thiết kế đồng hồ bấm giây dùng ic 74190 và mô phỏng trên protues 8.5. Bài tập lớn môn vi mạch tương tự và vi mạch số do nhóm 4 điện 1 k10 trường đại học công nghiệp hà nội làm.N gày nay ngành kỹ thuật điện tử có vai trò rất quan trọng trong cuộc sống của chúng ta. Các hệ thống điện tử ngày càng đa dạng và phong phú. Nó đã và đang trợ giúp , thay thế con người thực hiện các công việc hàng ngày, từ những công việc đơn giản đến phức tạp như điều khiển khiển tín hiệu đèn giao thông, đo tốc độ động cơ hay các đồng hồ số... Các hệ thống này có thể thiết kế theo hệ thống tương tự hoặc hệ thống số. Tuy nhiên, trong các hệ thống điện tử thông minh hiện nay, người ta thường sử dụng hệ thống số hơn là các hệ thống tương tự bởi các ưu điểm vượt trội mà hệ thống mang lại đó là: độ tin cậy cao, giá thành thấp, dễ dàng thiết kế, lắp đặt và vận hành …
Trang 1LỜI NÓI ĐẦU
gày nay ngành kỹ thuật điện tử có vai trò rất quan trọng trong cuộc sống củachúng ta Các hệ thống điện tử ngày càng đa dạng và phong phú Nó đã vàđang trợ giúp , thay thế con người thực hiện các công việc hàng ngày, từ nhữngcông việc đơn giản đến phức tạp như điều khiển khiển tín hiệu đèn giao thông, đotốc độ động cơ hay các đồng hồ số Các hệ thống này có thể thiết kế theo hệ thốngtương tự hoặc hệ thống số Tuy nhiên, trong các hệ thống điện tử thông minh hiệnnay, người ta thường sử dụng hệ thống số hơn là các hệ thống tương tự bởi các ưuđiểm vượt trội mà hệ thống mang lại đó là: độ tin cậy cao, giá thành thấp, dễ dàngthiết kế, lắp đặt và vận hành …
N
Như ta đã biết trong cuộc sống chúng ta rất hay sử dụng chiếc đồng hồ bấmgiây Ví như trong các cuộc thi chạy, thi bơi để đánh giá chính xác thành thíchcủa một vận động viên thì không thể thiếu đến chiếc đồng hồ bấm giây
Sau một thời gian học tập lý thuyết, thực hành và tìm hiểu các tài liệu về môn
VI MẠCH TƯƠNG TỰ VÀ VI MẠCH SỐ, với sự giảng dạy nhiệt tình của thầy
Nguyễn Văn Vinh chúng em đã có được nhiều kiến thức cơ bản về môn học, biết
cách sử dụng và áp dụng vào cuộc sống
Đề tài của nhóm em là: “THIẾT KẾT MẠCH ĐỒNG HỒ BẤM GIÂY
Bài tập lớn “VI MẠCH TƯƠNG TỰ & VI MẠCH SỐ” này gồm 4 chương:
CHƯƠNG I : Các cơ sở lý thuyết liên quan Giới thiệu về tổng hợp về mạch
tổ hợp, mạch dãy và mạch dao động
CHƯƠNG II : Thiết kế mạch đồng hồ bấm giây.
CHƯƠNG III : Xây dựng chương trình mô phỏng trên phần mềm Proteus 8.4 CHƯƠNG IV: Tổng kết.
Trong quá trình làm đề tài này, chúng em đã cố gắng tìm hiểu và trình bày rõràng, chính xác Tuy nhiên, do kiến thức và năng lực còn hạn hẹp nên việc thựchiện đề tài còn nhiều thiếu sót, kính mong nhận được sự thông cảm và góp ý củathầy giáo để đồ án này hoàn thiện hơn
Em xin chân thành cảm ơn!
Trang 2CHƯƠNG I: TÌM HIỂU CHUNG VỀ MẠCH TỔ HỢP, MẠCH DÃY VÀ
MẠCH DAO ĐỘNG.
Bài 1: Tổng hợp mạch logic tổ hợp 1.1 Khái quát
Mạch logic tổ hợp là mạch logic, ở đó giá trị logic của các tín hiệu ra không
phụ thuộc vào trạng thái cũ của mạch, mà hoàn toàn xác định bởi giá trị logiccủa các cửa vào của mạch ở thời điểm đó
Khi tổng hợp mạch logic tổ hợp ta cần tuân thủ các bước dưới đây:
- Lập bảng chức năng logic của mạch, đó là bảng chân lí hay bảng trạngthái, là bảng giá trị các biến ra tương ứng với từng tổ hợp của các biếnvào
- Từ bảng trạng thái xác định biểu thức hàm logic hoặc bảng các nô
- Tiến hành tối thiểu hóa hàm logic và đưa về dạng thuận lợi để khai triểnhàm thông qua các mạch logic cơ bản
1.2 Các phương pháp tối thiểu hóa hàm logic
Có nhiều phương pháp để tối thiểu hóa hàm logic Ở đây giới thiệu 2 phươngpháp
Tối thiểu hóa hàm logic bằng cách sử dụng các định luật cơ bản của đại số logic.
Tối thiểu hóa hàm logic bằng biểu đồ các-nô
Tối thiểu hóa hàm logic bằng biểu đồ các nô còn được gọi là phương phápdùng hình vẽ Phương pháp gồm những bước sau:
Bước 1 : Mô tả hàm logic, nghĩa là, đưa hàm logic cần tối thiểu hóa về dạng
chuẩn tắc tổng đầy đủ (dạng tổng các tích, dạng OR-AND ) ở dạng bản chân lí củahàm số Mỗi tích trong đó gồm đầy đủ các biến là nguyên biến, nếu biến có giá trị
1, hoặc phủ định của biến, nếu có giá trị không nhưng không quá một lần
Bước 2 : Lập bảng các nô cho hàm logic cần tối thiểu hóa theo bản chân lí đã
lập Số ô của bảng bằng số tích có thể ( 2n ô ) của hàm logic Mỗi tích trong mỗi ô(theo hàng, cột) cạnh nhau chỉ có một biến thay đổi giá trị Các ô tạo thành hàng vàcột : đầu mỗi hàng, cột ghi tổ hợp các biến tương ứng Các hàng, cột kề nhau hoặc
Trang 3đối xứng nhau chỉ khác nhau 1 biến Trong mỗi ô ghi giá trị của hàm số tương ứngvới tích các biến ( là 0 hoặc 1) Có thể ghi bổ sung cả thứ tự của ô theo số hệ đếmthập phân.
Bước 3: Lập các nhóm ô độc lập, ta chỉ quan tâm đến các ô mà hàm số có giá
trị 1 Nhóm các ô có 1 thành nhóm gồm các ô có 1 kề nhau kể cả các ô ở biên miền,
số ô trong 1 nhóm là 1, 2,4,8…ô (là hàm mũ 2n ), sao cho 2 ô liền kề chỉ có 1 biếnthay đổi giá trị Trong đó, một ô có thể tham gia vào một vài nhóm khác nhau Cácnhóm độc lập phải khác nhau ít nhất 1 ô Các nhóm được lập phải phủ hết các ô cógiá trị 1 của bảng
Bước 4 : Viết biểu thức hàm logic đã tối thiều hóa ở dạng tổng các tích Tương
ứng với mỗi nhóm thành lập một tích các biến sau khi đã loại các biến thay đổi giátrị ở các ô trong nhóm Viết biểu thức hàm logic đã tối thiểu hóa : đó là tổng cáctích đã xác đinh, chỉ sử dụng các tích của một số nhóm sao cho các ô của chúngphủ hết các ô có 1 của bảng
1.3 Tổng hợp hàm logic ràng buộc
Khái niệm về hàm logic ràng buộc
Hàm số n biến có 2n tổ hợp biến, tương ứng với mỗi tổ hợp biến đó hàm số cógiá trị 1 hoặc 0 Nhưng cũng có những trường hợp, với một số tổ hợp biến số hàm
số của các biến đó không xác định được giá trị theo một điều kiện nào đó
Phần tử ràng buộc hay số hạng ràng buộc là tổ hợp biến tương ứng với
trường hợp hàm số không xác định, số hạng ràng buộc luôn bằng 0
Điều kiện ràng buộc là biểu thức logic tạo bởi tổng bào các phần tử ràng
buộc, vậy điều kiện ràng buộc cũng luôn bằng 0
Hàm logic ràng buộc là hàm số logic xác định với điều kiện ràng buộc
Để mô tả hàm logic ràng buộc cũng thường sử dụng bảng chân lí, bằng biểu
thức logic hoặc dung bảng các nô
Trong bảng chân lí của giá trị của hàm số tương ứng với số hạng ràng buộcđược đánh dấu “x” Ví dụ, bảng chân lí của hàm logic ràng buộc 3 biến ở dạng tổngcác tích như bảng 1.3 Hàm số có các phần tử ràng buộc là tổ hợp các biến thứ 4,5,6
Trang 4Hay viết gọn là Z(C,B,A)=∑(7) với N=4,5,6
Bảng 1.3: Bảng chân lí của hàm logic ràng buộc 3 biến ở dạng tổng các tích.
Hoặc viết ở dạng chuẩn tắc đầy đủ của hàm Z có bảng chân lí trên bảng 1.3 là:
Với (CBA C)( B A C)( BA) 0
Hay viết gọn là Z(C,B,A)=∏(0,1,2,3) với N=4,5,6
Khi dùng bảng các-nô để mô tả hàm logic ràng buộc ta cũng sử dụng dấu “x” tại
các ô ứng với tổ hợp biến là số hạng ràng buộc Ví dụ hàm số mô tả trên bảng chân
Phương pháp tối thiểu hóa bằng công thức, ngoài việc sử dụng các quan hệ
logic đã biết, ta còn dựa vào một vẫn để là, điều kiện ràng buộc luôn luôn bằng 0,
Trang 5nên có thể sử dụng nó để them vào biểu thức mô tả hàm số trong dạng OR-AND,hoặc loại nó khỏi biểu thức mô tả hàm số, thì bản thân hàm số logic ràng buộctương ứng không thay đổi Trên cơ sở đó rồi sử dụng các công thức và định lí củađại số để tối thiểu hóa hàm logic ràng buộc.
Trong phương pháp tối thiều hóa hàm logic ràng buộc bằng bảng Các nô Trong phương pháp tối thiều hóa hàm logic ràng buộc bằng bảng Các nô ta bắt
đầu từ việc mô tả được hàm logic ràng buộc bằng bảng các nô Ta có thể sử dụng
cả các ô có dấu “x” (tương ứng với các tổ hợp là phần tử ràng buộc) cùng với các ô
ở đó hàm logic ràng buộc có giá trị 1 hoặc 0 để lập các nhóm để tối thiểu hóa
1.4 Bộ mã hóa và giải mã
Bộ mã hóa nhị-thập phân (Bộ mã hóa BCD)
Bộ mã hóa nhị-thập phân là mạch điện có nhiệm vụ chuyển 10 chữ só hệ thậpphân thành mã hệ nhị phân Dạng mã này còn được gọi là bã BCD (Binary CodeDecimal)
Vậy, mạch điện của bộ mã hóa có 10 đầu vào tương ứng với 10 chữ số cần mãhóa Ta kí hiệu thứ tự là y0 ,y1 ,y2 ,y3 ,y4 ,y5 ,y6 ,y7 ,y8 ,y9 Ta có số kí tự cần mã hóa
là N=10 Số bit của mã nhị phân là n, sao cho 2n>N Cụ thể n = 4, khi đó ta có sốtrạng thái 24=16>N=10, trong khi ta chỉ cần mã hóa 10 số, vậy còn dư 6 tổ hợp.Ứng với mỗi tổ hợp biến ra chỉ có một biến vào có giá trị logic 1 ( là chữ số cần mãhóa trong thời điểm đó) Các bit của mã nhị phân kí hiệu là A,B,C,D (D có trọng sốcao nhất) , ta có thể chin 10 trong 16 trạng thái đó Ví dụ theo bảng chân lí cho bộ
mã hóa như bảng 1.4 Trọng số các bit D,C,B,A giảm dần tương ứng là 8,4,2,1 Bởivậy mã nhị-thập phân còn gọi là mã 8421
Bảng 1.4 Bảng chân lí bộ mã hóa BCD theo 8421
Trang 6Sơ đồ logic bộ mã hóa nhị-thập phân theo mã 8421 như trên hình vẽ Trên sơ
đồ không thấy có biến vào y0, mà cần hiểu mặc định Khi đó có DCBA=0000, thìcửa vào có y0 =1 và đó chính là mã nhị phân số 0 của hệ thập phân
Bộ giải mã nhị-thập phân (bộ giải mã BCD)
Bộ giải mã BCD có 4 cửa vào là 4 bit nhị phân, kí hiệu chúng theo trọng sốgiảm dần là DCBA Có các cửa ra là 10 số hệ thập phân (số 0 đến 9), kí hiệu chúng
là y0 ,y1 ,y2 ,y3 ,y4 ,y5 ,y6 ,y7 ,y8 ,y9 Ứng với mỗi tổ hợp biến vào chỉ có một biến raxuất hiện Quy định mức thấp (mức 0) là mức tích cực của biến ra
Trang 7Bảng 1.5 Bảng chân lí bộ giải mã BCD theo mã 8421.
Để tối thiểu hóa biểu thức các biến ra ta xây dựng biểu đồ các nô cho phủ địnhcác biến này từ y0 đến y9 Dùng bảng đã lập để tối thiểu hóa và với các lập nhómnhư vậy, ta được biểu thức tối thiểu của các biến ra bộ giải mã BCD với, y9 D A. ,
Sơ đồ logic của bộ giải mã bằng các mạch logic NAND cơ bản như trên hình
vẽ Từ nguyên lí phân tích trên người ta đã chế tạo được các vi mạch giải mã BCDloại có mật độ tích tụ trung bình (MSI)
Trang 8Hình 1.5 Sơ đồ nguyên lý bộ giải mã BCD
1.5 Tìm hiểu về IC giải mã 7 đoạn 74LS47
1.5.1 Sơ đồ chân và chức năng các chân
Khảo sát 74LS47
Với mạch giải mã ở trên ta có thể dùng 74LS47 Đây là IC giải mã đồng thời thúc trực tiếp led 7 đoạn loại Anode chung luôn vì nó có các ngõ ra cực thu để hở
và khả năng nhận dòng đủ lớn Sơ đồ chân của IC như sau :
Hình 2.1.15 Kí hiệu khối và chân ra 74LS47
Đây là IC giải mã từ BCD sang mã LED 7 vạch với 4 chân đầu vào và 7 chân đầu ra với chức năng của từng chân như sau:
+ Chân 1, 2, 6, 7: Chân dữ liệu BCD vào dữ liệu này được lấy từ IC đếm
+ Chân 9, 10, 11, 12, 13, 14, 15: Các chân ra tác động mức thấp (0) và được nối vớiLED 7
Trang 9+ Chân 8: Chân nối GND.
+ Chân 16: Chân nối Vcc = 5V
+ Chân 4: chân này không cần biết theo datasheet thì cho nó lên Vcc
+ Chân 5: Ngõ vào xoá dợn sóng RBI được để không hay nối lên cao khi không được dùng để xoá số 0( số 0 ở trước số có nghĩa hay số 0 thừa bên trái dấu chấm thập phân)
+Chân 3: chân này cũng có thể cho nó lên Vcc
Hình 2.1.16 Cấu trúc bên trong của 74LS47 và dạng số hiển thị
Trang 101.5.2 Nguyên lý hoạt động
Hoạt động của IC được tóm tắt theo bảng dưới đây
Nhận thấy các ngõ ra mạch giải mã tác động ở mức thấp (0) thì led tương ứng sáng
Ngoài 10 số từ 0 đến 9 được giải mã, mạch cũng còn giải mã được 6 trạng thái khác, ở đây không dùng đến (ghi chú 2)
Để hoạt động giải mã xảy ra bình thường thì chân LT và BI/RBO phải ở mứccao
Muốn thử đèn led để các led đều sáng hết thì kéo chân LT xuống thấp (ghi chú 5)
Muốn xoá các số (tắt hết led) thì kéo chân BI xuống thấp (ghi chú 3)
Khi cần giải mã nhiều led 7 đoạn ta cũng có thể ghép nhiều tầng IC, muốn xoá
số 0 vô nghĩa ở trước thì nối chân RBI của tầng đầu xuống thấp, khi này chân ra RBO cũng xuống thấp và được nối tới tầng sau nếu muốn xoá tiếp số 0 vô nghĩa của tầng đó (ghi chú 4) Riêng tầng cuối cũng thì RBI để trống hay để mức cao để vẫn hiển thị số 0 cuối cùng
Ví dụ : Hãy xem một ứng dụng của mạch giải mã led 7 đoạn :
Hình 2.1.14 Ứng dụng mạch giải mã 74LS47
Trang 11 Mạch dao động tạo ra xung kích cho mạch đếm, ta có thể điều chỉnh chu kì xung để mạch đếm nhanh hay chậm
Mạch đếm tạo ra mã số đếm BCD một cách tự động đưa tới mạch giải mã cóthể là cho đếm lên hay đếm xuống
Mạch giải mã sẽ giải mã BCD sang led 7 đoạn để hiển thị số đếm thập phânBây giờ ta có thể thay mạch dao động bằng 1 bộ cảm biến chẳng hạn dùng bộthu phát led đặt ở cửa vào nếu mỗi lần có 1 người vào thì bộ cảm biến sẽ tạo 1xung kích kích cho mạch đếm Lưu ý rằng IC 7490 là IC đếm chia 10 không đồng
bộ mà ta sẽ học ở chương sau
Như vậy với ứng dụng này ta đã có hệ thống đếm số người vào cổng cũng cóthể đếm sản phẩm qua băng truyền,… tất nhiên chỉ hạn chế ở số người vào nhiềunhất là 9
Khi này hình trên được trình bày ở dạng mạch cụ thể như sau :
Hình 2.1.17 Minh hoạ ứng dụng 74LS47 trong mạch hiển thị led 7 đoạn
Ta cũng có thể dùng nhiều IC giải mã thúc 74LS47 để giải mã thúc nhiều led 7đoạn.Về cấu trúc logic và các thông số của IC, có thể xem thêm trong phầndatasheet
Trang 12Bài 2: Các mạch dãy cơ bản
Mạch dãy là mạch logic có các phần tử nhớ được tạo bởi các mạch lật và các
mạch logic cơ bản và các biến ra của mạch không chỉ phụ thuộc vào tổ hợp biếnvào, mà còn phụ thuộc cả vào trạng thái hiện tại của mạch
2.1 Thanh ghi và thanh ghi dịch
Ở phần trước ta đã được biết đến các loại FF Chúng đều có thể lưu trữ (nhớ 1bit) và chỉ khi có xung đồng bộ thì bit đó mới truyền tới ngõ ra (đảo hay khôngđảo) Bây giờ nếu ta mắc nhiều FF nối tiếp lại với nhau thì sẽ nhớ được nhiều bit.Các ngõ ra sẽ phần hoạt động theo xung nhịp ck Có thể lấy ngõ ra ở từng tầng FF(gọi là các ngõ ra song song) hay ở tầng cuối (ngõ ra nối tiếp) Như vậy mạch cóthể ghi lại dữ liệu (nhớ) và dịch chuyển nó (truyền) nên mạch được gọi là ghi dịch.Ghi dịch cũng có rất nhiều ứng dụng đặc biệt trong máy tính, như chính cái tên củanó: lưu trữ dữ liệu và dịch chuyển dữ liệu chỉ là ứng dụng nổi bật nhất
2.1.1 Cấu tạo
Ghi dịch có thể được xây dựng từ các FF khác nhau và cách mắc cũng khácnhau nhưng thường dùng FF D, chúng được tích hợp sẵn trong 1 IC gồm nhiều FF(tạo nên ghi dịch n bit) Hãy xem cấu tạo của 1 ghi dịch cơ bản 4 bit dùng FF D
Hình 2.1 Ghi dịch 4 bit cơ bản
Thanh ghi, trước hết được xoá (áp xung CLEAR) để đặt các ngõ ra về 0 Dữliệu cần dịch chuyển được đưa vào ngõ D của tầng FF đầu tiên (FF0) Ở mỗi xungkích lên của đồng hồ ck, sẽ có 1 bit được dịch chuyển từ trái sang phải, nối tiếp từtầng này qua tầng khác và đưa ra ở ngõ Q của tầng sau cùng (FF3) Giả sử dữ liệuđưa vào là 1001, sau 4 xung ck thì ta lấy ra bit LSB, sau 7 xung ck ta lấy ra bitMSB
Trang 132.1.2 Hoạt động
Nếu tiếp tục có xung ck và không đưa thêm dữ liệu vào thì ngõ ra chỉ còn là 0(các FF đã reset : đặt lại về 0 hết Do đó ta phải “hứng” hay ghim dữ liệu lại Mộtcách làm là sử dụng 2 cổng AND, 1 cổng OR và 1 cổng NOT như hình dưới đây
Hình 2.2 Cho phép chốt dữ liệu trước khi dịch ra ngoài
Dữ liệu được đưa vào thanh ghi khi đường điều khiển R/W control ở mức cao (Write) Dữ liệu chỉ được đưa ra ngoài khi đường điều khiển ở mức thấp (Read)
2.1.3 Phân loại
Có nhiều cách chia loại thanh ghi dịch (SR)
- Theo số tầng FF (số bit) : SR có cấu tạo bởi bao nhiêu FF mắc nối tiếp thì có bấy nhiêu bit (ra song song) Ta có SR 4 bit, 5 bit, 8 bit, 16 bit …
Có thể có SR nhiều bit hơn bằng cách mắc nhiều SR với nhau hay dùng công nghệ CMOS (các máy tính sử dụng SR nhiều bit)
- Theo cách ghi dịch có
SISO vào nối tiếp ra nối tiếp
SIPO vào nối tiếp ra song song
PISO vào song song ra nối tiếp
PIPO vào song song ra song song
- Theo chiều dịch có SR trái, phải, hay cả 2 chiều
- Theo mạch ra có loại thường và 3 trạng thái
2.1.4 Ứng dụng
Thanh ghi dịch đóng vai trò cực kì quan trọng trong việc lưu trữ, tính toán sốhọc và logic Chẳng hạn trong các bộ vi xử lí, máy tính đều có cấu tạo các thanhghi dịch; trong vi điều khiển (8051) cũng có các ghi dịch làm nhiều chức năng haynhư trong nhân chia, ALU đã xét ở chương 2 ghi dịch cũng đã được đề cập đến Ởđây không đi vào chi tiết mà chỉ nói khái quát ngắn gọn về ứng dụng của chúng
Trang 14- Lưu trữ và dịch chuyển dữ liệu
- Tạo kí tự hay tạo dạng song điều khiển
- Chuyển đổi dữ liệu nối tiếp sang song song và ngược lại
- Bus truyền dữ liệu
2.2 Bộ đếm
Bộ đếm là thiết bị đếm được số xung đến cửa vào, đầu ra của bộ đếm là số
lượng xung đếm được Bộ đếm rất đa dạng Bộ đếm có thể phân loại theo cách thứchoạt động làm bộ đếm đồng bộ và bộ đếm không đồng bộ(bộ đếm dị bộ) hoặc phânloại theo hệ số đếm của nó làm bộ đếm nhị phân, bộ đếm thập phân và bộ đếm Nphân
Cũng cần lưu ý là ở đây ta xây dựng mạch đếm lên mod 16 với 4 FF JK cóxung Ck tác động cạnh xuống Ta cũng có thể làm mạch tương tư, với xung ck tácđộng cạnh lên hay sử dụng FF T thay cho FF JK
Trang 15Hình 2.4
Để mạch đếm đúng, ở mỗi xung kích ck tác động cạnh xuống, chỉ có FF nào
dự kiến sẽ lật trạng thái mới phải để T = 1(J, K được nối chung với nhau và đượccoi như là ngõ chung T) Nhìn vào bảng trạng thái hoạt động của bộ đếm lên ta sẽthấy được cần phải kết nối như thế nào
- Ngõ ra Q0 sẽ thay đổi trạng thái theo cạnh xuống của xung kích ck do đó ngõ T0được để trống (mức cao)
- Ngõ ra Q1 đổi trạng thái khi có xung kích xuống Q0 do đó Q0 được đưa thẳngvào ngõ T1
- Ngõ ra Q2 đổi trạng thái khi đếm đến số 4, 8, 12, 0, lúc này thì Q0 và Q1 đềuxuống thấp; vậy ngõ vào T2 sẽ là And của hai ngõ vào này
- Ngõ ra Q3 đảo trạng thái khi số đếm là 8 và 0 khi này Q0, Q1, Q2 đều tác dụngcạnh xuống, vậy ngõ vào T3 sẽ là And của 2 ngõ vào này
Vậy mỗi FF đều phải có đầu vào T được nối sao cho chúng ở mức cao chỉ khi nàođầu ra của các FF trước nó ở mức cao
Trang 16mạch đếm xuống mod 16 thì đầu ra Q sẽ được nối tới T1, T2, T3 và bộ đếm sẽ đếmxuống từ 15, 14, 13,… rồi về 0 để reset trở lại 15.
Bây giờ thêm 1 ngõ điều khiển chế độ đếm giống như bên mạch đếm lênxuống không đồng bộ ta đã có mạch đếm lên xuống đồng bộ K = 1(up) đếm lên, K
= 0(down) đếm xuống Mạch được xây dựng như hình sau (lưu ý xung ck tác độngcạnh lên)
Hình2.6 Mạch đếm đồng bộ lên hay xuống
2.2.3 Đếm đồng bộ không theo hệ nhị phân
Để thiết kế mạch đếm mod m bất kì từ mạch đếm mod 2n (m <= 2n) ta có thểdùng ngõ clear để xoá mạch khi đếm đến số m, cách khác là nhìn vào giản đồ xung
để thử nghiệm việc nối các đầu vào J, K Ở đây ta sẽ xét đến mạch đếm mod 10 haydùng
Ngoài xung ck được đưa vào tất cả 4 tầng FF thì cần phải giải quyết các ngõ J,K
Để ý là khi mạch đếm đến số 10 thì Q0 = 0 và Q2 = 0 không đổi trạng thái khi reset
về 0 nên FF 0 và FF 2 được kích bình thường như đã nói
Còn với FF 1, Q1 đổi trạng thái khi Q0 ở cao đồng thời Q1 phải được giữluôn mức thấp ở số đếm thứ 10, khi này có thể tận dụng đang ở cao cho tới khireset, vậy J1 = K1 = Q0
Sau cùng với FF 3 Q3 sẽ được reset về 0 khi cả 3 Q0Q1Q2 đều về 0 Vậy J3 = K3
= Q0Q1Q2
Kiểm tra lại thấy rằng mạch đúng là hoạt động đếm chia 10 Bạn có thể xemphần thiết kế mạch đếm đồng bộ ở sau để hiểu rõ cách nối mạch, còn đây là cấutrúc mạch mô tả:
Trang 173 tầng FF được minh hoạ như hình và hoạt động nạp được thực hiện như sau:
Hình 2.8 Mạch đếm đặt trước 3 bit
Giả sử mạch đang đếm hay dừng ở 1 số đếm nào đó
Đưa sẵn số đếm có trạng thái cần nạp vào ngõ A B C
Đặt một xung mức thấp vào đầu LD (parallel load), xung này sẽ cho phéptrạng thái logic ABC qua cổng Nand để đưa vào 3 tầng FF qua 3 ngõ Pr hay Cl (tuỳthuộc bit mức thấp hay cao) Kết quả là Q0 = A, Q1 = B, Q2 = C
Khi LD lên cao trở lại, lúc này nếu có xung nhịp Ck thì mạch sẽ tiếp tục đếm
từ số vừa nạp (trước đó ck và các ngõ T không có tác dụng)
Trang 18IC 74LS190 là IC dòng TTL dùng để đếm lên và đếm xuống chia 10 hay gọi
là vi mạch thuận nghịch thập phân (MOD10) Khi có xung vào chân đếm
của 74LS190 thì tùy vào điều kiện mà chúng ta cấu hình đếm lên hay đếm xuống
thì IC này cứ mỗi sườn lên của xung đầu vào thì nó giải mã ra mã BCD Nếu màđếm xuống thì nó sẽ đếm và giải mã kiểu này : Xung vào thứ 1 nó giải mã BCD ra(0001) tức là số 9, tương tự như vậy thì xung thứ 2 nó giải mã BCD ra (1000) tức là
số 8 cứ thế cho đến xung thứ 9 và BCD là số 0 Còn đếm lên thì ngược lại
Sơ đồ chân IC 74LS190
Chức năng của từng chân như sau:
Trang 19+ Vcc là chân cấp nguồn 5V
+ GND là chân cấp nguồn Mass
+ Q0 đến Q3 là đầu ra của bộ đếm mã BCD
+ CP là ngõ vào cấp xung Clock cho mạch đếm
+ CE là ngõ cho vào tích cực luôn đặt ở mức logic 0
+ U/D : Chân cấu hình cho đếm lên hay đếm xuống Nếu đếm lên thì mức 0
và đếm lùi là 1
+ PL là ngõ đầu vào thiết lập trạng thái đầu cho mạch đếm : PL = 0 ; Qi = Ai ( i=0,1,2,3)
+ A0 đến A3 là các đầu vào dữ liệu
+ TC và RC là hai ngõ ra dùng để kết nối liên tầng giữa hai con 74LS190