1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: The extreme value of local dimension of convolution of the cantor measure

12 124 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,24 MB

Nội dung

DSpace at VNU: The extreme value of local dimension of convolution of the cantor measure tài liệu, giáo án, bài giảng ,...

V N U Journal o f S c ie n c e , M athem atics - P hysics 25 (2 0 ) -6 The extreme value o f local dim ension o f convolution o f the cantor measure Vu Thi Hong Thanh^’*, Nguyen Ngoc Quynh^, Le Xuan Son^ ^ D ep a rtm en t o f M a th e m a tics, Vĩnh U n ive rsity ^ D e p a rtm e n t o f F u n d a m en ta l S cience, Vietnam A c a d e m y o f T d itio n a l M e d ic in e Received March 2009 Abstract Let /i be the m —fold convolution of the standard Cantor measure and be the lower extreme value of the local dimension of the measure ịx The values of g t ^ for ~ 2, 3, were showed in [4] and [5] In this paper, we show that 427 log i ^ ( v / l c o s ( — ^ V a*: — ) + 5)1 ^ yj ^ log This values was estimated bv p Shinerkin in [5], but it has not been proved K e y w o rd s: L(x:al dimension, probability meaiiure, standard Cantor measure 2000 AMS Mathematics Subject Classification: Primary 28A80; Secondary 42BI0 Introduction Let He contractive similitvules on and {pỹ}Ị"(0 < Pj < 1, Pj ~ j= \ probabilitv w eights Then, there cxivsts a unique probability measure /i satisfying m(^ ) j= i for all Borcl measurable sets Á (see [1]) Wc call /X a self-sim ila r m easure and a system iterated functions Syn iirc similarities with equal contraction ratio p € ( , ) on R , i.e., S j { x ) ~ When p {x 6j ) , 6j G R for j = I j m , the self-sim ilar measure /X can be seen as follows; Let Xo, X \^ be a scqucncc o f independent identically distributed random variables each taking real values i , b m oo with pn)bability P \ , Pm respectively Wc define a random variable s = Y l P^Xu then the probability i= i measure Ịip induccd by 5*; = P{UJ : S{uj) G A ) is callcd a fr a c ta l m easure and ỊẤp = fj, (see [ ]) Let u be the standard Cantor measure, then I/ can be considered to be generated b y the tw o maps Si { x) = + I?!, Í = ,1 with weight ị on each Si CorrcKponding author Eĩ*mail: vu_hong_thanh@ yahoo.com 57 Then the attractor o f this system 58 VT.ỈỈ Thanh et a i / w Jou fn al o f Science, M athem atics - P h ysics 25 (2009) -6 u c r d ic d lu n c liu n s IS th e sia n d a r u c a n t o r s e t o , I.e., c = ) u L ci ^ ~ * * / / t)c ÍÌÌC m —fold convolution o f the standard Cantor measure For m > 3, this measure docs not satisfy the open set condition (see [2 ]), so the studying the local dim ension o f this measure in this case is vcr> difficult Another convenient w ay to look at /X is as the distribution o f the random sum, i.e., Ị-1 can be obtained in the follow ing way: Let X be a random variable taking values { , , m } with probality Pi — P { X — i) — = , , m and let be a sequence o f independent random variable ^ n witfi the same distribution as X Lets ~ Sn — anJ be th j= i measurc o f , Sn respectively It is w ell known that /X is either singular or absolutely continuous (see [2 ])Recall that let /i be a probability measure on R For G su pp fi, the local dim ension o f Ị.Ì at s is denoted by a { s ) and defined by / ^ a {s) = lim - -^—7 /1^ 0+ log h \ o g f i { B h { s ) ) i f the lim it exists, oth erw ise, let a ( ) and a { s ) denote the upper and low er dim ension by taking the upper and lower limits respectively Let E — { « ( ) : € su pp /x} be the set o f the attainable local dim ensions o f the measure fi and for each m — , , put = inf{a(s) : e supp n}\ ăm = s u p { ă (s ) : s G su pp /x} It is showed in [4] that ã m = is an isolated point o f E for all m = 2, 3, and log log a„, = log 0.63093 if m = 2; - pí; 0.89278 if m = or This results were proved b y using combinatoric, it depends on som e careful counting o f the multiple oo representations o f 6’ = 3~^Xj , Xj — , rn, and the associated probability After that, in [5], Pablo j= i Shmerkin showed the for rn = 2, ,4 by the other way He used the spectral radius o f matrixes to define his results He said that the identifying formulae for and he only estimated the values o f for m > was a difficult problem, for ^ m ^ 10 N ow , in this paper, w e are interested Ú1 the identifying for m = and w e show that our result coincides with Pablo Shmerkin’s estimate We have Main result Main Theorem be the 5—fold convolution o f the standard Cantor measure, then the lower extreme value o f the local dimension o f n is Le( log [ ^ ( v ^ c o s ( ^ " ^ 3^ log ) +5) I 972638 V.T.ĨỈ Thanh et a l / VNƯ Journal o f Science, M athem atics - Physics 25 (2009) 57-68 59 The proof o f our Maim Theorem is divided in to tw o steps In Section 2.1 w e w ill give some notations and primal*)^ results The Main Theorem is proved in Section 2.2 2.1 N o ta tio n s an d P rim a ry Results Let be the standard Cantor measure and /X — z/ * ♦ Ỉ/ (m —fold) Then, b y similar proof as the Lemma 4.4 in [5], w e have P rop osition Let u be the standard C antor measure, i.e., u is induced b y the two maps S i { x ) = - , wUh weigh ^ on each Si ITĩen its m —f o ld convolution 4- ị ỉ with weight hv S i { x ) — ^ on with Si fo r i = Ư^ u is gen erated =0,1 , P rop osition ( [ | ) L e t n i > 2, then aÍA*) — lim p ro vid ed that the lim it exists Otherwise, we can replace a(,s) b v a ( 6‘) and a { s ) and sider the u pper and the low er limits Put D ^ {Oj 1, , } and for cach n € N w e denote : Xi e D } D ^ ^ { ( x i , X , ) : a;i G D } - {(xi, = { ( 2/ , ,yn) e D - : ((x,, i=:\ if ( 3^], € ((x'l, Xfị) und then w c denote (zi , \ \ , J Zifi) (xVt-f , ( 21 , i= l ~ ( xi , Clearly that if (zi, ~ Xm) then 2^ ) ~ ( xj , 1) ( Wc denote {{Xu ,Xnyx)) = {(ỉ/l, ,yn,x) : € ((xi, ,xj)} Thu follcnving lemma w ill be used tVen\iently in this paper Lemm a Lcl s„ = s'j - - j-i -'a;' b e tw o p o in ts in su pp ịi,i I f Sn = S’J, then X ,1 = j-i (mod 3) Proposition Let X = ( X] , x-2 , ) = ( 2, 3, , , ) e D °°, w e have i) I f n IS even then ( y i , (?71 , 2/,i) e ( ( T i , a ; „ ) ) = ( ( , , , , ) ) i f f Vn) € ((X], it) I f n is odd Ihen (yi , { y \ , - , y , t ) G {(.Ti, or (yi, ,yn) e ( ( x i , x „ _ 2, o:„_2 , )) e { ( z i , x „ ) ) = ( ( , , , , , ) ) if f or (yi, ,y„) e ( ( xi , x„_ , a:„-2 , 5)) Proof ;) The ease n is even If ( ỉ / i , - , ỉ /,0 € ((aJi, ,a;n)) = ( ( 2, , , 2, 3) ) then w e have (y, - ) " -' + {V2 - )3 " -2 + + Therefore, a) If _ )3 + (y„ - 3) = - 3= (mod == then 3) Since yn e D , w e have Vn = ^ or n -l -3 = 0.By (2) w e have ^ 3~^yj = j= l ((xi, % (1) w c have ( 2/ , € { ( x i , X „ _ 1, 3)) (2) yn = n -1 Y , Hence, t=i 60 V.T.H Thanh et al / VNƯ Jou rn al o f Science, M athem atics b) If t/n = then (yi - 2)T-'^ - P h ysics 25 (2009) 57-6 ~ = —3 B y (2) w e have + ÌV2 - 3)3"-^ + + (2/„_2 - 3)3 + (2/„_i - 3) = e ( ( , , , , ) ) = ( ( x i , , x „ _ 2, x „ _ 2)) B y ( l ) w e h a v e (yi, Hence, Conveserly, if ( 2/ , , y„) G { So we consider ứie case (yi, ( x i , e 3) ) , then w e have G ( ( x i , a ; „ _ , x„_2 , 0)) Then we have 2/n = and ( y i , y „ _ ] ) ( ( ( 2, 3, , , , ) ) We w ill show that { y i , , y n ) € ( ( xj , ( ( 2, 3, , , , ) ) , b y Lemma w e have t/n- — = (mod 3) In fact, since ( 2/ , y u- i ) e This im plies that y n - i = or 2/n -l “ - a) If t/„_i = then — — and (y i - ) " - + (^2 - )3 " -^ + f (yn - - )3 + (y „_2 - 3) = Therefore, ( 2/ , y n - 2) ~ ( , , , ) = { x i , , X n - 2) and (y „ -i,2 /n ) = ( , ) ( , ) , b y ( ) w e have ( 2/ , •••, 2/n) e ( ( x i , x „ ) ) b) If 1/„_1 = then from (yi , ~ ( , , , , , ) w e get ( 2/1 - )3 ” -2 + _ ) 3n - + Since ( , ) ~ - )3 - = Hence, (yi - 2) 3” - + (y2 - 3) 3” -^ + + (y„_3 - 2)3 + Therefore, y „_2 - V n - - = (3) = (mod 3) Since Tjn- e D , w e have y „_2 = or y „_2 = 1- We consider the tw o follow ing cases C a s e have y „_2 = 4, then ( 2/ „ - , 2/ n - i , 2/n) = ( , , ) and y „_2 - = By (3) we e ((2, 3, 2, 3, )) Sincc ( , , ) ~ ( , , ) , by (1) w c Viuvc (yi, y,i) - (2/ ) •••) 2/n- ) 4,0, 0)G ((2,3, ,2,3)) = ((x i, , ®n)) • C a s e y,i _2 = 1, then y „_2 - = - and (y „ _ , y n - , 2/n) = (4, , ) From (3), w e get ( 7/1 - 2)3'*-^ + ÌV2 - 3)3'^-^ + + (y„_4 - )3 + 2/„_3 - = (4) Therefore, ( y i , Vn-s) e ( ( , , , , ) ) By similar argument, we get T/ „_ = or y„ - = +) I f y „_3 = then { y n - , y n - , y n - u y n ) = ( , , , ) and from (4) w e get ( y u - , y n - ) e ( ( , , , ) ) Since ( , , , ) ~ (2, 3, , ) , w e get (t/i, yn) € ((2, , , ) ) = { ( x \ , X n ) ) +) If y„_3 = then the form (4) is sim ilar to the fom i (3) Thus, b y repeating about argument w e get the proof o f the proposition in this case o f n a) The case n is odd Assume that G ( ( x i , a : „ ) ) = ( ( , , , , ) ) then (t/i - ) " -i + (y - )3 " -2 + + (y „ _ i - )3 + y„ - = This implies 2/n “ or = a) If 1/n = then from (5), w e have {yii This means •” 2/n-i) ^ ((2j , , ) ) = (5) V.T.ỈỈ Thanh et aỉ / VNƯ Journal o f Science, M athem atics - P hysics 25 (2009) 57-68 61 b) I f ijri = then from (5), w e have ( 2/1 - )3 " -2 + ( 2/2 - 3)3" -^ + + (ỉ /„_2 - )3 + Vn-X - - y„_i ) ~ ( , , , , , , ) = (a:i, ,a :„ _ 2,a ;„ - )- This im plies Therefore, ( y i , {y\ Ĩ x „ _ 2, Vn) Ễ ( ( x ] , 5)) Comversely, if (yi, G ( ( x i , X „ _ 1, 2)) then w e have inunediatelythat (j/ , y „ ) G { {xi , ,Xn)) So ’ive consider the follow ing case (z/i, •••,2/n) e {(®1 , ,x„_2,x„_2,5)) then w c have y„ = and (yi I ■••) V n - 1) s ((ajj, X r i — , ^ n - 2) ) — ((2,3, ,2 ,3 ,2 ,2 )) We will prove that ( 2/ , , y„) e ( ( x i , a:„)) In fact, since ( 1/ , y„_i ) e ((2, , , , , ) ) , w e have ( 2/1 - 2)3'^-^ + (t/ - 3)3"-=' + + (y „ _ - 2)3 + y „ - i - = (6) Therefore, y„_i - or Un-X = a) If ỉ/n- i = then from ( ), we have ( 2/ , ( ) Since (2, 5) ^ (3, ), by (1) w e have (t/ i , y „ _ 2) e ( ( , 3, , , , ) ) and = (( , , , , ) ) - ( ( x i , x j ) € b) If Ijn-I = then from ( ), w e have f iv2 - + + (jy, - Therefore, = or Vn- = b l) li'yn - = then from (7), w e have ( y i , ( ) Sincc ( , , ) - (2, 3, 2), by (1) w e have (j/„ - m + v„ - = n (7) y„_a) G ( ( , , , 2, 3) ) and (ỉ/„_ , ! / n - i , y n ) = ( y i , - - - , 2/u) e ((2, , , , , ) ) = b2) If y „ - = then from (7), w e have ( 7/ , y „ _ ) e ((2, , , , , ) } and ( y „ - , y „ - i , Vn) = ( ) Sincc ( , , ) ~ ( , , ) , by (1) w e have ( i J u - , y n ) e ( ( , , , , , , ) ) Therefore, by repeating above aigumcnt for the case yn - — and i y u - , y n ^ ) ( ( x , , , x „ _ 2, x „ _ )) = {( , , , , , , )) Wc have the assertion o f the proposition From Proposition w e have the follow ing corollary C orrolary Let X = { X\ , X , ) = ( , , , , ) G D °° F or each n G N, p u t Sn = ~ ‘xj and t=i = E where (x 'l, ụ-ìisi) = o = { x x , X „ _ 1, x „ _ i) Then we have ^ ( 52) = ^ ) M2(-S2) = 62 V.T,H Thanh et al / VNƯ Jou rn al o f Science, M ath em atics - P h ysics (2009) 57-68 Proof, i) For n = w e have {(oTi)) = ((Xj)) = { ( ) } T herefore, ịi , {s^) = ^ , { s \ ) = P { X , = ) = Ệ For n = we have { { X\ , X )) — { ( , ) , ( , ) } and { { x \ , x )) = { ( , ) , ( , ) } T herefore, 10 10 10 _ 110 — ^' ^ ^ ^ ' ^ ~ ^“ ’ , - 10 10 _ 105 25 '25 ’25 “ 210’ a) By Proposition 3, we have a) If n is even th en ((a;i, = ((a:i, ,x„_i,3))U((xi, ,a;^_i,0)) b) If n is odd then ( ( x i , a : „ ) ) = { ( x i , Z „ _ , 2)) u { { x \ , < _ , 5)) T h erefore, for all n € N w e have /x„(s„) = P { Xn = )/i„_i(s„_,) + P { X n = _ 10 , - , The corollary is proved □ To have the recuưence formula of ịJLn{sn)y we need the following pn^osition P rop osition L et X ^ (X ,X 2, ) = ( , , , , ) € { x u , x „ - i , x n - ỉ ị TTien w e have F o r each n € N, p u t ^ i) I f n is even then (2/ , ,y„) G ( (x 'i, ,0 ) = ((2,3, ,2,3,2,2)) (yi, V r ) e ( ( xi , ) ) i i ) I f n i s o d d then ( y i , , y « ) e {{ x\ , (2/ ) Vn) € ((a:i, ) u { ( a ; i , x „ _ , , 5)> u ((x' j, , 5)) = ((2,3, ,2,3,3)) ) u (( xi , x„_ , 4,0)) u ( ( x j, x ^ _ 2i 1) o))' Proof, i ) The case n is even a) If ( ĩ / i , , yn) e ( ( x i , , X„ _ , )) th en y„ = and ( y i , y „ _ i ) € ( ( x i , T h e r e f o r e , by ( ) w e have ( y i , - , y n ) e ( ( , , , , , , ) ) - ( ( x '„ ,x ; ) ) b) If (ĩ/i, ,yn) e ((xi, ,a:„_ , 1,5)) then y„ = 5, y„-i = and (ỉ/i) •••1 y n - ) ẽ ((^^I1•••) ^n-2 )) = ((2) 3, J 2,3)) Since (1,5) ~ (2,2), by (1) we have (yi,-,yn) e ((2,3, ,2,3,2,2)) = c) If (yi, ,y„) e ((a:i, ,x„_ , , )) = ((2,3, ,2,3,2,2,4,5)) then by (1) we have (yi, ,y„) € ((2,3, ,2,3 ,2 ,2) ) = since (2 , ,4,5) ~ (2,3, , ) V.T.ỈỈ Thanh et a i / VNƯ Journal o f Science, M athem atics - P hysics 25 (2009) 57-68 C onversely, if € ((2, , , , 2, 2)) th en we have (y, - 2)3"-> + H ence, — or — a) I f yj^ ~ th en yrt, {V2 - 3)3" + + (y„-i - 2)3 + — — Hence, T h erefore, ( 7/ , i/„) e ( ( x i , - = (9) from (9), we get (y i, •••,ỉ/n -i) e ((2 ,3 , ,2 ,3 ,2 ) ) = b) I f 63 ((x i, X„ _ 1, 2)) = th en yn — ~ z Hence, from (9), we get (y, - 2)3"-2 + (2/2 - 3)3"-^ + + (t/ „ _ - 3)3 + 2/„-i - = (10) TÌÙS i m p l i e s / n - i “ o r Un-I ~ b l ) I f yn-\ = t h e n f r o m ( ) w e h a v e ivi) y r i - 2) ^ ( ( j , , T h e r e f o r e , { y] , , ĩ j n) G ( ( x i , x „ _ 2, ) ) = ( ( x i , Xn~2)}’ 1, ) ) b ) I f yn-\ = t h e n f r o m ( ) w e h a v e { y u : , y n - ) e ( ( , , , , , , ) ) = ( ( x ; , , x ; _ 2) ) Therefore, ( y i , , y „ ) € ( ( x i , a ; „ _ 2, , 5) ) n ) T h e c a s e n is o d d a) C le a r ly t h a t if ( y i , ,y „ ) G ( ( x i , X „ _ 1, ) ) t h e n {yi, ,yn) e ((2,3, ,2,3,3)) = t>) If { y \ , - , yn) e ( ( x i , ,x„-_ 2, , )) = ( ( , , , 2, 3, , , ) ) th en by ( ) w e have ( 2/ , Vn) e {(2, , , , ) ) = { { x \ , Since (4, 0) ~ (3, c) If (i/ , ,yn) e ((a;'), , < ^ 2- I.O)) ( ( , , , , , , , 0)) th en by ( ) we have { y u - , y n ) {(2,3, ,2,3,3)) = ( ( x ' , , ) , sin ce (3, 1,0) ~ ( , , ) , C o n v e r s e l y , i f { y \ , , y n ) € { { x\ , = ( ( , , , , ) ) , then w e have (yi - ) " -' + { y - 3)3" -" + + Hencc, = or a ) I f Vn "= t h e n - )3 -f 2/„ - = (11) = 2/ri — — H en ce,from (1 ) we have e ((2 ,3 , ,2 ,3 )) = ((x i, T h e r e f o r e , b y ( ) w e h a v e ( 2/ , , y „ ) G ( ( X ] , X „ _ , ) ) b) If yri = th en yn — = —1 Hence, from (11) we have (y, - 2)3'^-" + T h is im p lies y „ _ ] = {V2 - 3)3"-" + + (y„_2 - 2)3 + - = 0.(12) o r y „ _ i = b l) If yn~ \ = th en 2/„_i - = - H ence, (2/1 , T h is im p lies ( y i, ,y „ ) G V n - 2) from (12) we have G ( (2 ,3 ,2 ,3 ,3 ) ) = x ^ _ 2, , ) ) { { x \ , x;_ 2)>- V.T.ĨĨ Thanh et a ỉ 64 / l ^ Journal ( f Science, M athetnatics - P hysics 25 (2009) 57-68 b2) If ĩ/ri-i “ th en ĩjn-\ —4 = llen ce, from (12) w e have (yi 5•'-ỉ ỉ/n-2) ^ (('•^) T \ủ s im plies (t/i, , 2/n) € ( ( x i , ***í 2, 3, 2)) = ((xị J X n - )) • 4, 0)) T h e prop osition is proved □ From Proposition 4, w e have the follow ing corollary, w hich will be used to establish the rc:currence formula o f //n(5n) for n € N C orrolary Lei X = — (2, 3, 2, 3, ) G where F or each n € N, p u t Sn = = (xu ,Xr,-uXn-x), have i=\ = ^ / i u - l ( n - l ) + ^ ( / i n - ( n - ) + M n - « - 2) ) ‘ Proof, By Proposition 4, w e have a) I f n is even then Therefore, / / 10 / , !^n\^n) ~ T^Mn( ^n?r^Mu-2(^n-2) r ' n- ilvn- ily) • 7^ •7^FMn-2 (^ n -2/ "'t" 7^ ^*• ^ X , , , 10 / \ / / \ ” T^Mn -1 V-^n-l ) +« 210 M n-2{5n-2) + Mn- (^ n - / 25A-n-i b) If n is odij then ( ( X i , = {(a^i, , a ; „ - i , ) ) u ( ( x i , , a : „ _ , , ) ) u ( ( x 'l , , ) ) Therefore, 10 , ~ , ^ 2TÕ /^^~2 (^ n - ) / / \ f^ri ~2 \^ri~'2 ) * Hence, ~ ^ M a -1 + ĨÕ ^ ^ri~ Ì^ n - ) ) ' The corollary is proved From Corollaries and 2, w e have C orrolary Lei X ~ { X] , X , ) = (2, 3, 2j 3, ) € we have / X ị^nK^n) — /*roỡ/ 10 / X F or each n e N, p u i Sri ~ Ĩ 3~^Xi ITien i=\ 15 / X 45 , , By Corollaries and 2, vve have Mn(Sn) = ^ / / „ - l ( s „ _ i ) + H n - l ự n - i ) = - ^ ịlj i- {Sn-2) + ^ (13) (^ « -3 (-Sn-s) + M n -3 (s0 -3 )) /^71—2(■Sn-2) ~ ^ M n —s i^ n -s ) ^ M n -sC ^ n -s)' V.T.H Thanh et al / VNƯ Journal o f Science, M ath em atics - Physics 25 (2009) 57-68 65 Frorm (Ì3), (14j and (15), the assertion o f the corollary follow s 2.2 7Tie p r o o f o f the main theorem Lem im a Let X — { x\ , X , ) (2, 3, 2, 3, ) G F or each n € N, p u t Sn = “*Xj Then i=i we /have /x,,(5n) > Mn(in) f o r a ll u, e supp fin, Wc will prove the lemma bv induction For n — w e have = 2) = = ị for -all t\ € supp fi\ A ssum e that the lemma is true for n = k, i.e., ụ-kịsk) > ụ-h{tk) for all tk € su pp Hkn We will show that the lemma is true f o r n — Ả: + For any y — ( 2/ , 2/ ) •••) € D ^ , put in — XI i=i k+\ for each n € N, then tk-ị-i — Y1 consider the follow ing cases o f yk+\C a :se If yk+ \ — (or 4), then by Lemma 1, tk+i = tk + has at m ost tw o representations = + Therefore, by induction hypothesis, w e have /Ífcfi(ífct 1) = ịJk{t k)ỉ *{^k+ì = w 5 , ) + Hk{t ' k)P{^k+i = ' 1) 10 , , By Corollan (ii), w c have ị í k + \ { s k + ì ) > ^ ị i k i s k ) > ụ-k+i{tk+ĩ)- C a se If Uk+I - (or 3), then by Lemma 1, tk+i has at m ost tw o representations tk+i = tk + a) Ifxjk = (or 3), then ( 2/fc,i/fc+i) G { ( , ) , ( , ) } Therefore, b y Lemma w e have ( i / , ( ( y i , - , y f c + i ) > iff (y)^.2/Ui)e{(0,0), (3,0), (2,3), (5,3), (0,3), (1,0), (3,3), (4,0),} G 66 V.T.H Thanh et a i / w Jou fn al o f Science, M athem atics - P hysics 25 (2009) 57-68 By induction h>pothcsis, w e have ^Ik+i{tk+i) ^ f i k - i { s k ~ i ) ị P { X k = ) P { X k + i = ) + P i X k = ) P { X k + i = 0) + P { X k = ) P ( X k + : = 3) + P { X k = ) P ( X f c H = 3) + P ( X k = ) P { X k + ị = 3) + P { X k = ) P ( X k + i = 3) + P { X k = l ) P { X k + : = 0) + P { X k = ) P { X k + , = ) 1 10 10 10 10 — Mfc-I (■^fc-i)V25 '25 2^ ' ^ ^ ® ' ^ ^ ^ ’ ^ 10 10 10 5 25 '25 25 ■25 ^' ^ ^ ^ ’ ^ 241 By hypothesis induction and Corollary (ii), w e have / X 10 Mfc+i(sfc+i) > / X 241 , , , > ^ / J k ~ i { s k - i ) = fj'k+iitk+i)- b) If yfc = (or 1), then {vk, rjk+i) e { ( , ) , ( , ) } Therefore, by Lemma w e have (y'l, {{y\,-;yk+i)) e iff (yl, yfc+i) e { ( , ) , ( 5, 0) , ( , ) , ( , ) , ( , ) , ( , ) , ( 3, 3) , ( , ) , } By induction hypothesis, w e have /iMiíítM) < Ilk ,(ífc-i)[PÍXfc = 2)P(Xtn + P { X k = 1) P { X m = ) + PfXt = r))P(Xtn =0) = 3) + P { X k - )P (;rfcH - 3) + P { X k = 0) P{Xk+i = 3) + P { Xk = l)P(Xjt+i =0 ) + P ( X , = ) P { X k + i = 3) + P { X k = 10 1 10 10 — Mfc-I (s/c + ^ ’25 ®' ^ ^ ^ ' ''^ 10 10 10 + ^ ' + 25'25 2^ ' 2^ 4)P(Xm , = 0)1 By hypothesis induction and Corollary (ii), w e have 10 fik+\(sk+\) > ^fj-kisk) > 231 ^ ^ k - \ { s k - i ) > fJ■k+ì{tk+\)■ c ) ỉ f y k = (or 5), then ( y k , y k + i ) e { ( , ) , ( , ) } Therefore, by Lemma w e have ( y ' l , / f c +i ) ^ {{y\, ,yk+\)) iff e ( ( , ) , ( 3, ) , ( , ) , ( , ) , ( , ) , ( , ) , ( 2, ) , ( , ) , } V.T.H Thanh e t al / VNU Journal o f Science M ath em atics - Physics 25 (2009) 57-68 67 By iinduction hypothesis, \vc have ^ Hk-i{tk-i)[P{Xk = ) P { X k + i = )+ P { X k = ) P i X k + i = ) + P{Xk = 2)P(Xk+i = 3) + P { X k = b ) P { X M = 3) \ P{ Xk = 2)P(Xk+i = 0) + P { X k = ) P { X k + i = 0) + P { X k = l ) P { X k + i = 3) + P { X k = ) P { X k + i 1 10 10 10 10 — Pk u - u i ) ( ' »' 25 ^ ' ® ^ 2^ ' ^ = 3)1 10 10 ”*”2 ‘ 25 - 231 , 10 I K ^ 2^ 2® ^ 2^ 2^ Theircfore, by Corollary (ii), w e have 10 231 > ^ M f c - i ( « f c - i ) > /^fc+iiifc+i)- Mfc+i(sfc+i) > C ase Ifyk^\ (or 5) This case is proved similarly to theCase Thcuifore,the lemm a is proved By resolving Fibonacci recurrence formula o f /Xn(^n) Corollary 3, w e have the follow ing corollary C orrolary Let X = (a:i,X 2, ) “ (2, , , , ) € D ^ F or each n € N, p u t S n = 3~^Xị Then i=\ we /have fln{^n) = a i X Ĩ - ^ a X Ĩ + a s X Ĩ fo r ,Vl arccos 497 y ^ ị / Ĩ Bros( - _59xm5) ^ o z _ n, ss n s 5 o X = : f ậ r Ị / Ĩ cos( Ĩ ) -|- | ~ ,0 9 7 _o _ arccos " -7 ^ — X = ^ [ / l c o s ( 1 ^ _ !L) + j ~ -0 ,0 8 and a \, 02, 03 are ro o ts o f the fo llo w in g system o f three equations H\ ( s i ) = a ] X j + 02^2 + 03^3 /

Ngày đăng: 14/12/2017, 16:56