Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
1,04 MB
Nội dung
SUPPLEMENTARY CHAPTER 3: Communication Channel TechnologyTheArchitectureofComputerHardwareandSystems Software: AnInformationTechnologyApproach 3rd Edition, Irv Englander John Wiley and Sons 2003 Communication Channel Supplementary Chapter Communication Channel S3-2 Communication Channels: Many Ways to Implement Signal: specific data transmitted Diagram shows communication between computerand a wireless laptop Deceptively simple: phone line carries electrical representation of audio signal Physically: signal passes through different channel forms including audio, digital, light, radio Converters between separate physical channels Supplementary Chapter Communication Channel S3-3 Communication Channel Characterized by Signaling transmission method Bandwidth: amount of data transmitted in a fixed amount of time Direction(s) in which signal can flow Noise, attenuation, and distortion characteristics Medium used Supplementary Chapter Communication Channel S3-4 Signaling Transmission Method Analog: continuous varying waveforms to carry data Digital: Two different values of electrical voltage or current or On/off light source Frequently preferred because less susceptible to noise and interference Supplementary Chapter Communication Channel S3-5 Channel Organization Point to point channels Simplex: channel passes data in one direction only Half-duplex: transmits data one direction at a time (walkie-talkie) Full-duplex: transmits data in both directions simultaneously (telephone) Multipoint: broadcasts messages to all connected receivers Supplementary Chapter Communication Channel S3-6 Multiplexing Carrying multiple messages over a channel simultaneously TDM (time division multiplexing) Example: packet switching on the Internet Use: digital channels FDM (frequency division multiplexing) Example: Cable TV Analog channels Filters separate different data signals at receiving end Supplementary Chapter Communication Channel S3-7 Signaling Technology Carrier waves Electrical voltage Electromagnetic radio wave Switched light Data represented by changes in the signal as a function of time Range of values Analog: continuous values Discrete: countable number of possible values Digital: binary discrete signal Supplementary Chapter Communication Channel S3-8 Waveform Representation of a signal shown as a function of time Supplementary Chapter Communication Channel S3-9 Communicating between Digital and Analog Ideally conversion should be reversible Limited by Noise: interference from sources like radio waves, electrical wires, and bad connections that alter the data Attenuation: normal reduction in signal strength during transmission caused by the transmission medium Distortion: alteration in the data signal caused by the communication channel Consequences Error correction required to compensate for transmission limitations Usually possible to recover original digital data exactly from analog transmission Small information loss results from converting analog to digital Supplementary Chapter Communication Channel S3-10 Reception Errors Timing mismatch between sending and receiving computers Supplementary Chapter Communication Channel S3-26 A-to-D Conversion Digital signals used to represent analog waveforms Examples: CDs, direct satellite TV, telephone voice mail Supplementary Chapter Communication Channel S3-27 A-to-D: Pulse Code Modulation Analog waveform sampled at regular time intervals Maximum amplitude divided into intervals Example: 256 levels requires bits/sample Supplementary Chapter Communication Channel S3-28 A-to-D: Pulse Code Modulation Sample values converted into corresponding number value Information lost in conversion Supplementary Chapter Communication Channel S3-29 A-to-D: Pulse Code Modulation Number reduced to binary equivalent Supplementary Chapter Communication Channel S3-30 Digital Signal Quality Subject to noise, attenuation, distortion like analog but Signal quality less affected because only necessary to distinguish levels Repeaters Recreate signals at intervals Use: transmit signals over long distances Error correction techniques available Supplementary Chapter Communication Channel S3-31 TDM Time division multiplexing Multiple signals share channel Supplementary Chapter Communication Channel S3-32 Bandwidth Digital signals: sum of sine waves of different frequencies Higher frequencies: higher data rates Channel with wider bandwidth has higher data rates Data rates usually measured in bits per second Supplementary Chapter Communication Channel S3-33 Modems and Codecs Modem (modulator/demodulator) Convert digital signals to analog and back Use: home to service provider via phone line or cable Speed: baud rate or bits per second (bps) Baud rate: signaling elements per second At slow speeds bit encoded per electrical signal Higher speed transmissions usually measured in bits per second rather than baud rate High speed modem: 28.8 Kbps access with ASK, FSK and PSK 56 Kbps download with wider bandwidth at telephone switching office Supplementary Chapter Communication Channel S3-34 Codecs Codec (coder/decoder) Use: DSL (Digital Subscriber Line) via digital phone lines or cable Ethernet for connection between the codec andthecomputer Speed: 1Mbps or higher Supplementary Chapter Communication Channel S3-35 Transmission Media Means used to carry signal Characterized by Physical properties Signaling method(s) Bandwidth Sensitivity to noise Guided media: confine signal physically to some kind of cable Unguided media: broadcast openly Signal-to-noise ratio Higher ratio for given bandwidth increases data capacity ofthe channel Supplementary Chapter Communication Channel S3-36 Electrical Media Require complete circuit wires: one to carry the signal, second as a return to complete the circuit Wired media or just wire Inexpensive and easy to use Signals carried as changing electrical voltage or current Supplementary Chapter Communication Channel S3-37 Types of Cable: Copper Coaxial cable Wire surrounded by insulation Copper shield around insulation Acts as signal return Shields from external noise High bandwidth: 100 Mbps Example: analog cable TV with FDM for dozens of channels at MHz Twisted pair Some networks and phone lines in buildings More susceptible to noise than coaxial cable Used for shorter distances and slower signals Supplementary Chapter Communication Channel S3-38 Types of Cable: Fiber Optic Fiber optic cable Consists of glass fiber thinner than human hair Uses light to carry signals Laser or light-emitting diode produces signal Cladding: plastic sheath to protect fibers Advantages Light waves: high frequency means high bandwidth Less susceptible to interference Lighter than copper cable Disadvantages Difficult to use, especially for multipoint connections Supplementary Chapter Communication Channel S3-39 Microwave Frequencies below light Unguided medium Tightly focused for point-to-point use Highly susceptible to interference Applications Large-scale Internet backbone channels Direct satellite-to-home TV IEEE 802.11 Wi-Fi Supplementary Chapter Communication Channel S3-40 ... Communication Channel S3-22 Attenuation Function of the nature of the transmission medium and the physical length of the channel More difficult to separate the signal from noise at higher transmission... Channel fading and phase shifts vary with the frequency of the signal Example: If the signal consists of sine waves of frequencies f1 and f2 from different parts of the spectrum, the output of. .. Communication Channel S3 -3 Communication Channel Characterized by Signaling transmission method Bandwidth: amount of data transmitted in a fixed amount of time Direction(s) in which signal can flow