young-Han Yoon, In S Kim, Kwang-Soo Kim, Paul L Bishop (2003), "Characterization and evaluation of aerobic granules in sequencing batch reactor", Journal of Biotechnology, 105(1-2), 71-82 [43] Helong Jiang, Joo-Hwa Tay, Stephen Tiong Lee Tay (2002), "Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol", Letters in Applied Microbiology, 35(5), 439-445 [44] Peter A Wilderer Jianrong Zhua (2003), "Effect of extended idle conditions on structure and activity of granular activated sludge", Water Research, 37, 2013-2018 [45] In S Kim, Sung-Min Kim, Am Jang (2008), "Characterization of aerobic granules by microbial density at different COD loading rates", Bioresource Technology, 99(1), 18-25 [46] Merle de Kreuk, Naohiro Kishida, Mark Van Loosdrecht (2007), "Aerobic granular sludge - state of the art", Water Science and Technology, 55(8-9), 75-81 [47] M C M van Loosdrecht L Tijhuis, and J J Heijnen (1993), "Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Particles in Airlift Reactors ", Biotechnology and Bioengineering, 44, 595-608 [48] S Lee, S Basu, CW Tyler, PA Pitt (2003), "A survey of filamentous organisms at the deer Island treatment plant", Environmental Technology, 24(7), 855-865 [49] An-jie Li, Xiao-yan Li, Han-qing Yu (2011), "Effect of the food-tomicroorganism (F/M) ratio on the formation and size of aerobic sludge granules", Process Biochemistry, 46(12), 2269-2276 [50] Xiao-Ming Li, Qian-Qian Liu, Qi Yang, Liang Guo, Guang-Ming Zeng, JinMei Hu, Wei Zheng (2009), "Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation", Bioresource Technology, 100(1), 64-67 [51] Yong Li, Yu Liu, Liang Shen, Feng Chen (2008), "DO diffusion profile in aerobic granule and its microbiological implications", Enzyme and Microbial Technology, 43(4-5), 349 354 [52] Hu Linlin, Wang Jianlong, Wen Xianghua, Qian Yi (2005), "The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules", Process Biochemistry, 40(1), 5-11 [53] Hu Linlin, Wang Jianlong, Wen Xianghua, Qian Yi (2005), "The formation and characteristics of aerobic granules in sequencing batch reactor by seeding anaerobic granules", Process Biochemistry, 40(1), 5-11 [54] Lili Liu, Zhiping Wang, Jie Yao, Xiaojun Sun, Weimin Cai (2005), "Investigation on the properties and kinetics of glucose-fed aerobic granular sludge", Enzyme and Microbial Technology, 36(2 3), 307-313 [55] Lin Liu, Qiyu You, Valerie Gibson, Xu Huang, Shaohua Chen, Zhilong Ye, Chaoxiang Liu (2015), "Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors", Research Article 9(6), 1139-1148 [56] Q.S Liu, Tay, J.H., & Liu, Y (2003), "Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor", Environ Technol.,, 24, 1235-1243 104 [57] Qi-Shan Liu, Joo-Hwa Tay, Yu Liu (2003), "Substrate concentrationindependent aerobic granulation in sequential aerobic sludge blanket reactor", Environmental Technology, 24, 1235-1243 [58] Yong-Qiang Liu, Yu Liu, Joo-Hwa Tay (2004), "The effects of extracellular polymeric substances on the formation and stability of biogranules", Applied Microbiology and Biotechnology, 65(2), 143-148 [59] Yong-Qiang Liu, Joo-Hwa Tay (2008), "Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors", Bioresource Technology, 99(5), 980 985 [60] Yu Liu, Joo-Hwa Tay (2002), "The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge", Water Research, 36(7), 1653-1665 [61] Yu Liu, Joo-Hwa Tay (2004), "State of the art of biogranulation technology for wastewater treatment", Biotechnology Advances, 22(7), 533-563 [62] Yu Liu, Zhi-Wu Wang, Yong-Qiang Liu, Lei Qin, Joo-Hwa Tay (2005), "A generalized model for settling velocity of aerobic granular sludge", Biotechnology Progress, 21(2), 621-626 [63] Yu Liu, Shu-Fang Yang, Qi-Shan Liu, Joo-Hwa Tay (2003), "The role of cell hydrophobicity in the formation of aerobic granules", Current Microbiology, 46(4), 270-274 [64] Zhe Liu, Yongjun Liu, Aining Zhang, Chi Zhang, Xiaochang Wang (2014), "Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC)", Chemical Engineering Journal, 250, 319-325 [65] Jinghai Luo, Tianwei Hao, Li Wei, Hamish R Mackey, Ziqiao Lin, GuangHao Chen (2014), "Impact of Influent COD/N Ratio on Disintegration of Aerobic Granular Sludge", Water Research, 62, 127-135 [66] Huynh Ngoc Phuong Mai (2006), Integrated Treatment of Tapioca Processing Industrial Wastewater Based on Environmental Bio-Technology, Wageningen Universiteit [67] Huynh Ngoc Phuong Mai, Nguyen Trung Viet, Gatze Lettinga (2001), "Effect of Organic Loading Rate on Treatment Efficiency for Tapioca Processing Wastewater using UASB", Proceedings of International Conference on Industry and Environment in Viet Nam, 2(3), 224-233 [68] E Morgenroth, T Sherden, Mark Van Loosdrecht, J.J Heijnen, P.A Wilderer (1997), "Aerobic granular sludge in a sequencing batch reactor", Water Research, 31(12), 3191-3194 [69] Tamara Moustafa (2014), Aerobic Granular Sludge Study of Applications for Industrial and Domestic Wastewater, Chalmers University of Technology [70] BYP Moy, Joo Hwa Tay, SK Toh, Yu Liu, Stephen Tiong Lee Tay (2002), "High organic loading influences the physical characteristics of aerobic sludge granules", Letters in Applied Microbiology, 34(6), 407 412 [71] Md Ghazaly Shaaban Nik Azimatolakma Awang (2016), "Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular 105 sludge in sewage treatment", International Biodeterioration & Biodegradation, 112, 1-11 [72] Le Thi Kim Oanh, Nguyen Trung Viet, Gatze Lettinga (1999), "Closed wastewater system in the tapioca industry in vietnam", Water Science and Technology, 39(5), 89-96 [73] S Pan (2003), Inoculation of microbial granular sludge under aerobic conditions, Nanyang Technological University Singapore [74] Nguyen Thi Thanh Phuong, Nguyen Van Phuoc, Truong Thi Bich Hong, Bui Manh Ha (2016), "The Formation and Stabilization of Aerobic Granular Sludge in a Sequencing Batch Airlift Reactor for Treating Tapioca-Processing Wastewater", Journal of Environmental Studies, 25(5), 2077-2084 [75] Cristian Picioreanu, Mark Van Loosdrecht, Joseph J Heijnen (2000), "Effect of diffusive and convective substrate transport on biofilm structure formation: a two - dimensional modeling study", Biotechnol Bioeng, 69, 504-515 [76] Lei Qin, Yu Liu, Joo-Hwa Tay (2004), "Effect of settling time on aerobic granulation in sequencing batch reactor", Biochemical Engineering Journal, 21(1), 47 52 [77] Carlos Ramos, María Eugenia Suárez-Ojeda, Julián Carrera (2015), "Longterm impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater", Bioresource Technology, 198, 844-851 [78] H F van der Roest, L M M de Bruin, G Gademan, F Coelho (2011), "Towards sustainable waste water treatment with Dutch Nereda technology", Water Practice and Technology, 6(3), 1-4 [79] Xie S (2003), Metabolic response of aerobic granules to chromium(III) Final year report of Bachelor of Engineering, Singapore: Nanyang Technological University [80] N Prasetya S Subagjo, I.G Wenten (2015), "Hollow Fiber Membrane Bioreactor for COD Biodegradation of Tapioca Wastewater", Journal of Membrane Science and Research, 1, 79-84 [81] J.E Schmidt, & Ahring, B.K (1996), "Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors", Biotechnol Bioeng 49, 229-246 [82] Guo-ping Sheng, An-jie Li, Xiao-yan Li, Han-qing Yu (2010), "Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation", Chemical Engineering Journal, 160(1), 108 114 [83] Toh SK, Joo-Hwa Tay, BYP Moy, Ivanov V, Stephen Tiong Lee Tay (2003), "Size-effect on the physical characteristics of the aerobic granule in a SBR", Applied Microbiology Biotechnology, 60(6), 687-695 [84] Zhiwei Song, Nanqi Ren, Kun Zhang, Longyan Tong (2009), "Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors", Journal of Environmental Sciences, 21(3), 273-278 106 [85] Kui-Zu Su, Han-Qing Yu (2005), "Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater", Environmental Science & Technology, 39(8), 2818-2827 [86] Lei Sun, Shungang Wan, Zebin Yu, Yinghui Wang, Shuangfei Wang (2012), "Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor", Bioresource Technology, 104, 280-288 [87] Pareboom J and Vereijken T (1994), "Methanogenic granule development in full scale internal circulation reactors", Water Science and Technology, 30(8), 9-21 [88] Guangcai Tan, Nan Xu, Yong Liu, Hongshan Hao, Weiling Sun (2016), "Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors", Environmental Technology, 37(22), 2905-2915 [89] J.H Tay, Liu, Q.S., Liu, Y., (2002), "Aerobic granulation in a sequential sludge blanket reactor.", Water Sci Technol, 46(4-5), 13-18 [90] Joo-Hwa Tay (2006), Biogranulation Technologies for Wastewater Treatment, Elsevier [91] Joo-Hwa Tay, V Ivanov, S Pan, Stephen Tiong Lee Tay (2002), "Specific layers in aerobically grown microbial granules", Letters in Applied Microbiology, 34(4), 254-257 [92] Joo-Hwa Tay, Qi-Shan Liu, Yu Liu (2002), "Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors", Environmental Technology, 23(8), 931-936 [93] Joo-Hwa Tay, Qi-Shan Liu, Yu Liu (2001), "The effects of shear force on the formation, structure and metabolism of aerobic granules", Appl Microbiol Biotechnol, 57(1-2), 227-233 [94] Joo-Hwa Tay, Qi-Shan Liu, Yu Liu (2001), "Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor", Appl Microbiol, 91(1), 168-175 [95] Joo-Hwa Tay, Shun Pan, Yanxin He, Stephen Tiong Lee Tay (2003), "Effect of organic loading rate on aerobic granulation: Part II Characteristics of aerobic granules", Journal Of Environmental Engineering 130(10), 1102-1109 [96] Joo-Hwa Tay, Hai-Lou Xu, Khay-Chuan Teo (2000), "Molecular mechanism of granulation: I H+ translocation-dehydration theory", Journal of Environmental Engineering 126(5), 403-410 [97] Joo-Hwa Tay, Shu-Fang Yang, Yu Liu (2002), "Hydraulic selection pressureinduced nitrifying granulation in sequencing batch reactors", Appl Microbiol Biotechnol, 59(2-3), 332-337 [98] Joo-Hwa Tay, Shu-Fang Yang, Yu Liu (2002), "Hydraulic selection pressureinduced nitrifying granulation in sequencing batch reactors", Applied Microbiology Biotechnology, 59(2-3), 332-337 [99] Stephen Tiong Lee Tay, Ivanov V, Yi S, Zhuang WQ, Joo-Hwa Tay (2002), "Presence of anaerobic Bacteroides in aerobically grown microbial granules", Microbial Ecology, 44(3), 278-285 107 [100] E Valdman, Selma Leite (2000), "Biosorption of Cd, Zn and Cu by Saragssum sp waste biomass", Bioprocess Engineering, 22(2), 171-173 [101] Fang Wang, Feng-lin Yang, Xing-wen Zhang, Yi-hui Liu, Han-min Zhang, Jun Zhou (2005), "Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors", World Journal of Microbiology and Biotechnology, 21(8-9), 1379-1384 [102] Shu-Guang Wang, Xian-Wei Liu, Wen-Xin Gong, Bao-Yu Gao, Dong-Hua Zhang, Han-Qing Yu (2007), "Aerobic granulation with brewery wastewater in a sequencing batch reactor", Bioresource Technology, 98(11), 2142-2147 [103] Britt-Marie Wilén, Motoharu Onuki, Malte Hermansson, Doug Lumley, Takashi Mino (2008), "Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability", Water Research, 42(8 9), 2300-2308 [104] Mari-Karoliina Henriikka Winkler (2012), Magic granules, Technnische Universiteit Delf [105] Xiaoling-Zhang, Shan-Liu (2011), "Effect of shear stress on activated sludge granular in Sequencing Batch Reactor", 2010 International Conference on Biology, Environment and Chemistry, 1, 221-224 [106] Hao Xu, Xia Zhao, Hai-hua Li, He-ming Luo, Zhong-lin Chen, Liu Yang (2015), "Effects of properties on formation of aerobic granular sludge under different organic loadings", Desalination and Water Treatment, 57(41), 1910619111 [107] Lilong Yan, Shaoliang Zhang, Guoxin Hao, Xiaolei Zhang, Yuan Ren, Yan Wen, Yihan Guo, Ying Zhang (2016), "Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater", Bioresource Technology, 202, 101-106 [108] Shu-Fang Yang, Xiao-yan Li, Han-qing Yu (2008), "Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions", Process Biochemistry, 43(1), 8-14 [109] Shu-Fang Yang, Joo-Hwa Tay, Yu Liu (2005), "Effect of Substrate Nitrogen/Chemical Oxygen Demand Ratio on the Formation of Aerobic Granules", Journal of Environmental Engineering, 131(1), 86-92 [110] Shu-Fang Yang, Joo-Hwa Tay, Yu Liu (2003), "A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater", Journal of Biotechnology, 106(1), 77-86 [111] Han-Qing Yu, Joo-Hwa Tay, Herbert H.P Fang (2001), "The roles of calcium in sludge granulation during UASB reactor start-up", Water Research, 35(4), 10521060 [112] Joo-Hwa Tay Yu Liu (2004), "State of the art of biogranulation technology for wastewater treatment", Biotechnology Advances, 22, 533-563 [113] Xiao-ying Zheng, Ming-yang Wang, Wei Chen, Ming Ni, Yu Chen, Su-lan Cao (2015), "Effect of Cr(VI) on the microbial activity of aerobic granular sludge", Desalination and Water Treatment, 57(15), 7000-7008 108 [114] Yu-Ming Zheng, Han-Qing Yu, Shuang-Jiang Liu, Xing-Zhong Liu (2006), "Formation and instability of aerobic granules under high organic loading conditions", Chemosphere 63(10), 1791-1800 [115] Yu-Ming Zheng, Han-Qing Yu, Guo-Ping Sheng (2005), "Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor", Process Biochemistry, 40(2), 645-650 109 Ph l c M t s hình nh thí nghi m hình th c nghi m 110 Bùn h t sau tu n Bùn h t sau 11 tu n 111 Ph l c S li u theo dõi thí nghi m CODvào CODra mg/l mg/l COD 6.59 150.00 65.00 56.67 7.05 6.78 588.00 150.00 74.49 2.5 7.34 7.12 625.00 87.50 86.00 2.5 7.32 7.10 636.34 86.50 86.41 5.0 7.19 8.09 1028.00 123.40 87.99 5.0 7.13 8.26 1353.80 110.00 91.87 5.0 7.35 7.11 1208.80 105.37 91.28 5.0 7.65 7.97 1140.00 110.12 90.34 5.0 6.99 8.63 1486.38 139.35 90.62 10 5.0 7.15 8.03 1280.00 80.00 93.75 11 5.0 7.45 8.67 1280.00 72.72 94.32 12 5.0 6.83 8.08 1270.53 84.70 93.33 13 5.0 7.10 8.45 1242.00 98.80 92.05 14 5.0 6.90 8.51 1097.00 82.28 92.49 15 5.0 7.23 8.56 1066.00 66.67 93.75 16 5.0 7.44 8.87 1097.00 96.00 91.25 17 7.5 6.59 7.94 1588.00 160.40 89.99 18 7.5 6.78 7.89 2075.00 116.00 94.41 19 7.5 7.43 8.65 1909.50 101.05 94.71 20 7.5 6.88 8.55 1820.00 115.86 93.63 OLR pHvào pHra 0.6 7.12 2.5 112 Amoni Amoni vào Nitrit vào Nitrit Nitrat Nitrat vào mg/l mg/l mg/l mg/l mg/l mg/l 7.50 2.56 65.87 0.08 2.35 2.35 4.67 35.00 5.67 83.80 0.15 6.44 1.54 13.45 28.57 3.75 86.87 0.17 5.34 0.86 11.12 38.08 5.38 85.87 0.14 0.37 0.52 9.90 64.90 5.38 87.83 0.01 12.30 1.01 0.29 64.96 5.18 92.00 0.08 14.20 1.82 1.85 60.48 0.84 98.60 0.14 12.20 1.22 2.85 71.79 5.50 92.34 0.03 8.67 1.58 3.30 58.24 6.44 88.94 0.09 5.56 1.45 2.45 10 75.20 3.12 95.85 0.01 1.50 1.32 1.54 11 51.33 1.75 96.59 0.14 1.65 2.71 3.25 12 56.00 1.09 98.05 0.12 56 1.71 3.32 13 62.49 1.12 98.21 0.07 31 0.12 3.12 14 47.38 1.12 97.64 0.05 1.48 0.93 3.57 15 57.45 2.14 96.27 0.20 1.89 0.63 2.45 16 63.28 2.35 96.29 0.10 1.54 0.15 3.17 17 85.60 12.84 85.00 0.08 4.69 0.12 3.84 18 99.68 12.82 87.14 0.10 3.38 0.35 3.56 19 107.86 13.17 87.79 0.03 4.88 0.11 5.05 20 88.40 9.56 89.19 0.13 3.95 2.57 4.63 113 n SS MLSS MLVSS SVI MLVSS/MLSS F/M 214.00 67.00 0.29 1.38 195.00 71.00 1.21 2.30 1.70 165.00 74.00 1.09 855.00 2.45 1.92 142.86 78.50 1.04 535.00 2.34 1.91 135.00 81.80 1.76 315.00 4.27 3.63 93.67 85.00 1.27 344.00 4.47 3.89 62.60 87.00 1.08 189.00 7.08 6.20 55.08 87.50 0.64 135.00 7.32 6.83 49.18 93.30 0.81 10 118.00 6.35 5.91 63.00 93.08 0.81 11 98.50 7.03 6.59 54.05 93.67 0.73 12 121.00 9.16 8.66 45.85 94.50 0.55 13 115.40 9.88 9.21 40.50 93.20 0.50 14 88.90 9.97 9.35 35.10 93.80 0.44 15 158.00 10.92 10.19 32.05 93.30 0.39 16 177.80 11.15 10.43 44.84 93.53 0.39 17 145.00 11.16 10.43 43.01 93.42 0.57 18 156.00 11.18 10.35 45.64 92.55 0.74 19 223.00 11.24 10.48 44.56 93.23 0.68 20 345.00 11.12 10.27 49.46 92.34 0.65 mg/l g/l g/l ml/g 2457.00 2.10 1.41 2667.00 1.95 1445.00 114 Ph l c Ví d m t s tính toán N u vào S = 1200mg/l, N ng Q = 9,04lít/ngày, Vb = 2,26 lít MLSS = 7500mg/l T i tr ng h OLR Q S V (kgCOD/m3.ngày) 9, 04 1200 10 2, 26 5kgCOD / m3 T l F/M F M Q S Vb MLSS 9, 04 1200 2, 26 7500 0, 64 B Các giá tr COD, N-NH3 t 3200, 120, 18 mg/l c th i v i n H s pha loãng 3200 1200 c th i c n l y COD 1200mg/l 2, 67 30 11, 24l 2, 67 i v i N-NH4+: COD 20 +N N-NH4+ c n b sung +N N-NH4+ sau pha loãng = ng N-NH4+ c n b sung vào ng NH4Cl c n b 60mg / l 120 2, 67 44,94mg / l c th i: sung vào 30 53,5 15, 06 30 1, 73g 14 1000 i v i P-PO42+N P-PO42- c n b sung COD 12mg / l 100 115 c th +N P-PO42- sau pha loãng ng P-PO42- c n b ng KH2PO4 c n b 18 2, 67 6, 74mg / l c th i sung vào 30 136 5, 26 30 0, 69 g 31 1000 116 c th ... c hình thành bùn h t hi c tính c a bùn h t hi u khí mơ hình SBR v c th i tinh b t mì Là nghiên c u kh ng d ng bùn h t hi u khí vào th c t x C u trúc c ng nghiên c u c th i tinh b t mì d a b SBR. .. (A) bùn h t hi u khí (B) 47 v Hình 1.19: trình chuy n k khí hi u khí c u trúc bùn h t hi u khí 48 Hình 2.1: Quy trình chu n b c th i tinh b t mì gi nh 56 Hình 2.2: Mơ hình. .. th i tinh b t mì quy mô công nghi p M c tiêu c th u ki n hình thành nh c a bùn h t hi u khí b SBR c tính c a bùn h t hi u khí Nhi m v nghiên c u i u ki n hình thành nh t i tr ng h nh c a bùn h

Ngày đăng: 01/03/2018, 14:43

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan