www.SơnPro.com
TRƯỜNG THPT HẬU LỘC 2
www.MATHVN.com
ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2012-2013
Môn thi: TOÁN, Khối A, B và D
Thời gian làm bài: 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm)
Cho hàm số
3 2
y x 3x 1= − +
(1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Lập phương trình tiếp tuyến với (C) biết nó song song với đường thẳng (d): 9x - y + 6 = 0.
Câu II (2,0 điểm)
1) Giải phương trình:
2
3
cos 2 2cos sin 3 2
4 4
0
2cos 2
x x x
x
π π
− + − −
÷ ÷
=
−
2) Giải phương trình
( ) ( )
3 3
2 2
1 111 2 1x x x x
+ − + − − = + −
Câu III (1,0 điểm) Tính tích phân
3
1
4
2
0
( )
1
x
x
x e dx
x
+
+
∫
Câu IV (1,0 điểm) Cho hình lăng trụ đứng
. ' ' 'ABC A B C
có đáy ABC là tam giác cân tại C, cạnh
đáy AB bằng 2a và góc ABC bằng 30
0
. Tính thể tích của khối lăng trụ
. ' ' 'ABC A B C
biết khoảng
cách giữa hai đường thẳng AB và
'CB
bằng
2
a
Câu V (1,0 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c =
3
4
. Tìm giá trị nhỏ nhất của
biểu thức :
333
3
1
3
1
3
1
accbba
P
+
+
+
+
+
=
PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (Phần A hoặc B)
A. Theo chương trình chuẩn
Câu VI.a (2,0 điểm)
1) Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác
trong BD. Biết
17
( 4;1), ( ;12)
5
H M−
và BD có phương trình
5 0x y+ − =
. Tìm tọa độ đỉnh A
của tam giác ABC.
2) Trong không gian Oxyz, cho đường thẳng
1 1
:
2 3 1
x y z+ +
∆ = =
−
và hai điểm
(1;2; 1),A −
(3; 1; 5)B − −
. Viết phương trình đường thẳng d đi qua điểm A và cắt đường thẳng ∆ sao cho
khoảng cách từ B đến đường thẳng d là lớn nhất, nhỏ nhất.
Câu VII.a (1,0 điểm) Tìm số nguyên dương n biết:
− − +
+ + + +
− + + − − + − + = −
2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200
k k k n n
n n n n
C C k k C n n C
.
B. Theo chương trình nâng cao
Câu VI.b (2,0 điểm)
1) Trong mặt phẳng Oxy, cho đường tròn (C):
2 2
( 2) ( 3) 4x y− + + =
và đường thẳng d:
3 4 7 0x y m− + − =
. Tìm m để trên d có duy nhất một điểm M mà từ đó kẻ được hai tiếp
tuyến MA, MB tới (C) (A, B là các tiếp điểm) sao cho góc AMB bẳng 120
0
.
2) Trong không gian Oxyz cho 3 điểm
(1;1; 1), (1;1;2), ( 1;2; 2)A B C− − −
và mặt phẳng (P) có
phương trình
2 2 1 0x y z− + + =
. Mặt phẳng
( )
α
đi qua A, vuông góc với mặt phẳng (P),
cắt đường thẳng BC tại I sao cho
2IB IC
=
. Viết phương trình mặt phẳng
( )
α
.
Câu VII.b (1,0 điểm) Giải hệ phương trình :
2
1 2
1 2
2log ( 2 2) log ( 2 1) 6
log ( 5) log ( 4) = 1
x y
x y
xy x y x x
y x
− +
− +
− − + + + − + =
+ − +
,
( , )x y∈R
.
www.SơnPro.com
www.SơnPro.com
…………………………Hết…………………………
ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM
Câu Ý Nội dung Điểm
I
1
1. (1,0 điểm) Khảo sát
3 2 2
y x 3x m m 1= − + − +
1,00
Khi m = 1, ta có
3 2
y x 3x 1= − +
+ TXĐ:
D = ¡
+ Giới hạn:
3 2
lim ( 3 1)
x
x x
→−∞
− + = −∞
3 2
lim ( 3 1)
x
x x
→+∞
− + = +∞
+Sự biến thiên:
2
' 3 6= −y x x
2
0
' 0 3 6 0
2
=
= ⇔ − = ⇔
=
x
y x x
x
0,25
Hàm số đồng biến trên khoảng
( ) ( )
;0 ; 2;−∞ +∞
Hàm số nghịch biến trên khoảng
( )
0;2
Hàm số đạt cực đại tại x = 0, y
CĐ
= 1
Hàm số đạt cực tiểu tại x = 2, y
CT
= -3
0,25
Bảng biến thiên
x
−∞
0 2
+∞
y
′
+ 0
−
0 +
y
1
+∞
−∞
- 3
0,25
Đồ thị: đồ thị hàm số cắt trục tung tại điểm (0;1) Điểm uốn
I(1; 1)−
là tâm đối
xứng.
0,25
2
2. (1,0 điểm) Xác định m TỔNG CÔNG TY CẤP NƯỚC SÀI GÒN TRÁCH NHIỆM HỮU HẠN MỘT THÀNH VIÊN CÔNG TY CỔ PHẦN CẤP NƯỚC PHÚ HOÀ TÂN CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIẾT NAM Độc lập – Tự – Hạnh phúc Số: 366 /BC-PHT-TCHC TpHCM, ngày 01 tháng năm 2013 BÁO CÁO TỔNG KẾT HOẠT ĐỘNG SXKD NĂM 2012 KẾ HOẠCH SXKD - ĐẦU TƯ XÂY DỰNG NĂM 2013 Năm 2012 năm nhiều thách thức với kinh tế nước Những biến động thị trường tài thách thức không nhỏ doanh nghiệp Ý thức tình hình đó, toàn thể CBCNV Công ty nỗ lực, tích cực sáng tạo làm việc theo với nghị ĐHĐCĐ, HĐQT Công ty đặt I ĐÁNH GIÁ TÌNH HÌNH THỰC HIỆN KẾ HOẠCH NĂM 2012: * Về thuận lợi: Đơn vị quan tâm đạo sâu sát hỗ trợ tích cực Đảng ủy, Ban Tổng Giám đốc phòng ban chức Tổng Công ty, kịp thời giải vướng mắc mặt hoạt động Công ty Duy trì mối quan hệ tốt với quyền địa phương, tích cực hỗ trợ lẫn thông tin phục vụ nhu cầu sử dụng nước cho người dân Trên sở đó, cải tạo mạng lưới cấp nước theo tiến độ thực công trình ngầm khác tạo thuận lợi công tác xây dựng DMA địa bàn Tình hình tư tưởng cán Đảng viên, công nhân viên ổn định, có đồng thuận trí cao, tinh thần đoàn kết nội tốt * Về khó khăn: Tình hình kinh tế khó khăn dẫn đến thu nhập người dân doanh nghiệp địa bàn giảm, ảnh hưởng đến nhu cầu sử dụng nước khách hàng Lượng nước tiêu thụ bình quân hàng ngày Công ty (chưa tính lượng nước m3 theo Nghị định 117) giảm từ 4.227 m3/ngày năm 2011 xuống 4.214 m3/ngày năm 2012; tỷ lệ hộ dân cấp nước đạt mức bảo hòa; tình trạng sử dụng nước giếng khoan phổ biến số khu vực (đầu năm 2012 6.135 hộ, cuối năm 2012 7.016 hộ) Tại địa bàn Công ty quản lý, tỷ lệ hộ dân dùng nước với giá sinh hoạt cao nên giá bán bình quân thấp so với đơn vị khác; áp lực nước đơn vị thấp so với toàn hệ thống, gây ảnh hưởng đến chất lượng dịch vụ cấp nước Giá vật tư chuyên ngành cấp nước đứng mức cao, làm tăng suất đầu tư phát triển cải tạo mạng lưới cấp nước, tăng chi phí phát triển khách hàng gắn ĐHN theo Nghi định 117… II KẾT QUẢ THỰC HIỆN : Các tiêu chủ yếu: a Các tiêu chủ yếu kế hoạch SXKD năm 2012: Trang 1/4 Chỉ tiêu A- KINH DOANH: 1- Nước cung cấp 2- Doanh thu tiền nước 3- Tỷ lệ thực thu đương niên 4- Thi công gắn ĐHN 5- Thay ĐHN cỡ nhỏ (15-25 ly) 6- Thay ĐHN cỡ lớn 7- Tỷ lệ hộ dân cấp nước B- ĐẦU TƯ XÂY DỰNG: 1- Phát triển mạng lưới cấp nước: - Kinh phí đầu tư - Khối lượng đường ống 2- Cải tạo nâng cấp mạng lưới: - Kinh phí đầu tư - Khối lượng đường ống 3- Sửa chữa trụ sở làm việc: b Đvt Kế hoạch 1.000 m3 triệu đồng % cái Thực Thực hiện/ Kế hoạch 30.750 248.000 99,00 300 17.000 40 99,90 31.006 249.093 99,95 303 19.279 48 99,99 100,83 100,44 100,96 101,00 113,41 120,00 100,09 triệu đồng mét 19.004 2.053 19.004 2.053 100,00% 100,00% triệu đồng mét triệu đồng 23.425 6.019 2.000 23.425 6.019 2.000 100,00% 100,00% 100,00% % Kết tài 2012: Chỉ tiêu Đvt Thực Tổng doanh thu triệu đồng 261.971 Tổng chi phí triệu đồng 240.753 Tổng lợi nhuận trước thuế triệu đồng 21.218 Tổng lợi nhuận sau thuế triệu đồng 16.480 - Năm 2012, Công ty nộp ngân sách 44 tỷ đồng (tăng 12% so với năm 2011) - Dự kiến cổ tức năm 2012 11,5% (tăng 1% so với năm 2011) c Thành tựu đạt được: - Về kinh doanh nước sạch: Đơn vị hoàn thành vượt mức kế hoạch tiêu doanh thu sản lượng nước tiêu thụ, bối cảnh chịu ảnh hưởng chung kinh tế khó khăn Trong năm 2012, Công ty gắn 303 ĐHN, tổng số khách hàng 87.464 khách hàng, với giá bán bình quân nước năm 2012 đạt 8.034 đồng/m3, tăng 9,6% so với năm 2011; Xử lý truy thu 59 trường hợp sử dụng nước gian lận, bất hợp pháp với lượng nước 28.006 m 3, tương ứng với số tiền 400 triệu đồng Công tác chăm sóc khách hàng Công ty trọng đầu tư, số đổi đáng kể như: áp dụng thiết bị đọc số cầm tay Handheld, đường dây nóng giải đáp thắc mắc khách hàng, đăng thông báo phục vụ khách hàng website Công ty (www.phuwaco.com.vn), mở dịch vụ toán trực tuyến Payoo toán qua tài khoản ngân hàng, Trang 2/4 - Về công tác ứng phó với tình trạng nước đục: Sử dụng công nghệ Polypig, làm đường ống; phối hợp với Tổng Công ty lắp đặt thiết bị làm mạng lưới Scale Buster, đảm bảo thực súc xả theo phương pháp tiết kiệm hiệu - Về công tác quản lý mạng lưới giảm nước không doanh thu: Qua nghiên cứu kỹ thuật tận dụng nguồn lực, đơn vị tiến hành trực sửa bể 24/24, rút ngắn thời gian nhận thông tin tiếp cận, giải điểm bể không Thường xuyên dò bể khu vực có nghi ngờ thất thoát nước cao, đo áp lực kiểm tra, xác định khu vực giảm áp, lập kế hoạch khoanh vùng nhằm tìm kiếm, dò tìm rò rỉ toàn tuyến ống ngánh theo tuyến ống DMA Chủ động xử lý hư hỏng đường ống cấp nước, phối hợp với địa phương, kịp thời giải cố xảy Xây dựng sở liệu PhuwaGIS quản lý công trình hạ tầng kỹ thuật, góp phần đại hóa nghiệp vụ ngành quản lý công trình ngầm, cho phép thực nhiều công việc hơn, với nguồn lực, tài nguyên chí phí thấp Những biện pháp tích cực góp phần hoàn thành xuất sắc công tác giảm nước thất thoát đơn vị Theo hợp đồng ký với Tổng Công ty Cấp nước Sài Gòn, Công ty tiến hành giảm lượng nước thất thoát 2.600m3/ngày đêm với 33 DMA Hiện nay, với DMA vận hành, Công ty giảm lượng nước thất thoát 2.100m 3/ngày đêm ...
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỀ THI THỬ ĐẠI HỌC ĐỢT 1
TRƯỜNG THPT CHUYÊN KHTN NĂM HỌC 2012 – 2013
Môn: Toán học
Thời gian làm bài: 180 phút
Câu I. Cho hàm số y = x
3
+ (m + 3)x
2
+ 2(m + 1)x + m
2
+ 2m .
1) Khảo sát sự biến thiên và vẽ đồ thị khi m = – 1.
2) Hãy tìm giá trị của tham số m để hàm số có cực trị thoả mãn y
max
.y
min
< 0.
Câu II. Giải phương trình
1)
1+
5
+
+
1
4
2
2 +
1
2
2 = 1.
2) 4
x
+ 3
2x + 1
= 3.18
x
+ 2
x
.
Câu III.
1) Tính nguyên hàm
3
+2
3
.
2) Tìm số các số có 3 chữ số sao cho tổng của 3 chữ số đó bằng 11.
Câu IV.
1) Trong không gian với hệ trục toạ độ Oxyz cho 2 điểm A(0; – 2; 1); B(2; 0; 3) và mặt phẳng
(P): 2x – y – z + 4 = 0. Tìm M (P) sao cho MA = MB và (ABM) (P).
2) Cho khối chóp S.ABC, tam giác ABC vuông cân tại B, AB = BC = 2a.
Mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Góc giữa SC và mặt phẳng (SAB)
bằng 30
0
.
Tính thể tích khối chóp S.ABC và khoảng cách giữa SA và BC.
3) Trong mặt phẳng toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12. Tâm I của hình chữ nhật
là giao điểm của đường thẳng d
1
: x – y – 3 = 0 và đường thẳng d
2
: x + y – 6 = 0. Trung điểm một cạnh là
giao điểm của d
1
với trục hoành. Xác định toạ độ bốn đỉnh của hình chữ nhật.
Câu V. Với a, b, c là các số thực dương thoả mãn điều kiện a
2
+ b
2
+ c
2
+ 2abc = 1. Chứng minh rằng:
a
2
+ b
2
+ c
2
4(a
2
b
2
+ b
2
c
2
+ c
2
a
2
) .
Hết
www.VNMATH.com
S GD & T THANH HO
TRNG THPT HU LC 4
KIM TRA CHT LNG ễN THI I HC
LN 1, NM HC: 2012 - 2013
MễN TON, KHI A V KHI A
1
(Thi gian lm bi 180 phỳt)
PHN CHUNG CHO TT C CC TH SINH (7,0 im)
Cõu 1 (2,0 im). Cho hm s:
3 4
4 3
x
y
x
.
a) Kho sỏt v v th (C) ca hm s.
b) Vit phng trỡnh tip tuyn ti im A ca (C), bit tip tuyn ct trc honh ti B sao cho tam
giỏc OAB cõn ti A.
Cõu 2 (1,0 im). Gii phng trỡnh
(2cos 1)(sin cos ) 1
x x x
.
Cõu 3 (1,0 im). Gii h phng trỡnh
2
4 2 2 2
4 2 0
( , )
8 3 4 0
x xy x y
x y
x x y x y
.
Cõu 4 (1,0 im). Gii bt phng trỡnh
1
3
9
2log 9 9 log 28 2.3
x x
x
.
Cõu 5 (1,0 im). Cho hỡnh chúp S.ABCD cú ỏy ABCD l na lc giỏc u ni tip trong ng
trũn ng kớnh AD = 2a, SA
(ABCD),
SA 6
a
, H l hỡnh chiu vuụng gúc ca A trờn SB.
Tỡm th tớch khi chúp H.SCD v tớnh khong cỏch gia hai ng thng AD v SC.
Cõu 6 (1,0 im). Cho cỏc s thc khụng õm a, b, c tha món
3
ab bc ca
v
.
a c
Tỡm giỏ tr
nh nht ca biu thc
2 2 2
1 2 3
.
( 1) ( 1) ( 1)
P
a b c
Phần riêng (3,0 điểm)
Thí sinh chỉ đợc làm một trong hai phần (phần A hoặc phần B)
A. Theo chơng trình chuẩn
Câu 7.a (1,0 im). Trong mt phng to Oxy, cho hai ng thng
1
d :3 5 0
x y
,
2
d :3 1 0
x y
v im
I(1; 2)
. Vit phng trỡnh ng thng i qua I v ct d
1
, d
2
ln lt ti A
v B sao cho
AB 2 2
.
Cõu 8.a (1,0 im). Trong mt phng ta Oxy, cho tam giỏc ABC ni tip trong ng trũn
2 2
(T) : 4 2 0
x y x y
tõm I v ng phõn giỏc trong ca gúc A cú phng trỡnh
0
x y
. Bit
din tớch tam giỏc ABC bng ba ln din tớch tam giỏc IBC v im A cú tung dng. Vit
phng trỡnh ng thng BC.
Câu 9.a (1,0 im). Cho n l s nguyờn dng tha món
3 3
3 1
6 294.
n n
A C
Tỡm s hng m tớch s
m ca
x
v
y
bng 18 trong khai trin nh thc Niu-tn
n
x
y
y
nx
2
24
3
,
0
xy
.
B. Theo chơng trình nâng cao
Câu 7.b (1,0 im). Trong mt phng ta Oxy, cho hỡnh thang ABCD vuụng ti A v D,
CD 2AB
,
B(8;4)
. Gi H l hỡnh chiu vuụng gúc ca D lờn AC,
82 6
M( ; )
13 13
l trung im ca HC.
Phng trỡnh cnh AD l
2 0.
x y
Tỡm ta cỏc nh A, C, D ca hỡnh thang.
Câu 8.b (1,0 im). Trong mt phng to Oxy, cho
A(3;0)
v elớp
2 2
( ) : 1.
9 1
x y
E
Tỡm im B
v C thuc Elớp sao cho tam giỏc ABC vuụng cõn ti A, bit im C cú tung õm.
Cõu 9.b (1,0 im). Trờn cỏc cnh AB, BC, CD, DA ca hỡnh vuụng ABCD ln lt ly 1, 2, 3 v n
im phõn bit khỏc A, B, C, D. Tỡm n bit s tam giỏc ly t n + 6 im ó cho l 439.
Hết
Thí sinh không đợc sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: Số báo danh:
S GD & T THANH HO
TRNG THPT HU LC 4
***
đáp án
thang điểm
đề kiểm tra chất lợng ôn thi đại học
Lần 1
năm học: 2012 2013- môn toán, khối A và A
1
(ỏp ỏn Thang im gm 05 trang)
P N THANG IM
Cõu ỏp ỏn im
1
(2,0
im)
a.
(1,0
i
m
)
* Tp xỏc nh
3
\
4
D R
* S bin thiờn:
+ Chiu bin thiờn:
'
2
25
0,
(4 3)
y x D
x
Hm s ng bin trờn cỏc khong
3
;
4
v
3
;
4
.
0.25
+
Cc tr: Hm s khụng cú cc tr.
+
Gii hn v tim cn
:
3
lim lim
4
x x
y y
tim cn ngang: y =
3
4
4 4
( ) ( )
3 3
lim , lim
x x
y y
tim cn ng: x = -
4
3
0.25
+ Bng bin thiờn:
x
-
-
3
4
'
y
+
+
y
+
3
4
3
4
-
0.25
* th:
th hm s i xng qua giao im 2 ng tim cn.
0.25
b.(1,0 điểm)
Gọi M là trung điểm của OB có tọa độ
0
( ;0)
M x . Suy ra
0
(2 ;0)
B x ,
0
0
0
3 4
( ; )
4 3
x
A x
x
Phương trình tiếp tuyến của (C) tại A có dạng:
0
0
2
00
25
3 4
( )
4 3
(4 3)
x
y x x
x
x
www.MATHVN.com
www.MATHVN.com
TRƯỜNG THPT HẬU LỘC 2
www.MATHVN.com
ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2012-2013
Môn thi: TOÁN, Khối A, B và D
Thời gian làm bài: 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm)
Cho hàm số
32
y x 3x 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
2. Lập phương trình tiếp tuyến với (C) biết nó song song với đường thẳng (d): 9x - y + 6 = 0.
Câu II (2,0 điểm)
1)
Giải phương trình:
2
3
cos 2 2cos sin 3 2
44
0
2cos 2
xx x
x
2)
Giải phương trình
33
22
11 11 21
x
xx x
Câu III (1,0 điểm) Tính tích phân
3
1
4
2
0
()
1
x
x
x
edx
x
Câu IV (1,0 điểm) Cho hình lăng trụ đứng
.' ' '
A
BC A B C
có đáy ABC là tam giác cân tại C, cạnh
đáy AB bằng 2a và góc ABC bằng 30
0
. Tính thể tích của khối lăng trụ .' ' '
A
BC A B C biết khoảng
cách giữa hai đường thẳng AB và
'CB
bằng
2
a
Câu V (1,0 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c =
3
4
. Tìm giá trị nhỏ nhất của
biểu thức :
333
3
1
3
1
3
1
accbba
P
PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (Phần A hoặc B)
A. Theo chương trình chuẩn
Câu VI.a
(2,0 điểm)
1)
Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác
trong BD. Biết
17
( 4;1), ( ;12)
5
HM và BD có phương trình
50xy
. Tìm tọa độ đỉnh A
của tam giác ABC.
2)
Trong không gian Oxyz, cho đường thẳng
11
:
23 1
x
yz
và hai điểm (1; 2; 1),A
(3;1;5)B . Viết phương trình đường thẳng d đi qua điểm A và cắt đường thẳng sao cho
khoảng cách từ B đến đường thẳng d là lớn nhất, nhỏ nhất.
Câu VII.a (1,0 điểm) Tìm số nguyên dương n biết:
2 3 2 2121
21 21 21 21
2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200
kkk nn
nn n n
CC kkC nnC
.
B. Theo chương trình nâng cao
Câu VI.b
(2,0 điểm)
1)
Trong mặt phẳng Oxy, cho đường tròn (C):
22
(2)(3)4xy
và đường thẳng d:
34 70xym
. Tìm m để trên d có duy nhất một điểm M mà từ đó kẻ được hai tiếp
tuyến MA, MB tới (C) (A, B là các tiếp điểm) sao cho góc AMB bẳng 120
0
.
2)
Trong không gian Oxyz cho 3 điểm
(1;1; 1), (1;1; 2), ( 1; 2; 2)ABC
và mặt phẳng (P) có
phương trình
2210xyz
. Mặt phẳng
()
đi qua A, vuông góc với mặt phẳng (P),
cắt đường thẳng BC tại I sao cho
2IB IC
. Viết phương trình mặt phẳng
()
.
Câu VII.b (1,0 điểm) Giải hệ phương trình :
2
12
12
2log ( 2 2) log ( 2 1) 6
log ( 5) log ( 4) = 1
xy
xy
xy x y x x
yx
,
(, )xyR .
www.MATHVN.com
www.MATHVN.com
…………………………Hết…………………………
ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM
Câu Ý Nội dung Điểm
I
1
1. (1,0 điểm) Khảo sát
322
yx 3x m m1
1,00
Khi m = 1, ta có
32
yx 3x 1
+ TXĐ:
D
+ Giới hạn:
32
lim ( 3 1)
x
xx
32
lim ( 3 1)
x
xx
+Sự biến thiên:
2
'3 6yxx
2
0
'0 3 6 0
2
x
yxx
x
0,25
Hàm số đồng biến trên khoảng
;0 ; 2;
Hàm số nghịch biến trên khoảng
0; 2
Hàm số đạt cực đại tại x = 0, y
CĐ
= 1
Hàm số đạt cực tiểu tại x = 2, y
CT
= -3
0,25
Bảng biến thiên
x 0 2
y
+ 0
0 +
y
1
- 3
0,25
Đồ thị: đồ thị hàm số cắt trục tung tại điểm (0;1) Điểm uốn I(1; 1)
là tâm đối
xứng.
0,25
2
2.
(1,0 điểm) Xác định m để
1,00
Ta có : y’ = 3x
2
- 6x
Vì tiếp tuyến cần tìm song song với (d) nên có hệ số góc k = Trường THPT iSCHOOL Tổ: Toán – Tin Trường THPT iSCHOOL ĐỀ THI THỬ HKI – NĂM HỌC 2011 – 2012 Tổ: Toán – Tin MÔN: TOÁN KHỐI 11 Thời gian làm bài 90 phút. A. PHẦN ĐẠI SỐ[6.0 điểm] Bài 1:(2.0 điểm): Giải các phương trình sau: a/. 1 sin 30 2 x b/. 2 2 cos 3cos 1 0x x Bài 2:(1.0 điểm): Cho tập số 1; 2;4;5.7;8;9X . Có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 2. Bài 3:(2.0 điểm): Gieo một con súc sắc cân đối, đồng chất 2 lần. Tính xác suất của các biến cố sau: a/. Tổng số chấm xuất hiện trong lần gieo bằng 7. b/. Số chấm trong hai lần gieo bằng nhau và là số chẳn. Bài 4:(1.0 điểm): Cho cấp số cộng n u với 11 2 u và công sai 2d . Tìm số hạng 18 u và tính tổng của 18 số hạng đầu của cấp số cộng trên. B. PHẦN ĐẠI SỐ[4.0điểm] Bài 1: (2.0 điểm) Trong mặt phẳng (Oxy) cho điểm 2;3A và đường thẳng : 2 3 0d x y và véctơ 1;5v . a./ Tìm tọa điểm 'A là ảnh của A qua phép tònh tiến theo véctơ 1;5v . b/. Tìm phương trình đường thẳng 'd là ảnh của d qua phép vò tự tâm O (O: là gốc tọa độ) và tỉ số vò tự 2k . Bài 2: (2.0 điểm) Cho hình chóp .S ABCD với ABCD là hình bình hành. Gọi O là giao điểm của AC, BD. Gọi M, N lần lượt là trung điểm của SC, OC. a/. Tìm giao điểm của AM và mặt phẳng (SBD). b./ Chứng mình rằng: / /MN SBD . …… HẾT…… (Giám thò coi thi không cần giải thích gì thêm) ĐỀ SỐ 1 www.VNMATH.com Trường THPT iSCHOOL Tổ: Toán – Tin Trường THPT iSCHOOL ĐỀ THI THỬ HKI – NĂM HỌC 2011 – 2012 Tổ: Toán – Tin MÔN: TOÁN KHỐI 11 Thời gian làm bài 90 phút. A. PHẦN ĐẠI SỐ[6.0 điểm] Bài 1:(2.0 điểm): Giải các phương trình sau: a/. 2.cos 15 2 2 x b/. 3 sin 1 cosx x Bài 2:(1.0 điểm): Cho tập số 1; 2;4;5.7;8;9X . Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó chữ số 9 đứng ở hàng đơn vò. Bài 3:(2.0 điểm): Một cái hộp đựng 14 viên bi màu trắng, 6 viên bi màu đỏ. Lấy ngẫu nhiên 8 viên bi. Tính xác suất của các biến cố sau: a/. Có đúng 2 viên bi màu trắng. b/. Số bi trắng bằng với số bi đỏ. Bài 4:(1.0 điểm): Cho cấp số cộng n u với 1 3 2 u và công sai 3d . Tìm số hạng 20 u và tính tổng của 20 số hạng đầu của cấp số cộng trên. B. PHẦN ĐẠI SỐ[4.0điểm] Bài 1: (2.0 điểm) Trong mặt phẳng (Oxy) cho điểm 3; 2M và đường thẳng : 3 4 5 0d x y và véctơ 3; 1v . a./ Tìm tọa điểm 'M là ảnh của M qua phép tònh tiến theo véctơ 3; 1v . b/. Tìm phương trình đường thẳng D là ảnh của d phép vò tự tâm O (O: là gốc tọa độ) và tỉ số vò tự 2k . Bài 2: (2.0 điểm) Cho hình chóp .S ABCD với ABCD là hình bình hành, O là giao điểm của AC và BD. Gọi M là trung điểm củaSB a/. Tìm giao điểm DM và SAC và mặt phẳng (SMN). b./ Chứng mình rằng: / /OM SCD . …… HẾT…… (Giám thò coi thi không cần giải thích gì thêm) ĐỀ SỐ 2 www.VNMATH.com Trường THPT iSCHOOL Tổ: Toán – Tin Trường THPT iSCHOOL ĐỀ THI THỬ HKI – NĂM HỌC 2011 – 2012 Tổ: Toán – Tin MÔN: TOÁN KHỐI 11 Thời gian làm bài 90 phút. A. PHẦN ĐẠI SỐ[6.0 điểm] Bài 1:(2.0 điểm): Giải các phương trình sau: a/. tan 3 3x b/. 2 3sin 3sin .cos 2cos 1x x x x Bài 2:(1.0 điểm): Cho tập số 1; 2;4;5.7;8;9X . Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và luôn có mặt chữ số 9. Bài 3:(2.0 điểm): Gieo một con súc sắc cân đối, đồng chất 2 lần. Tính xác suất của các biến cố sau: a/. Tích số chấm xuất hiện trong hai lần gieo không bé hơn 24. b/. Số chấm chẳn xuất hiện trước và tổng số chấm không bé hơn 4. Bài 4:(1.0 điểm): Cho cấp số cộng n u với 1 2u và công sai 1 2 d . Tìm số hạng 12 u và tính tổng của 12 số hạng đầu của cấp số cộng trên. B. PHẦN ĐẠI SỐ[4.0điểm] Bài 1: (2.0 điểm) Trong mặt phẳng (Oxy) cho điểm 1; 2A và đường thẳng : 3 3 0d x y và véctơ 1; 5v . a./ Tìm tọa điểm 'A là ảnh của A qua phép tònh tiến theo véctơ 1;5v . b/. Tìm phương trình đường thẳng D sao cho d của (D) qua phép vò tự tâm O (O: là ... 248.000 99,00 300 17 .000 40 99,90 31. 006 249.093 99,95 303 19 .279 48 99,99 10 0,83 10 0,44 10 0,96 10 1,00 11 3, 41 120,00 10 0,09 triệu đồng mét 19 .004 2.053 19 .004 2.053 10 0,00% 10 0,00% triệu đồng... đồng 21. 218 Tổng lợi nhuận sau thuế triệu đồng 16 .480 - Năm 2 012 , Công ty nộp ngân sách 44 tỷ đồng (tăng 12 % so với năm 2 011 ) - Dự kiến cổ tức năm 2 012 11 ,5% (tăng 1% so với năm 2 011 ) c Thành... 6. 019 2.000 23.425 6. 019 2.000 10 0,00% 10 0,00% 10 0,00% % Kết tài 2 012 : Chỉ tiêu Đvt Thực Tổng doanh thu triệu đồng 2 61. 9 71 Tổng chi phí triệu đồng 240.753 Tổng lợi nhuận trước thuế triệu đồng 21. 218