1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: The controllability of degenerate system described by invertible operator

12 115 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 4,13 MB

Nội dung

DSpace at VNU: The controllability of degenerate system described by invertible operator tài liệu, giáo án, bài giảng ,...

VNU JOURNAL OF SCIENCE M athem atics - Physics T X V IIỊ N()3 - 2002 T H E C O N T R O L L A B IL IT Y O F D E G E N E R A T E S Y S T E M D E S C R IB E D B Y R IG H T IN V E R T IB L E O P E R A T O R S N g u y e n D in h Q u y e t, H o a n g V an T h i H anoi U niversity o f P edagogy A b s tr a c t T he controllability o f a linear sy ste m described by light, invertible opera tors was studied by m a n y autho rs H ow ever, fo r the degenerate system , the problem has n o t been so fa r considered In this paper, the controllability o f these system s is studied I n tr o d u c tio n The theory of right invertible operators was started in 1972 with works of I) Przeworska- Rolewicz and then has been developed by M Tasche, II veil Trotha, z Binderm an and m any other M athem aticians (see [7]) W ith the appearing of this theory, the initial, boundary arid mixed boundary value problems have been considered Since 1977- 1978, Nguyen Dinh Quyet, in series of articles, has introduced the controllability of linear systems described by right invertible operators in the case of a resolving operator being invertible (see[2, 3]) T he results related to the controllability of linear systems were generalized by Pogorzelec for the case of one-sized invertible resolving operarors In 1992, Nguyen Van Man, in his study, introduced the controllability of general system and stud­ ied the controllability of linear system s described by generalized invertible operators (see [5]) However, for the degenerate systems, the problem has not been so far investigated In this paper, the controllability of the degenerate system described by right, invertible operators is studied S o m e fu n d a m e n ta l n o tio n s L et X be a linear space over a field T of scalars [ T = M or C) Denote by l j ( X) the set of all linear operators w ith dom ains and ranges contained in X and L 0( X ) = {A € L ( X ) : donii4 = X } D e fin itio n 1.1 [7] A n o p e to r D £ L ( X ) is said to be a rig h t in v ertib le operator i f there is an o p era to r R € L q( X ) su ch th a t I m R c d o m D a n d DR = I , (1.1) where I is id e n tity operator In th is ease , R is called a rig h t inverse o p c tã lo r o f D T h e set o f all rig h t in v ertib le o p e to rs b elo n g in g to L { X ) will be d e n o te d b y R ( X ) I f D £ R { X ) , we d e n o te 7Z p = { I i £ L q{ X ) : D R = /} 'Fypeset by 0*7 N g u y e n D in h Q u y e t, H o a n g 38 Van T hi P r o p o s i t i o n [7] I f D € R { X ) , th e n fo r e v e ry R £ 7Z p we h a v e d om D = R X © ker D D e f in it i o n (1-2) [7] All operator F € L q ( X ) is said to be an initial operator for D corresponding to R 7ZI) i f F == jP, F X = ker D a n d F R = OĨ1 doinH The set o f all initial operators for D will be denoted by Tj j D e f in it i o n [7]Suppose th a i D £ R ( X ) and R € TZd - A n operator A E L o ( X ) is said to be statio n a ry if D A — A D = on cIomD and R A — A R = T h e o r e m 1 [7] Suppose th a t D € R ( X ) A necessary and sufficient condition for an o p e to r F € L o (X ) to b e an in itia l o p e r a to r for D c o r r e s p o n d in g to R € is th a t F = I - RD (1.3) D e f in it i o n [7] An operator V £ L o ( X ) is said to be a left invertible operator i f there is an o p e r a to r L € L { X ) su c h th a t I m V c d o m L } L V = I W e d e n o te A ( X ) th e s e t o f all left invertible operators belonging to L ( X ) and by C y the set o f all left inverses o f veA (x) D e f in it io n |5j All operator V € L ( X ) is said to be generalized invertible i f there is an operator w £ L ( X ) ( called a generalized inverse o f V ) such that: ImV c domW y Im W c domV and v w v = Von domV T h e s e t o f all g e n e r a liz e d in v e r tib le o p e to rs in L ( X ) w ill b e d e n o te d b y W ( X ) I f V € W ( X ) , we denote by w v the set o f all generalized inverses o f V P r o p o s i t i o n (5j S u p p o s e th a t V Ç W ( X ) a n d w G vvv , th e n dom K = M/ y ( d o in K ) © k e r V (1*4) T h e o r e m [5] S u p p o s e th a t A , B € L ( X ) , I m A c d o m B a n d I m B c (lo m A , th e n I - A B is r ig h t in v e r tib le ( le ft in v e r tib le ' in v e rtib le , g e n e r a liz e d in v e r tib le ) i f cind o n ly i f so is I — B A M oreover, i f we denote by R a b { L a b >w a b ) & r ig h t inverse ( left inverse , generalized inverse ) o f I — A B , then there exists R b a € ^ i - i ì a { ^ b a € £ j - B A ) W b a € W /- /M , r e s p e c tiv e ly su c h th a t: (i) R a b — I + A R ba R ba = / + B R a b A , (iij L j\ h = J + A L b a B y L b A = I + B L a b A , (in ) ( I - A B ) - = I + A(I - B A ) - ' B } fivj VVUb = / + j W î m B , ^>1 = I + ( I -B A )-1= I + tìự - AB)~lA , T h e th eory o f right in vertib le o p era to rs and th ier a p p lica tio n s ca n be seen in [5,7] T h e c o n tr o lla b ility o f d e g e n e r a te s y s te m d e s c r i b e d b y 39 D e g e n e r a te s y s te m s D e f i n i t i o n Suppose th a t D € R ( X ) }di mkeT D ý- and A, B € L o ( X ) , with A ^ non-invertiblc T hen a linear sy ste m o f the form A Dx = Bx + y , y € X ( 1) is said to be a degenerate system P r o p o s i t i o n Suppose th a i I) € R ( X ) , d i m ker D 7^ 0; F is an initial operator for D corresponding to R € TZjj an d A y B € L q( X ), with A Ỷ non-invertibie Then the following id entities hold on d o m ü : ( 2 ) A D - t ì = D ự - R [ ự - A )D + £ ] } , (i4 D - t ì ) R = A - B R (2.3) A D - B = ( A - B R )D - B F F roof, (2.4) (i) O n (loin D we have D { I - R[ ( I - A ) D + B]} = D - D R [Ự - A ) D + B} = D - Ự - A ) D - tì = I ) - D + AD - H = AD - t ì T h e proofs of (2.3) a n d (2.4) a re com pletely sim ilar P r o p o s i t i o n 2 Suppose th a t a 11 th e assum ptions o f P roposition 2.1 arc satisfied I f A — H R is right invertible ( leit in vertib le , invertible, generalized invertible), then so is I — R[(I — A ) D + tì] M oreover , i f R a b (J'AJJ) {A — B R ) ~ l , w A b ) is right inverse ( left inverse, in v e rse , g e n e r a liz e d in v e rs e ) o f A — B R , th e n th e re e x is ts R q € 'R 'Ị-R \ụ -A )D + iì\Ụ J0 £ £ i - R [ ( i - A ) n + B } , W Q € V\>Ị-R\ ụ - A)D+B] respectively , such that: (i) Ro = I + R R a b HI - A ) p + B] , (ii) Lo = / + ỈL ^ Ị(/-i4 )D + fi) , (iỉi) { I - R [ ự - A ) ỏ + ổ ] } “ = s / + « ( i - B / ĩ ) - l ị ( / - i ) D + B l , (ỉv) IVo = I + R W a M V - A ) D + fl] • Proof W e w ill prove th e ca se ( iv ) W e have / — [ ( / — i4)/J) -f /? ] /ỉ = y4 — B R S uppose th at /1 - B R € W (X ) and € W /I-B * Then / - /ĩ[(/ - i4)D + | G W (X ) (by T h eorem 1.2 ) M oreover, there e x is ts Wq = I + RW A b \ { I “ >4)/) + # ] is a generalized inverse o f I — R[ ( I — >4)D + # ] A n o p era to r - B R is sa id to b e a resolving operator for th e sy ste m (2 ), if >4 — R R is in vertib le, th en th e s y ste m (2 ) is said to b e w ell-d eterm in ed O therw ise, it is ill-d eterm in ed T h e o r e m Suppose th a t all a ssum ptions o f Proposition 2.1 arc satisfied Then, we have: (i) I f A — B R Ç Jl {X) a n d /Ỉ, /J € T^A-BR Ì then all solutions o f th e system (2.1) are g iv e n b y X = = {/ + RR a b \Ự — A )D + B } } ( R y + z) + z, (2.5) N g u y e n D in h Q u y e t, H o a n g 40 Van T hi where z € ker D } z € ker{ / — / ỉ [ ( / — v4)D 4- # ] } , (ii) I f A — # / ? € A ( X ) a n d Zvy\# € C a - b h , th e n a ll s o lu tio n s o f th e s y s te m (2 ) a re given by X = { / 4- /Ỉ L v4/ j [ ( / — /1 )D + £?]}(/£?/ + ) , G k erD , (2 ) (Hi) I f A — B R is invertible, then a 11 solutions o f th e system (2.1 ) are given by X = { / + / Ỉ( i4 - f í / ỉ ) “ l í - i4 )D + £ ] } ( i ỉ y + í ) , € k e rD , (2 ) (iv) I f A — B R € IV' ( X ) rUìd W A Ịì £ VV/t - Ịĩ Ị{ , then all solutions o f the system (2.1) a re g i veil b y X = { I + R W AtB[(I - A ) D + tì]}ự ỉy + z) + z, (2.8) where z € ker I ) , £ € k er{J — /-?.[(/ — j4 )D + Ổ ]} P ro o f S ince b o th o n e-sid ed in v e rtib le a n d in v ertib le o p e to rs axe g eneralized in v ertib le, it is sufficien t to sid er th e ca se ( 2?;) A ccording to eq u a lity the (2 ) ill P ro p o sitio n 2.1, we see th a t (2.1) is e q u iv a le n t to D { I — / ĩ [ ( / — A )D + B ) } x = y H ence, { / - I i [ { I - A ) D + £ ] } * = « y + ỉ , e ker £>, (2.9) B y th e a ssu m p tio n , /1 — B R € i y ( X ) an d W/ \ n € VVU-/3/* T h u s, P ro p o sitio n 2.2 im p lies th a t I — /{ [ ( / - / ) D + f í| G VV'(X) and th ere e x ists a gen eralized in vertib le operator Wq = I + /?[(/ — i4)D + B\ Therefore, (2.9) obtaines that all solutions of (2 ) axe g iv e n b y X = { J + /ỈM^ì4, b [ ( / - -4)-D + f t Ị } ( /t y 4- z ) + T h e in itia l v a lu e p r o b le m S u p p o se th a t 1) £ I Ỉ ( X ) , d im k e rD ^ 0; -F is a n in itia l o p e to r for D c o rresp o n d in g to I t £ 1Z ị)\ a n d A , B £ L o ( X ) , w ith A Ỷ n o n -in v e rtib le In th is sectio n , w e consider th e in itia l valu e p ro b le m fo r d e g e n e te sy ste m ( D S ) o f th e form : AD x= Bx + y F x = To T heorem J , (3.1) y € X Æ0 € k er D (3.2) Suppose th a t oil th e assum ptions o f Proposition 2.1 are satisfied and R y + X'o E { / - /? [ ( / — (i) I f A — B R y4)D + B ]} d o m D Then, we have: GI Ì { X ) a n d R a b € TZa - b r y th e n a ll s o lu tio n s o f th e p r o b le m (3 )-(3 ) axe given by x = { ỉ + H R a b ỉ - A ) D + B } } ( R y + x 0) + z , (3.3) where z € k e r { / — / ? [ ( / —A ) D + ] } (ii) I f A - B R € /1(X ) a n d L a b € C a - b r , th e n a /i s o lu tio n s o f th e p r o b le m (3 )-(3 ) are given by X = { / + /ỈL ^ B ÍƠ - i4 )D + « ị } ( i ỉ y + x o ) (3.4) (Hi) I f A — H R is invertible, then solution o f the problem (3.1)-(3.2) arc given by X = { I + R(A - i4)/J + B ]}(/ỉy + x 0) (3.5) T h e c o n tr o lla b ility o f d e g e n e r a te s y s te m 41 d e s c r i b e d b y (iv) I f A — B li (E W( X ) and wy\ ỊỊ £ y^A -B R (3.1)-(3.2) cue given by Ĩ then allsolutions o f the problem X = { / + Ỉ I W a j ỉ [Ự - A ) D 4- B ] } ( R y 4* Xo) 4- z , (3.6) Ì where z € kcr{7 - / ỉ [ ( / — )D + B]} Proof According; to the p ro o f o f T h eo rem 2.1, from (3 ) w e h a v e { / — lì.ịự - A )D + B ] } x = R y + z , z G k e r /J (3 ) Thus, acting on b oth sides of t his equality by operator F , we find th a t F x — F H [ ( I — ,4 )/J + Bịa: = F R y + F z Ile n c c XQ = F x = /*2 = T h e re fo re , { / - / ỉ | ( / - A ) D + B ) } x = R y + *0 (3.8) By our assum ption, A - H R € implies th a t I — /£[(/ — A )D + B] € w p o and there e x ists i t ’s g en era lised inverse Wo = I + R W A /* [(/ — A ) D + B] , w ith co n d itio n R y -f Xo € { I — R[( I — A) I) + B ] } d o m D , w e h ave all so lu tio n s o f th e p ro b lem (3 )-(3 ) is given by X = { I + R W AtR[{I - A ) D + B \ } ( R y + Xo) + z , z € k e r { / - / ỉ [ ( / - / ! ) / ; + / * ] } T h e o r e m S u p p o s e t h a t A B a re s ta tio n a r y o p e r a to r s a n d A — f t / ỉ is in v e rtib le T h e n , th e in itia l value p r o b le m (3 )-(3 ) h a s a u n iq u e s o lu tio n x = ( A - B R ) - \ R y + x 0) (3.9) P roof By th e a ss u m p tio n /1, ft a re s ta tio n a ry o p e to rs , A D — B = D ( A — f t/i) a n d (3.1) becomes D(A — B R )x = ty , this implies th at (/1 — H I Ỉ ) x = /fy -f co n d itio n (3.2) finds th a t = XQ M oreover, /t — £ € k e r/J The is in v e rtib le T h u s , th e so lu tio n of the problem (3.1)-(3.2) is unique and given by X = {A — B R ) ~ l (R y + z 0) E x a m p le Suppose th a t X is the space («) o f all real sequences { x n }, n — , , , ■• ■ with addition and multiplication by scalars defined as follows: I f X = { i n } , y = {j/n }> A + B]}{Ry + x0) = {^ , ^0 - yo> Zo - Vo - Vì , ^0 - 2/0 - 2/1 - 2/2 , • • • }• N g u y e n D in h Q u y e ty H o a n g 42 Van T hi E x a m p le Suppose th a t X , Dy R and F are defined as in E xam ple 3.1; W rite i4 { x n } = {2 zo + x i , , X2 + X3 }X3 + X >• • • }, B { x n } = { x - Xo, 0, X4 - X2 , S - x ) • • • }• Clear, A ^ o and is non-invertible , sin ce ker i4 = {x o , —2xo, x ) —X2 , X2 , —£2, • • • } 7^ { } a n d ,4 X Ỷ X L et y = {?/„} € X and XQ = { x o } € ker D N ow we consider the degenerate system ( D S ) o f the form: (3 ) ADx = Bx + y F x = Xo , Xo € ker D (3 ) It is easy to verify th a t the resolving operator A — B R is generalized invertible, in d eed , (A - B R ) I ( A - B R ) { x n } = (i4 - ổ / ỉ ) { x n } , i.e A - B R £ W { X ) a n d I € W a - b k Moreover, ker{ / — -R[(/ — j4 )D + f i] } = { { ,0 , X'2 , X3 , x , • • • }, x n € R , n = 2, 3, 4, • • • } B y (3.Ổ) , the solution o f the problem (D S ) is g ive n by X = { / + / ĩ [ ( / - A ) D + ổ ] } ( i ? y + x o ) 4- , Ỉ k e r { / - f i[ ( J - i4 ) D + B ] } = {xo, x + yo, 20 + yo + 2yi + x2,x0 + yo + 2t/i +2y2 + đ3ằ"* } C o n tro lla b ility o f th e d e g e n e te s y s te m Let X and u be linear spaces over the same field T [ T = R or C ) Suppose th at D € R ( X ) } d im k e r ữ ^ ] F e T o is an in itia l op erator for D co rresp o n d in g to R € 7Zd\ and A, R € L ()(X ), w ith A Ỷ n oil-in vertib le a n d c € Lo( U} X ) W e co n sid er the prob lem (£>S)o: f ADx = B x + Cỵz , w ith c o n d itio n JĨC Ơ © {xo} c { / — / ỉ [ ( / — >4)D + B )} d o m D (4 ) \ Fx = Xo , x € ker D (4 ) T he spaces X and [/ are called the space of states and the space of controls, re­ spectively Elements X £ X and u £ u are called states and controls, respectively The elem en t Xo G ker D is called an in itia l sta te A pair ( x o , u) G (ker D) X u is called an in put In sectio n 3, w e have proved th a t th e p rob lem (4 )-(4 ) is eq u iv a len t to th e eq u a ­ tion { / - R[ ( I - A ) D + B ] } x = R C u + xo (4.3) Hence, the inclution R C U © {xo} c { / — R [ (I — A )D + B ]} dom D is a necessary and sufficient co n d itio n for th e p rob lem (4 )-(4 ) have so lu tio n for ev ery u G V D en ote by i) = k er D (4.11) (Hi) T h e sy ste m ( D S ) is said to be Ỉ ) - controllable to XI € ker D i f Xi F i(R a n g UtXo + /í) i / '/ i - H R € W ( X ) S u p p o s e that c e Lq(U X , X ' -> u % D € X')> and A, B , R € L0( X , X ' ) Then , the s y s te m ( P S ) is i s - c o n tro lla b le i f a n d o n ly i f ker C * R * T * F * = {()} (4.19) Proof It is sufficient, to sid er th e ca se = N o te th a t in all th e ca ses sid er, F / l ) l i e m a p s Ơ in to k erD T h e c o n d itio n (4 ) is eq u iv a le n t t o F iT J iC U = k e rD (4.20) T h e a s s u m p tio n R C U © {xo} c { / — / ỉ [ ( / — i4 )D + /^1} d o in , im p lies th a t F aT4RCƯ = F M R C U © {x*o}) - {F T4 X0} c F4T4{/ - /i[(/ - /1)0 + B]}domD ~ {F4T4®o} c F {T4 {7 - /ỈỊ(/ - /i)D + B]}dọm D © k e r{ / - /ỉ[(J - i4)jD + B]}} - {F 4T4X0} - F4 ker{/ - /?[(/ - A)D + tì}} = / ‘4 d o m /) ~ { ^ 4^ } - F k e r { / - / i [ ( / - / ) / ; + /ỉ]} c k e r D N g u y e n D in h Q u y e tf H o a n g V a n T h i 46 B y (4 ), w e h ave F 4T 4R C U = r ^ d o m D —ịr^T /iX o }—F k e r { —/ ? [ ( / —A ) D + B]} = k e r D T h u s, /V A /ĩC Ơ - { K t T 4x o H F k e r { / - i l [ ( / - i ) j D + B ] } = A d o m D = ker D T h is m ean s th a t for e v e ry X\ € ker D i th e re e x is t s V G d o m D , u £ Ư a n d € k e r { — / ? [ ( / — i ) D 4- B ] } su ch th a t Xi = F V = F4 T RC U 4- F T XQ 4- -£4*0 = 4- Xo) + 20], i.e X\ is F 4- reachab le from Xo T h e a rb itra rin ess o f Xo, X\ € ker D im p lies th a t F 4( R angt/,Xo$ 4) = ker£> C onversely, su p p o se th a t F 4( Range; Xo^ 4) = k e r D C h o o sin g £0 = ,z o = 0, we g et th a t F 4T 4R C U = ker D T h e p ro o f is com pleted C o r o ll a r y S uppose th a t A , 2? are stationary operators T hen th e system ( D S )0 is F - controllable if and only if ker c * R * ( A - B R ) * ~ ' = { } (4.21) T h e o r e m S uppose th a t th e sy ste m ( D ) o is F i- controllable T h en , it is jF/- con- trollable for every initial o perator F[ G T o Proof L et F i b e an in itia l o p era to r for D correspon d in g to jR € 7^ 0, i-e - Ỉ*\ỈU = O n th e o th er h a n d , for ev ery £1 € k e r D an d V £ X , th ere e x ists X2 £ ker D su ch th at x x = T'2 B y our a ssu m p tio n th e sy ste m ( D S )0 is F t- co n trollab le T hus, for every x 0i %2 € ker D ị th ere e x ists a co n tro l U G Í / and Zo € k er{7 — jR [(/ — A ) D + J5]} su ch th at F i[T i(R C u + xq) + Zo] = x , or Fi[T t ( / ỉ u + æ0) + Zo] = F t ( x + Rị v) , for som e V € X Hence, F '[T i(R C u + xo) + zq] = F '( x + jRiv) = £2 + F 'R iV = X\ T he arbitrariness of 3?0, Xi € ker Đ , th e p ro o f is co m p lete d T h e o r e m 4 L et he given a degenerate system ( D S ) a n d an initial operator \ £ T p T h e n , the sy ste m ( D S )0 is F t- controllable i f and only i f it is Fi- controllable to every element v' e F jTiR X Proof F ir st, w e p rove th e eq u a lity : F {T 4( i ỉ X © ker D ) + k e r { I - / ì ị ( / - A )D + £f]>> = ker D (4.22) In d eed , sin ce { / - /? [ ( / — Ẩ ) D + ổ ] } d o m D c d o m = R X © ker D , th ere E c X an d ex ists c ker D su ch th a t f t # © z ' = { / - /?[(/ - ,4 )D + B] } d omD T h is im plies th a t Ta( R E ® z ' ) + kerự - R [ ự - A )D + B}} = \ { I - / i [ ( / - A ) D + B ]} d o m D © k e r { / - R [ { I - /1)1) + B } } = dom D H ence, ker D = F td o m D = F 4{T 4( / Ỉ E © z ' ) + k er{7 - / ĩ [ ( / - >1)D + B ]} } c F {T4(flX © ker D) + k er{ / - /ỉ[ ( / - Ấ )D + B]}} c ker Ơ, i.e th e form ula (4 2 ) is h a s b e e n proved S u p p o se that, the s y ste m ( DS) o is F -c o n tro lla b le to e v e ry elem ent v' G F T RV, V £ X , i.e th e re e x is t s a c o n tro l UQ € u a n d 20 € k e r{I — /ỉ[ ( / — A ) D + J5]} su ch th a t i*4[ T ^ R O uq 4* xq ) 4* zq] = F 4T 4/ỴV T h e c o n tr o lla b ility o f d e g e n e r a te s y s te m d e s c r ib e d b y 47 T h i s im p lie s th a t f 4A{ A [noUo X0 + X2Ị 4- ZQ 4" Z\} = { / 4( ỈỈV 4* X ) 4- w here G k e r { / — /i![(/ — /4 )/J 4- ft]} a n d X2 € ker D are }, (4 ) arbitrary B y form ula (4 2 ), for ev ery X\ G ker D , there e x ists j € k e r { - / < [ ( / - / l ) D + / i ] } , v' G X a n d x*2 € ker D such th a t X\ = /^4 (7 ^4 + x f2 ) 4- z[] T h is e q u a lity and (4 ) I‘\[T/[(RC a '0 + XQ + x l2) + Zo + z[} = X\ (4 ) O n the oth er hand, th e co n d itio n € F 4T R X an d our a ssu m p tio n im p ly th at ( l ) S )0 is F 4- trollab le to zero, i.e € Fii( R a n g (;To0 ) for ev ery XQ £ ker D T h ere­ fore, th ere ex ists U\ € u and Z2 £ k o r { / — / ỉ [ ( / — i4 )D + ft]} su ch th a t F ị7 ,4 ( / Ỉ C u - ) + * 2} = 0- ( / 5) I f w e a d d (4 ) and (4 ), th e n F^[T^(RCu + Xo) 4* } = X\ , w h e re ,3 = ZQ -f z[ -f 22 r u — W() 4- U i T h e a rb it rin e s s o f Xo, X j g ive s Jp4 ( R a n g í/ xo$ ) = ker /J Suppose that X is the space (s) o f all real sequences {.Tn }, n = , ,2 , • • • E x a m p l e W rite D { x n } = {•/'T1+1 #n }, / ỉ { x n } = { y n } , yo = 0, y n = n r =0 ^ ajld /•’{.7V,} = { X ) C o n sid e r th e degenerate system ( DS) o o f the form: A D x = B x 4- C u F x = Zo , , u € Ỉ/ x € ker D (4 ) (4 ) We have A - H R € i y ( x ) , / € W ^ f l / 2, sin ce (A - # / ỉ ) i ( / l - £ / ỉ ) { x n } = (A - B R ) { x n } Moreover , k e r { / - / ỉ [ ( / - i4 )D + £ ] } = { { , ,a;2 ,a:3 ,X ,* • • },X n € R ,n = ,3 ,4 , • • • } • Therefore, by the form ula (4.7), th e solution o f the problem ( D S ) is g iv en by (2 , w) = { / + / ỉ ị ( / — / i ) D + B ] } ( R C u + Xo) + i , £ € k e r { / - / ỉ [ ( / - / l ) D + ỡ ] } = { Xo, Xo + Uo,Xo + TX0 + tii + X2 ,XQ + u0 4- 2ìXi + Ỉ3 > • • • }• (4.31) Let í be defined by F 4{ x n } = {a?i} T hen for every X() = { x o } € k e r D , there exists ũ = { - X o , U ị , 0 ,0 , • • • } € such th a t F /ị^ (x Q }ĩio) = { ,0 , 0, • • • } T h u s , the system ( D S )0 is /' 4- controllable to zero M oreover , / ' (T ker I) + k c r { - « [ ( / - i ) ü + £ ] } ) = ke r D , w it h r = / + iỊ( - ) D + fí) H y the Theorem 4.1.the sy ste m ( f ) S )0 is i*4- controllable R eferen c es N gu yen D in h Q u yet, O n linear sy ste m s d escrib ed by right in v ertib le op era to rs a ctin g in a linear space, Control and Cybernetics (1 ), 33 - 45 N gu yen D in h Q-uyet, C on tro lla b ility an d ob servab ility o f linear s y ste m s d escrib ed by th e right in vertib le op erators in lin ear sp ace, P rep rin t N o 113, In stitu te o f M athem atics, Polish Acad Sci y Warszawa, 1977 N g u y en D in h Q u y et, On the F \- controllability of the system described by the right invertible operators in linear spaces , M eth o d s o f M a th em a tic a l P rogram m in g, S ystem R esearch I n s titu te , P o lish A cad Sci., P W N - P o lish S cientific P u b lish e r, W arszaw a 1981, 223- 226 N guyeii Van M ail, C on tro lla b ility o f gen eral linear sy ste m s w ith right in vertib le op ­ erators, p re p rin t N o 472 Institute o f M athem atics y P o lis h Acad S c i.j W arszawa, 1990 N g u y en Van M au, B ou n d ary valu e p rob lem s and co n tro lla b ility o f linear sy ste m s w ith rig h t invertib le o p e to rs, D issertationes Math., C C C X V I j Warszawa, 1992 A.Pogorzelec, ” Solvability and controllability of ill-determined system s w ith right invertible operators” , Ph.D.Diss., Institute of Mathematics, Technical University of Warsaw, Warszawa , 1983 D P rezew orsk a - R olew icz, Algebraic A nalysis , P W N an d R eid el, W arszaw a- D or­ drecht, 1988 ... issertationes Math., C C C X V I j Warszawa, 1992 A.Pogorzelec, ” Solvability and controllability of ill-determined system s w ith right invertible operators” , Ph.D.Diss., Institute of Mathematics,... Suppose that- nil a ssu m p tio n s o f L em m a 4/2 arc satisfied ircncrnt.fi system ( D S )0 is Then the d e- - controllable Proof Suppose; that /1 — B Ji € li7(X ) By our assum ption there exists... Warszawa, 1977 N g u y en D in h Q u y et, On the F - controllability of the system described by the right invertible operators in linear spaces , M eth o d s o f M a th em a tic a l P rogram

Ngày đăng: 14/12/2017, 19:57