1. Trang chủ
  2. » Giáo Dục - Đào Tạo

momen mômen angular momentum

12 96 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 275,06 KB

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Lecture Angular Momentum Tran Thi Ngoc Dung dungttn@gmail.com HCMUT Outline • Angular Momentum • Conservation of Angular Momentum O d  r  F  M  Torque of a force about a fixed point O   F /O  r  F   F / O  plane(OM, F)  The direction of τ is outward F / O  F r sin   F.d O d  r  p  M  Angular momentum about a fixed point O      L /O  r  p  r  mv   L / O  plane(OM , p)  The direction of L is outward L  mvr sin   mv.d Angular momentum and Torque Angular momentumabout a fixed point O      L /O  r  p  r  mv Differentiate by time :       dL /O d r   dp   p r   ( v  mv)   r F       dt dt dt  0   dL /O  dL /   F / O  F /  dt dt The net torque acting on a particle equals the rate of change of the angular momentum of the particle For a system of particles Angular momentum of i th particel about a fixed point O      Li/O  ri  pi  ri  mvi Angular momentum of the system of particles     L / O   Li/O   ri  mvi i i Differenti ate by time :         dL /O  d ri     dpi      pi     ri  vi  mvi )   ri  (Fi,inter  Fi,ext )    ( dt dt  i  i  i  i  dt 0         ri  Fi,inter  0,  ri  Fi,ext   i,ext  net.ext i i i   dL /O  dL /   net ,ext /  net ,ext /  dt dt     dL /  d I  L /  I   dt dt  net ,ext /    d  I  I dt ANGULAR MOMENTUM OF A RIGID OBJECT   d  I  I  net ext /    dt L   I A  dL    net ext /  dt The net external torque acting on a system equals the rate of change of the angular momentum of the system  dL /   net ,ext /  dt   L /  I   Example 10-2 An Atwood' s machine has two blocks of mass m1 and m (m1 > m ), connected by a string of negligible mass that passes over a pulley wit h frictionle ss bearings The pulley is a uniform disk of mass M and radius R The string does not slip on the pulley  dL  Apply Equation  net ,ext dt to the system consisting of both blocks plus pulley to find the angular acceleration of the pulley and the acceleration of the blocks Angular momentum of the system {Block m1 , block m , pulley M) about the axis z through t he center of pulley L  m1vR  m vR  I because that the rope is not sliding on the pulley v  R  a  R dL I    m1aR  m 2aR  I   m1  m  aR dt R   Net torque of external forces : net  m1gR  m 2gR m1  m  m1 moves down, m moves up with the speed v  pulley rotates counter - clockwise  with  outward dL  net,ext dt I    m1  m  aR  m1gR  m 2gR R   m1  m a g I m1  m  R Applying Conservation of Angular Momentum  dL   net,ext dt   if net,ext  L  const If the net external torque acting on a system is zero, the total angular momentum of the system is constant Example A disk is rotating with an initial angular speed i about a frictionle ss shaft through its symmetry ax is as shown Its moment of inertia about this axis is I1 It drops onto another disk of moment of inertia I that is initially at rest on the same shaft Because of surface friction, the two disks eventually attain a common angular speed f Find f External force : weight m1g parallel to the rotation axis    torque net   L  const initial Angular momentum  final angular momentum Li  L f    I1i  (I1  I )f  f  L2 Initial KE : Ti  I1i  2I1 I1  i I1  I L2 Final KE : Tf  (I1  I )f  2(I1  I ) The change in KE : L2  1 L2 I2 T  Tf  Ti       0  I1  I I1  (I1  I )I1 Example A merry - go - round of radius m and moment of inertia 500 kg.m is rotating about a frictionless pivot, making one revolution every s A child of mass 25 kg originally standing at the center walks out to the rim Find the new angular speed of the merry - go - round  External force is the gravitatio nal force mg, parallel to the rotation axis The torque is zero Applying the law of Conservation of Angular momentumLi  Lf (I merry  Ichild,i )i  (I merry  Ichild,f )f f  I merry  Ichild,i I merry  Ichild,f Ichild,i  f  i Ichild,f  mR I merry I merry  mR i 500 2 f   1.05rad / s 500  25  Problem In the figure the incline is frictionless and the string passes through the center of mass of each block The pulley has a moment of inertia I and a radius r (a) Find the net torque acting on the system (the two masses, string, and pulley) about the center of the pulley (b) Write an expression for the total angular momentum of the system about the center of the pulley when the masses are moving with a speed v (c) Find the acceleration of the masses from your results for parts (a) and (b) by setting the net torque equal to the rate of change of the angular momentum of the system a )   m 2g sin R  m1gR b) L  m1vR  m vR  I c) dL  dt I (m1  m  )aR  m 2g sin R  m1gR R m sin   m1 a g I m1  m  R ...  Angular momentum about a fixed point O      L /O  r  p  r  mv   L / O  plane(OM , p)  The direction of L is outward L  mvr sin   mv.d Angular momentum and Torque Angular momentumabout... of change of the angular momentum of the particle For a system of particles Angular momentum of i th particel about a fixed point O      Li/O  ri  pi  ri  mvi Angular momentum of the... attain a common angular speed f Find f External force : weight m1g parallel to the rotation axis    torque net   L  const initial Angular momentum  final angular momentum Li  L

Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w